mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-07 12:49:46 +00:00
457 lines
20 KiB
OpenSCAD
457 lines
20 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vectors.scad
|
|
// Vector math functions.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Vector Manipulation
|
|
|
|
|
|
// Function: is_vector()
|
|
// Usage:
|
|
// is_vector(v, [length], ...);
|
|
// Description:
|
|
// Returns true if v is a list of finite numbers.
|
|
// Arguments:
|
|
// v = The value to test to see if it is a vector.
|
|
// length = If given, make sure the vector is `length` items long.
|
|
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
|
|
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
|
|
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
|
|
// Example:
|
|
// is_vector(4); // Returns false
|
|
// is_vector([4,true,false]); // Returns false
|
|
// is_vector([3,4,INF,5]); // Returns false
|
|
// is_vector([3,4,5,6]); // Returns true
|
|
// is_vector([3,4,undef,5]); // Returns false
|
|
// is_vector([3,4,5],3); // Returns true
|
|
// is_vector([3,4,5],4); // Returns true
|
|
// is_vector([]); // Returns false
|
|
// is_vector([0,4,0],3,zero=false); // Returns true
|
|
// is_vector([0,0,0],zero=false); // Returns false
|
|
// is_vector([0,0,1e-12],zero=false); // Returns false
|
|
// is_vector([0,1,0],all_nonzero=false); // Returns false
|
|
// is_vector([1,1,1],all_nonzero=false); // Returns true
|
|
// is_vector([],zero=false); // Returns false
|
|
function is_vector(v, length, zero, all_nonzero=false, eps=EPSILON) =
|
|
is_list(v) && len(v)>0 && []==[for(vi=v) if(!is_num(vi)) 0]
|
|
&& (is_undef(length) || len(v)==length)
|
|
&& (is_undef(zero) || ((norm(v) >= eps) == !zero))
|
|
&& (!all_nonzero || all_nonzero(v)) ;
|
|
|
|
|
|
// Function: v_theta()
|
|
// Usage:
|
|
// theta = v_theta([X,Y]);
|
|
// Description:
|
|
// Given a vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
|
|
function v_theta(v) =
|
|
assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
|
|
atan2(v.y,v.x);
|
|
|
|
|
|
// Function: v_mul()
|
|
// Description:
|
|
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
|
|
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// v_mul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
|
|
function v_mul(v1, v2) =
|
|
assert( is_list(v1) && is_list(v2) && len(v1)==len(v2), "Incompatible input")
|
|
[for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
|
|
|
|
|
// Function: v_div()
|
|
// Description:
|
|
// Element-wise vector division. Divides each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the quotients.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// v_div([24,28,30], [8,7,6]); // Returns [3, 4, 5]
|
|
function v_div(v1, v2) =
|
|
assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
|
|
[for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
|
|
|
|
|
// Function: v_abs()
|
|
// Description: Returns a vector of the absolute value of each element of vector `v`.
|
|
// Arguments:
|
|
// v = The vector to get the absolute values of.
|
|
// Example:
|
|
// v_abs([-1,3,-9]); // Returns: [1,3,9]
|
|
function v_abs(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) abs(x)];
|
|
|
|
|
|
// Function: v_floor()
|
|
// Description:
|
|
// Returns the given vector after performing a `floor()` on all items.
|
|
function v_floor(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) floor(x)];
|
|
|
|
|
|
// Function: v_ceil()
|
|
// Description:
|
|
// Returns the given vector after performing a `ceil()` on all items.
|
|
function v_ceil(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) ceil(x)];
|
|
|
|
|
|
// Function: unit()
|
|
// Usage:
|
|
// unit(v, [error]);
|
|
// Description:
|
|
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
|
|
// asserts an error unless `error` is given, in which case the value of `error` is returned.
|
|
// Arguments:
|
|
// v = The vector to normalize.
|
|
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
|
|
// Examples:
|
|
// unit([10,0,0]); // Returns: [1,0,0]
|
|
// unit([0,10,0]); // Returns: [0,1,0]
|
|
// unit([0,0,10]); // Returns: [0,0,1]
|
|
// unit([0,-10,0]); // Returns: [0,-1,0]
|
|
// unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
|
|
// unit([0,0,0]); // Asserts an error.
|
|
function unit(v, error=[[["ASSERT"]]]) =
|
|
assert(is_vector(v), str("Expected a vector. Got: ",v))
|
|
norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Tried to normalize a zero vector") : error) :
|
|
v/norm(v);
|
|
|
|
|
|
// Function: vector_angle()
|
|
// Usage:
|
|
// vector_angle(v1,v2);
|
|
// vector_angle([v1,v2]);
|
|
// vector_angle(PT1,PT2,PT3);
|
|
// vector_angle([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
|
|
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
|
|
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_angle(UP,LEFT); // Returns: 90
|
|
// vector_angle(RIGHT,LEFT); // Returns: 180
|
|
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
|
|
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
|
|
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
|
|
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
|
|
function vector_angle(v1,v2,v3) =
|
|
assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
|
|
|| is_consistent([v1,v2,v3]) ,
|
|
"Bad arguments.")
