mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-07 12:49:46 +00:00
1234 lines
57 KiB
OpenSCAD
1234 lines
57 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: regions.scad
|
|
// This file provides 2D boolean set operations on polygons, where you can
|
|
// compute, for example, the intersection or union of the shape defined by point lists, producing
|
|
// a new point list. Of course, such operations may produce shapes with multiple
|
|
// components. To handle that, we use "regions" which are defined by lists of polygons.
|
|
// In addition to set operations, you can calculate offsets, determine whether a point is in a
|
|
// region and you can decompose a region into parts.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
// FileGroup: Advanced Modeling
|
|
// FileSummary: Offsets and boolean geometry of 2D paths and regions.
|
|
// FileFootnotes: STD=Included in std.scad
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// CommonCode:
|
|
// include <BOSL2/rounding.scad>
|
|
|
|
|
|
// Section: Regions
|
|
// A region is a list of polygons meeting these conditions:
|
|
// .
|
|
// - Every polygon on the list is simple, meaning it does not intersect itself
|
|
// - Two polygons on the list do not cross each other
|
|
// - A vertex of one polygon never meets the edge of another one except at a vertex
|
|
// .
|
|
// Note that this means vertex-vertex touching between two polygons is acceptable
|
|
// to define a region. Note, however, that regions with vertex-vertex contact usually
|
|
// cannot be rendered with CGAL. See {{is_valid_region()}} for examples of valid regions and
|
|
// lists of polygons that are not regions. Note that {{is_region_simple()}} will identify
|
|
// regions with no polygon intersections at all, which should render successfully witih CGAL.
|
|
// .
|
|
// The actual geometry of the region is defined by XORing together
|
|
// all of the polygons in the list. This may sound obscure, but it simply means that nested
|
|
// boundaries make rings in the obvious fashion, and non-nested shapes simply union together.
|
|
// Checking that a list of polygons is a valid region, meaning that it satisfies all of the conditions
|
|
// above, can be a time consuming test, so it is not done automatically. It is your responsibility to ensure that your regions are
|
|
// compliant. You can construct regions by making a suitable list of polygons, or by using
|
|
// set operation function such as union() or difference(), which all acccept polygons, as
|
|
// well as regions, as their inputs. And if you must you can clean up an ill-formed region using make_region(),
|
|
// which will break up self-intersecting polygons and polygons that cross each other.
|
|
|
|
|
|
// Function: is_region()
|
|
// Usage:
|
|
// is_region(x);
|
|
// Description:
|
|
// Returns true if the given item looks like a region. A region is a list of non-crossing simple polygons. This test just checks
|
|
// that the argument is a list whose first entry is a path.
|
|
function is_region(x) = is_list(x) && is_path(x.x);
|
|
|
|
|
|
// Function: is_valid_region()
|
|
// Usage:
|
|
// bool = is_valid_region(region, [eps]);
|
|
// Description:
|
|
// Returns true if the input is a valid region, meaning that it is a list of simple polygons whose segments do not cross each other.
|
|
// This test can be time consuming with regions that contain many points.
|
|
// It differs from `is_region()` which simply checks that the object is a list whose first entry is a path
|
|
// because it searches all the list polygons for any self-intersections or intersections with each other.
|
|
// Will also return true if given a single simple polygon. Use {{make_region()}} to convert sets of self-intersecting polygons into
|
|
// a region.
|
|
// Arguments:
|
|
// region = region to check
|
|
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
|
|
// Example(2D,NoAxes): In all of the examples each polygon in the region appears in a different color. Two non-intersecting squares make a valid region.