|
|
assert( is_vector(v1) || is_consistent(v1), "Bad arguments.")
|
|
let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
|
|
! is_undef(v2) ? [v1,v2] :
|
|
len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]]
|
|
: v1
|
|
)
|
|
assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
|
|
let(
|
|
norm0 = norm(vecs[0]),
|
|
norm1 = norm(vecs[1])
|
|
)
|
|
assert(norm0>0 && norm1>0, "Zero length vector.")
|
|
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
|
acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
|
|
|
|
|
|
// Function: vector_axis()
|
|
// Usage:
|
|
// vector_axis(v1,v2);
|
|
// vector_axis([v1,v2]);
|
|
// vector_axis(PT1,PT2,PT3);
|
|
// vector_axis([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
|
|
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
|
|
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
|
|
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
|
|
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
function vector_axis(v1,v2=undef,v3=undef) =
|
|
is_vector(v3)
|
|
? assert(is_consistent([v3,v2,v1]), "Bad arguments.")
|
|
vector_axis(v1-v2, v3-v2)
|
|
: assert( is_undef(v3), "Bad arguments.")
|
|
is_undef(v2)
|
|
? assert( is_list(v1), "Bad arguments.")
|
|
len(v1) == 2
|
|
? vector_axis(v1[0],v1[1])
|
|
: vector_axis(v1[0],v1[1],v1[2])
|
|
: assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
|
|
, "Bad arguments.")
|
|
let(
|
|
eps = 1e-6,
|
|
w1 = point3d(v1/norm(v1)),
|
|
w2 = point3d(v2/norm(v2)),
|
|
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
|
|
: (norm(v_abs(w2)-UP) > eps)? UP
|
|
: RIGHT
|
|
) unit(cross(w1,w3));
|
|
|
|
|
|
|
|
// Section: Vector Searching
|
|
|
|
|
|
// Function: vector_search()
|
|
// Usage:
|
|
// indices = vector_search(query, r, target);
|
|
// See Also: vector_search_tree(), vector_nearest()
|
|
// Topics: Search, Points, Closest
|
|
// Description:
|
|
// Given a list of query points `query` and a `target` to search,
|
|
// finds the points in `target` that match each query point. A match holds when the
|
|
// distance between a point in `target` and a query point is less than or equal to `r`.
|
|
// The returned list will have a list for each query point containing, in arbitrary
|
|
// order, the indices of all points that match that query point.
|
|
// The `target` may be a simple list of points or a search tree.
|
|
// When `target` is a large list of points, a search tree is constructed to
|
|
// speed up the search with an order around O(log n) per query point.
|
|
// For small point lists, a direct search is done dispensing a tree construction.
|
|
// Alternatively, `target` may be a search tree built with `vector_tree_search()`.
|
|
// In that case, that tree is parsed looking for matches.
|
|
// Arguments:
|
|
// query = list of points to find matches for.
|
|
// r = the search radius.
|
|
// target = list of the points to search for matches or a search tree.
|
|
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
|
|
// $fn=32;
|
|
// k = 2000;
|
|
// points = array_group(rands(0,10,k*2,seed=13333),2);
|
|
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
|
|
// search_ind = vector_search(queries, points, 1);
|
|
// move_copies(points) circle(r=.08);
|
|
// for(i=idx(queries)){
|
|
// color("blue")stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
|
|
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
|
|
// }
|
|
// Example: when a series of search with different radius are needed, its is faster to pre-compute the tree
|
|
// $fn=32;
|
|
// k = 2000;
|
|
// points = array_group(rands(0,10,k*2),2,seed=13333);
|
|
// queries1 = [for(i=[3,7]) [i,i]];
|
|
// queries2 = [for(i=[3,7]) [10-i,i]];
|
|
// r1 = 1;
|
|
// r2 = .7;
|
|
// search_tree = vector_search_tree(points);
|
|
// search_1 = vector_search(queries1, r1, search_tree);
|
|
// search_2 = vector_search(queries2, r2, search_tree);
|
|
// move_copies(points) circle(r=.08);
|
|
// for(i=idx(queries1)){
|
|
// color("blue")stroke(move(queries1[i],circle(r=r1)), closed=true, width=.08);
|
|
// color("red") move_copies(select(points, search_1[i])) circle(r=.08);
|
|
// }
|
|
// for(i=idx(queries2)){
|
|
// color("green")stroke(move(queries2[i],circle(r=r2)), closed=true, width=.08);
|
|
// color("red") move_copies(select(points, search_2[i])) circle(r=.08);
|
|
// }
|
|
function vector_search(query, r, target) =
|
|
assert( is_finite(r) && r>=0,
|
|
"The query radius should be a positive number." )
|
|
let(
|
|
tgpts = is_matrix(target), // target is a point list
|
|
tgtree = is_list(target) // target is a tree
|
|
&& (len(target)==2)
|
|
&& is_matrix(target[0])
|
|
&& is_list(target[1])
|
|
&& (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
|
|
)
|
|
assert( tgpts || tgtree,
|
|
"The target should be a list of points or a search tree compatible with the query." )
|
|
let(
|
|
dim = tgpts ? len(target[0]) : len(target[0][0]),
|
|
simple = is_vector(query, dim),
|
|
mult = !simple && is_matrix(query,undef,dim)
|
|
)
|
|
assert( simple || mult,
|
|
"The query points should be a list of points compatible with the target point list.")