|
|
// region = [square(10), right(11,square(8))];
|
|
// rainbow(region)stroke($item, width=.2,closed=true);
|
|
// back(11)text(is_valid_region(region) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): Nested squares form a region
|
|
// region = [for(i=[3:2:10]) square(i,center=true)];
|
|
// rainbow(region)stroke($item, width=.2,closed=true);
|
|
// back(6)text(is_valid_region(region) ? "region" : "non-region", size=2,halign="center");
|
|
// Example(2D,NoAxes): Also a region:
|
|
// region= [square(10,center=true), square(5,center=true), right(10,square(7))];
|
|
// rainbow(region)stroke($item, width=.2,closed=true);
|
|
// back(8)text(is_valid_region(region) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): The squares cross each other, so not a region
|
|
// object = [square(10), move([8,8], square(8))];
|
|
// rainbow(object)stroke($item, width=.2,closed=true);
|
|
// back(17)text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): A union is one way to fix the above example and get a region. (Note that union is run here on two simple polygons, which are valid regions themselves and hence acceptable inputs to union.
|
|
// region = union([square(10), move([8,8], square(8))]);
|
|
// rainbow(region)stroke($item, width=.25,closed=true);
|
|
// back(12)text(is_valid_region(region) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): Not a region due to a self-intersecting (non-simple) hourglass polygon
|
|
// object = [move([-2,-2],square(14)), [[0,0],[10,0],[0,10],[10,10]]];
|
|
// rainbow(object)stroke($item, width=.2,closed=true);
|
|
// move([-1.5,13])text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): Breaking hourglass in half fixes it. Now it's a region:
|
|
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]];
|
|
// rainbow(region)stroke($item, width=.2,closed=true);
|
|
// Example(2D,NoAxes): A single polygon corner touches an edge, so not a region:
|
|
// object = [[[-10,0], [-10,10], [20,10], [20,-20], [-10,-20],
|
|
// [-10,-10], [0,0], [10,-10], [10,0]]];
|
|
// rainbow(object)stroke($item, width=.3,closed=true);
|
|
// move([-4,12])text(is_valid_region(object) ? "region" : "non-region", size=3);
|
|
// Example(2D,NoAxes): Corners touch in the same polygon, so the polygon is not simple and the object is not a region.
|
|
// object = [[[0,0],[10,0],[10,10],[-10,10],[-10,0],[0,0],[-5,5],[5,5]]];
|
|
// rainbow(object)stroke($item, width=.3,closed=true);
|
|
// move([-10,12])text(is_valid_region(object) ? "region" : "non-region", size=3);
|
|
// Example(2D,NoAxes): The shape above as a valid region with two polygons:
|
|
// region = [ [[0,0],[10,0],[10,10],[-10,10],[-10,0]],
|
|
// [[0,0],[5,5],[-5,5]] ];
|
|
// rainbow(region)stroke($item, width=.3,closed=true);
|
|
// move([-5.5,12])text(is_valid_region(region) ? "region" : "non-region", size=3);
|
|
// Example(2D,NoAxes): As with the "broken" hourglass, Touching at corners is OK. This is a region.
|
|
// region = [square(10), move([10,10], square(8))];
|
|
// rainbow(region)stroke($item, width=.25,closed=true);
|
|
// back(12)text(is_valid_region(region) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): These two squares share part of an edge, hence not a region
|
|
// object = [square(10), move([10,2], square(7))];
|
|
// stroke(object[0], width=0.2,closed=true);
|
|
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
|
|
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): These two squares share a full edge, hence not a region
|
|
// object = [square(10), right(10, square(10))];
|
|
// stroke(object[0], width=0.2,closed=true);
|
|
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
|
|
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): Sharing on edge on the inside, also not a regionn
|
|
// object = [square(10), [[0,0], [2,2],[2,8],[0,10]]];
|
|
// stroke(object[0], width=0.2,closed=true);
|
|
// color("red")dashed_stroke(object[1], width=0.25,closed=true);
|
|
// back(12)text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): Crossing at vertices is also bad