|
|
tgpts
|
|
? len(target)<200
|
|
? simple ? [for(i=idx(target)) if(norm(target[i]-query)<r) i ] :
|
|
[for(q=query) [for(i=idx(target)) if(norm(target[i]-q)<r) i ] ]
|
|
: let( tree = _bt_tree(target, count(len(target)), leafsize=25) )
|
|
simple ? _bt_search(query, r, target, tree) :
|
|
[for(q=query) _bt_search(q, r, target, tree)]
|
|
: simple ? _bt_search(query, r, target[0], target[1]) :
|
|
[for(q=query) _bt_search(q, r, target[0], target[1])];
|
|
|
|
|
|
//Ball tree search
|
|
function _bt_search(query, r, points, tree) = //echo(tree)
|
|
assert( is_list(tree)
|
|
&& ( ( len(tree)==1 && is_list(tree[0]) )
|
|
|| ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ),
|
|
"The tree is invalid.")
|
|
len(tree)==1
|
|
? assert( tree[0]==[] || is_vector(tree[0]), "The tree is invalid." )
|
|
[for(i=tree[0]) if(norm(points[i]-query)<=r) i ]
|
|
: norm(query-points[tree[0]]) > r+tree[1] ? [] :
|
|
concat(
|
|
[ if(norm(query-points[tree[0]])<=r) tree[0] ],
|
|
_bt_search(query, r, points, tree[2]),
|
|
_bt_search(query, r, points, tree[3]) ) ;
|
|
|
|
|
|
// Function: vector_search_tree()
|
|
// Usage:
|
|
// tree = vector_search_tree(points,leafsize);
|
|
// See Also: vector_nearest(), vector_search()
|
|
// Topics: Search, Points, Closest
|
|
// Description:
|
|
// Construct a search tree for the given list of points to be used as input
|
|
// to the function `vector_search()`. The use of a tree speeds up the
|
|
// search process. The tree construction stops branching when
|
|
// a tree node represents a number of points less or equal to `leafsize`.
|
|
// Search trees are ball trees. Constructing the
|
|
// tree should be O(n log n) and searches should be O(log n), though real life
|
|
// performance depends on how the data is distributed, and it will deteriorate
|
|
// for high data dimensions. This data structure is useful when you will be
|
|
// performing many searches of the same data, so that the cost of constructing
|
|
// the tree is justified. (See https://en.wikipedia.org/wiki/Ball_tree)
|
|
// Arguments:
|
|
// points = list of points to store in the search tree.
|
|
// leafsize = the size of the tree leaves. Default: 25
|
|
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
|
|
// $fn=32;
|
|
// k = 2000;
|
|
// points = array_group(rands(0,10,k*2,seed=13333),2);
|
|
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
|
|
// search_tree = vector_search_tree(points);
|
|
// search_ind = vector_tree_search(search_tree, queries, 1);
|
|
// move_copies(points) circle(r=.08);
|
|
// for(i=idx(queries)){
|
|
// color("blue") stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
|
|
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08); }
|
|
// }
|
|
function vector_search_tree(points, leafsize=25) =
|
|
assert( is_matrix(points), "The input list entries should be points." )
|
|
assert( is_int(leafsize) && leafsize>=1,
|
|
"The tree leaf size should be an integer greater than zero.")