|
|
// object = [square(10), [[10,0],[0,10],[8,13],[13,8]]];
|
|
// rainbow(object)stroke($item, width=.2,closed=true);
|
|
// back(14)text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): One polygon touches another in the middle of an edge
|
|
// object = [square(10), [[10,5],[15,0],[15,10]]];
|
|
// rainbow(object)stroke($item, width=.2,closed=true);
|
|
// back(11)text(is_valid_region(object) ? "region" : "non-region", size=2);
|
|
// Example(2D,NoAxes): The polygon touches the side, but the side has a vertex at the contact point so this is a region
|
|
// poly1 = [ each square(30,center=true), [15,0]];
|
|
// poly2 = right(10,circle(5,$fn=4));
|
|
// poly3 = left(0,circle(5,$fn=4));
|
|
// poly4 = move([0,-8],square([10,3]));
|
|
// region = [poly1,poly2,poly3,poly4];
|
|
// rainbow(region)stroke($item, width=.25,closed=true);
|
|
// move([-5,16.5])text(is_valid_region(region) ? "region" : "non-region", size=3);
|
|
// color("black")move_copies(region[0]) circle(r=.4);
|
|
// Example(2D,NoAxes): The polygon touches the side, but not at a vertex so this is not a region
|
|
// poly1 = fwd(4,[ each square(30,center=true), [15,0]]);
|
|
// poly2 = right(10,circle(5,$fn=4));
|
|
// poly3 = left(0,circle(5,$fn=4));
|
|
// poly4 = move([0,-8],square([10,3]));
|
|
// object = [poly1,poly2,poly3,poly4];
|
|
// rainbow(object)stroke($item, width=.25,closed=true);
|
|
// move([-9,12.5])text(is_valid_region(object) ? "region" : "non-region", size=3);
|
|
// color("black")move_copies(object[0]) circle(r=.4);
|
|
// Example(2D,NoAxes): The inner polygon touches the middle of the edges, so not a region
|
|
// poly1 = square(20,center=true);
|
|
// poly2 = circle(10,$fn=8);
|
|
// object=[poly1,poly2];
|
|
// rainbow(object)stroke($item, width=.25,closed=true);
|
|
// move([-10,11.4])text(is_valid_region(object) ? "region" : "non-region", size=3);
|
|
// Example(2D,NoAxes): The above shape made into a region using {{difference()}} now has four components that touch at corners
|
|
// poly1 = square(20,center=true);
|
|
// poly2 = circle(10,$fn=8);
|
|
// region = difference(poly1,poly2);
|
|
// rainbow(region)stroke($item, width=.25,closed=true);
|
|
// move([-5,11.4])text(is_valid_region(region) ? "region" : "non-region", size=3);
|
|
function is_valid_region(region, eps=EPSILON) =
|
|
let(region=force_region(region))
|
|
assert(is_region(region), "Input is not a region")
|
|
// no short paths
|
|
[for(p=region) if (len(p)<3) 1] == []
|
|
&&
|
|
// all paths are simple
|
|
[for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == []
|
|
&&
|
|
// paths do not cross each other
|
|
[for(i=[0:1:len(region)-2])
|
|
if (_polygon_crosses_region(list_tail(region,i+1),region[i], eps=eps)) 1] == []
|
|
&&
|
|
// one path doesn't touch another in the middle of an edge
|
|
[for(i=idx(region), j=idx(region))
|
|
if (i!=j) for(v=region[i], edge=pair(region[j],wrap=true))
|
|
let(
|
|
v1 = edge[1]-edge[0],
|
|
v0 = v - edge[0],
|
|
t = v0*v1/(v1*v1)
|
|
)
|
|
if (abs(cross(v0,v1))<eps*norm(v1) && t>eps && t<1-eps) 1
|
|
]==[];
|
|
|
|
|
|
|
|
// internal function:
|
|
// returns true if the polygon crosses the region so that part of the
|
|
// polygon is inside the region and part is outside.
|
|
function _polygon_crosses_region(region, poly, eps=EPSILON) =
|
|
let(
|
|
subpaths = flatten(split_region_at_region_crossings(region,[poly],eps=eps)[1])
|
|
)
|
|
[for(path=subpaths)
|
|
let(isect=
|
|
[for (subpath = subpaths)
|
|
let(
|
|
midpt = mean([subpath[0], subpath[1]]),
|
|
rel = point_in_region(midpt,region,eps=eps)
|
|
)
|
|
rel
|
|
])
|
|
if (!all_equal(isect) || isect[0]==0) 1 ] != [];
|
|
|
|
|
|
// Function: is_region_simple()
|
|
// Usage:
|
|
// bool = is_region_simple(region, [eps]);
|
|
// Description:
|
|
// We extend the notion of the simple path to regions: a simple region is entirely
|
|
// non-self-intersecting, meaning that it is formed from a list of simple polygons that
|
|
// don't intersect each other at all—not even with corner contact points.
|
|
// Regions with corner contact are valid but may fail CGAL. Simple regions
|
|
// should not create problems with CGAL.
|
|
// Arguments:
|
|
// region = region to check
|
|
// eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9
|
|
// Example(2D,NoAxes): Corner contact means it's not simple
|
|
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]];
|
|
// rainbow(region)stroke($item, width=.2,closed=true);
|
|
// move([-1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2);
|
|
// Example(2D,NoAxes): Moving apart the triangles makes it simple:
|
|
// region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,4.5]], [[5,5.5],[0,10],[10,10]]];
|
|
// rainbow(region)stroke($item, width=.2,closed=true);
|
|
// move([1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2);
|
|
function is_region_simple(region, eps=EPSILON) =
|
|
let(region=force_region(region))
|
|
assert(is_region(region), "Input is not a region")
|
|
[for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == []
|
|
&&
|
|
[for(i=[0:1:len(region)-2])
|
|
if (_region_region_intersections([region[i]], list_tail(region,i+1), eps=eps)[0][0] != []) 1
|
|
] ==[];
|
|
|
|
|
|
// Function: make_region()
|
|
// Usage:
|
|
// region = make_region(polys, [nonzero], [eps]);
|
|
// Description:
|
|
// Takes a list of polygons that may intersect themselves or cross each other
|
|
// and converts it into a properly defined region without
|
|
// these defects.
|
|
// Arguments:
|
|
// polys = list of polygons to use
|
|
// nonzero = set to true to use nonzero rule for polygon membership. Default: false
|
|
// eps = Epsilon for geometric comparisons. Default: `EPSILON` (1e-9)
|
|
// Example(2D,NoAxes): The pentagram is self-intersecting, so it is not a region. Here it becomes five triangles:
|
|
// pentagram = turtle(["move",100,"left",144], repeat=4);
|
|
// region = make_region(pentagram);
|
|
// rainbow(region)stroke($item, width=1,closed=true);
|
|
// Example(2D,NoAxes): Alternatively with the nonzero option you can get the perimeter:
|
|
// pentagram = turtle(["move",100,"left",144], repeat=4);
|
|
// region = make_region(pentagram,nonzero=true);
|
|
// rainbow(region)stroke($item, width=1,closed=true);
|
|
// Example(2D,NoAxes): Two crossing squares become two L-shaped components
|
|
// region = make_region([square(10), move([5,5],square(8))]);
|
|
// rainbow(region)stroke($item, width=.3,closed=true);
|
|
|
|
function make_region(polys,nonzero=false,eps=EPSILON) =
|
|
let(polys=force_region(polys))
|
|
assert(is_region(polys), "Input is not a region")
|
|
exclusive_or(
|
|
[for(poly=polys) each polygon_parts(poly,nonzero,eps)],
|
|
eps=eps);
|
|
|
|
// Function: force_region()
|
|
// Usage:
|
|
// region = force_region(poly)
|
|
// Description:
|
|
// If the input is a polygon then return it as a region. Otherwise return it unaltered.
|
|
// Arguments:
|
|
// poly = polygon to turn into a region
|
|
function force_region(poly) = is_path(poly) ? [poly] : poly;
|
|
|
|
|
|
// Section: Turning a region into geometry
|
|
|
|
// Module: region()
|
|
// Usage:
|
|
// region(r, [anchor], [spin], [cp]) { ... };
|
|
// Description:
|
|
// Creates the 2D polygons described by the given region or list of polygons. This module works on
|
|
// arbitrary lists of polygons that cross each other and hence do not define a valid region. The
|
|
// displayed result is the exclusive-or of the polygons listed in the input.