|
|
[ points, _bt_tree(points, count(len(points)), leafsize) ];
|
|
|
|
|
|
//Ball tree construction
|
|
function _bt_tree(points, ind, leafsize=25) =
|
|
len(ind)<=leafsize ? [ind] :
|
|
let(
|
|
bounds = pointlist_bounds(select(points,ind)),
|
|
coord = max_index(bounds[1]-bounds[0]),
|
|
projc = [for(i=ind) points[i][coord] ],
|
|
pmc = mean(projc),
|
|
pivot = min_index([for(p=projc) abs(p-pmc)]),
|
|
radius = max([for(i=ind) norm(points[ind[pivot]]-points[i]) ]),
|
|
median = ninther(projc),
|
|
Lind = [for(i=idx(ind)) if(projc[i]<=median && i!=pivot) ind[i] ],
|
|
Rind = [for(i=idx(ind)) if(projc[i] >median && i!=pivot) ind[i] ]
|
|
)
|
|
[ ind[pivot], radius, _bt_tree(points, Lind, leafsize), _bt_tree(points, Rind, leafsize) ];
|
|
|
|
|
|
// Function: vector_nearest()
|
|
// Usage:
|
|
// indices = vector_nearest(query, k, target)
|
|
// See Also: vector_search(), vector_search_tree()
|
|
// Description:
|
|
// Search `target` for the `k` points closest to point `query`.
|
|
// The input `target` is either a list of points to search or a search tree
|
|
// pre-computed by `vector_search_tree(). A list is returned containing the indices
|
|
// of the points found in sorted order, closest point first.
|
|
// Arguments:
|
|
// query = point to search for
|
|
// k = number of neighbors to return
|
|
// target = a list of points or a search tree to search in
|
|
// Example: Four queries to find the 15 nearest points. The circles show the radius defined by the most distant query result. Note they are different for each query.
|
|
// $fn=32;
|
|
// k = 1000;
|
|
// points = array_group(rands(0,10,k*2,seed=13333),2);
|
|
// tree = vector_search_tree(points);
|
|
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
|
|
// search_ind = [for(q=queries) vector_nearest(q, 15, tree)];
|
|
// move_copies(points) circle(r=.08);
|
|
// for(i=idx(queries)){
|
|
// circle = circle(r=norm(points[last(search_ind[i])]-queries[i]));
|
|
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
|
|
// color("blue") stroke(move(queries[i], circle), closed=true, width=.08);
|
|
// }
|
|
function vector_nearest(query, k, target) =
|
|
assert(is_int(k) && k>0)
|
|
assert(is_vector(query), "Query must be a vector.")
|
|
let(
|
|
tgpts = is_matrix(target,undef,len(query)), // target is a point list
|
|
tgtree = is_list(target) // target is a tree
|
|
&& (len(target)==2)
|
|
&& is_matrix(target[0],undef,len(query))
|
|
&& (len(target[1])==4 || (len(target[1])==1 && is_list(target[1][0])) )
|
|
)
|
|
assert( tgpts || tgtree,
|
|
"The target should be a list of points or a search tree compatible with the query." )
|
|
assert((tgpts && (k<=len(target))) || (tgtree && (k<=len(target[0]))),
|
|
"More results are requested than the number of points.")
|
|
tgpts
|
|
? let( tree = _bt_tree(target, count(len(target))) )
|
|
subindex(_bt_nearest( query, k, target, tree),0)
|
|
: subindex(_bt_nearest( query, k, target[0], target[1]),0);
|
|
|
|
|
|
//Ball tree nearest
|
|
function _bt_nearest(p, k, points, tree, answers=[]) =
|
|
assert( is_list(tree)
|
|
&& ( ( len(tree)==1 && is_list(tree[0]) )
|
|
|| ( len(tree)==4 && is_num(tree[0]) && is_num(tree[1]) ) ),
|
|
"The tree is invalid.")
|
|
len(tree)==1
|
|
? _insert_many(answers, k, [for(entry=tree[0]) [entry, norm(points[entry]-p)]])
|
|
: let( d = norm(p-points[tree[0]]) )
|
|
len(answers)==k && ( d > last(answers)[1]+tree[1] ) ? answers :
|
|
let(
|
|
answers1 = _insert_sorted(answers, k, [tree[0],d]),
|
|
answers2 = _bt_nearest(p, k, points, tree[2], answers1),
|
|
answers3 = _bt_nearest(p, k, points, tree[3], answers2)
|
|
)
|
|
answers3;
|
|
|
|
|
|
function _insert_sorted(list, k, new) =
|
|
(len(list)==k && new[1]>= last(list)[1]) ? list
|
|
: [
|
|
for(entry=list) if (entry[1]<=new[1]) entry,
|
|
new,
|
|
for(i=[0:1:min(k-1,len(list))-1]) if (list[i][1]>new[1]) list[i]
|
|
];
|
|
|
|
|
|
function _insert_many(list, k, newlist,i=0) =
|
|
i==len(newlist)
|
|
? list
|
|
: assert(is_vector(newlist[i],2), "The tree is invalid.")
|
|
_insert_many(_insert_sorted(list,k,newlist[i]),k,newlist,i+1);
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|