|
|
// Arguments:
|
|
// r = region to create as geometry
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"`
|
|
// spin = Rotate this many degrees after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
|
// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 2D point. Default: "centroid"
|
|
// atype = Set to "hull" or "intersect" to select anchor type. Default: "hull"
|
|
// Example(2D): Displaying a region
|
|
// region([circle(d=50), square(25,center=true)]);
|
|
// Example(2D): Displaying a list of polygons that intersect each other, which is not a region
|
|
// rgn = concat(
|
|
// [for (d=[50:-10:10]) circle(d=d-5)],
|
|
// [square([60,10], center=true)]
|
|
// );
|
|
// region(rgn);
|
|
module region(r, anchor="origin", spin=0, cp="centroid", atype="hull")
|
|
{
|
|
assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"");
|
|
r = force_region(r);
|
|
dummy=assert(is_region(r), "Input is not a region");
|
|
points = flatten(r);
|
|
lengths = [for(path=r) len(path)];
|
|
starts = [0,each cumsum(lengths)];
|
|
paths = [for(i=idx(r)) count(s=starts[i], n=lengths[i])];
|
|
attachable(anchor, spin, two_d=true, region=r, extent=atype=="hull", cp=cp){
|
|
polygon(points=points, paths=paths);
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Section: Gometrical calculations with regions
|
|
|
|
// Function: point_in_region()
|
|
// Usage:
|
|
// check = point_in_region(point, region, [eps]);
|
|
// Description:
|
|
// Tests if a point is inside, outside, or on the border of a region.
|
|
// Returns -1 if the point is outside the region.
|
|
// Returns 0 if the point is on the boundary.
|
|
// Returns 1 if the point lies inside the region.
|
|
// Arguments:
|
|
// point = The point to test.
|
|
// region = The region to test against, as a list of polygon paths.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
// Example(2D,Med): Red points are in the region.
|
|
// region = [for(i=[2:4:10]) hexagon(r=i)];
|
|
// color("#ff7") region(region);
|
|
// for(x=[-10:10], y=[-10:10])
|
|
// if (point_in_region([x,y], region)>=0)
|
|
// move([x,y]) color("red") circle(0.15, $fn=12);
|
|
// else
|
|
// move([x,y]) color("#ddf") circle(0.1, $fn=12);
|
|
function point_in_region(point, region, eps=EPSILON) =
|
|
let(region=force_region(region))
|
|
assert(is_region(region), "Region given to point_in_region is not a region")
|
|
assert(is_vector(point,2), "Point must be a 2D point in point_in_region")
|
|
_point_in_region(point, region, eps);
|
|
|
|
function _point_in_region(point, region, eps=EPSILON, i=0, cnt=0) =
|
|
i >= len(region) ? ((cnt%2==1)? 1 : -1)
|
|
: let(
|
|
pip = point_in_polygon(point, region[i], eps=eps)
|
|
)
|
|
pip == 0 ? 0
|
|
: _point_in_region(point, region, eps=eps, i=i+1, cnt = cnt + (pip>0? 1 : 0));
|
|
|
|
|
|
// Function: region_area()
|
|
// Usage:
|
|
// area=region_area(region);
|
|
// Description:
|
|
// Computes the area of the specified valid region. (If the region is invalid and has self intersections
|
|
// the result is meaningless.)
|
|
// Arguments:
|
|
// region = region whose area to compute
|
|
// Examples:
|
|
// area = region_area([square(10), right(20,square(8))]); // Returns 164
|
|
function region_area(region) =
|
|
assert(is_region(region), "Input must be a region")
|
|
let(
|
|
parts = region_parts(region)
|
|
)
|
|
-sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]);
|
|
|
|
|
|
|
|
function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)];
|
|
|
|
// Function: are_regions_equal()
|
|
// Usage:
|
|
// b = are_regions_equal(region1, region2, [eps])
|
|
// Description:
|
|
// Returns true if the components of region1 and region2 are the same polygons (in any order)
|
|
// within given epsilon tolerance.
|
|
// Arguments:
|
|
// region1 = first region
|
|
// region2 = second region
|
|
// eps = tolerance for comparison
|
|
function are_regions_equal(region1, region2, either_winding=false) =
|
|
let(
|
|
region1=force_region(region1),
|
|
region2=force_region(region2)
|
|
)
|
|
assert(is_region(region1) && is_region(region2), "One of the inputs is not a region")
|
|
len(region1) != len(region2)? false :
|
|
__are_regions_equal(either_winding?_clockwise_region(region1):region1,
|
|
either_winding?_clockwise_region(region2):region2,
|
|
0);
|
|
|
|
function __are_regions_equal(region1, region2, i) =
|
|
i >= len(region1)? true :
|
|
!_is_polygon_in_list(region1[i], region2)? false :
|
|
__are_regions_equal(region1, region2, i+1);
|
|
|
|
|
|
/// Internal Function: _region_region_intersections()
|
|
/// Usage:
|
|
/// risect = _region_region_intersections(region1, region2, [closed1], [closed2], [eps]
|
|
/// Description:
|
|
/// Returns a pair of sorted lists such that risect[0] is a list of intersection
|
|
/// points for every path in region1, and similarly risect[1] is a list of intersection
|
|
/// points for the paths in region2. For each path the intersection list is
|
|
/// a sorted list of the form [PATHIND, SEGMENT, U]. You can specify that the paths in either
|
|
/// region be regarded as open paths if desired. Default is to treat them as
|
|
/// regions and hence the paths as closed polygons.
|
|
/// .
|
|
/// Included as intersection points are points where region1 touches itself at a vertex or
|
|
/// region2 touches itself at a vertex. (The paths are assumed to have no self crossings.
|
|
/// Self crossings of the paths in the regions are not returned.)
|
|
function _region_region_intersections(region1, region2, closed1=true,closed2=true, eps=EPSILON) =
|
|
let(
|
|
intersections = [
|
|
for(p1=idx(region1))
|
|
let(
|
|
path = closed1?close_path(region1[p1]):region1[p1]
|
|
)
|
|
for(i = [0:1:len(path)-2])
|
|
let(
|
|
a1 = path[i],
|
|
a2 = path[i+1],
|
|
nrm = norm(a1-a2)
|
|
)
|
|
if( nrm>eps ) // ignore zero-length path edges
|
|
let(
|
|
seg_normal = [-(a2-a1).y, (a2-a1).x]/nrm,
|
|
ref = a1*seg_normal
|
|
)
|
|
// `signs[j]` is the sign of the signed distance from
|
|
// poly vertex j to the line [a1,a2] where near zero
|
|
// distances are snapped to zero; poly edges
|
|
// with equal signs at its vertices cannot intersect
|
|
// the path edge [a1,a2] or they are collinear and
|
|
// further tests can be discarded.
|
|
for(p2=idx(region2))
|
|
let(
|
|
poly = closed2?close_path(region2[p2]):region2[p2],
|
|
signs = [for(v=poly*seg_normal) abs(v-ref) < eps ? 0 : sign(v-ref) ]
|
|
)
|
|
if(max(signs)>=0 && min(signs)<=0) // some edge intersects line [a1,a2]
|
|
for(j=[0:1:len(poly)-2])
|
|
if(signs[j]!=signs[j+1])
|
|
let( // exclude non-crossing and collinear segments
|
|
b1 = poly[j],
|
|
b2 = poly[j+1],
|
|
isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps)
|
|
)
|
|
if (isect
|
|
&& isect[1]>= -eps
|
|
&& isect[1]<= 1+eps
|
|
&& isect[2]>= -eps
|
|
&& isect[2]<= 1+eps)
|
|
[[p1,i,isect[1]], [p2,j,isect[2]]]
|
|
],
|
|
regions=[region1,region2],
|
|
// Create a flattened index list corresponding to the points in region1 and region2
|
|
// that gives each point as an intersection point
|
|
ptind = [for(i=[0:1])
|
|
[for(p=idx(regions[i]))
|
|
for(j=idx(regions[i][p])) [p,j,0]]],
|
|
points = [for(i=[0:1]) flatten(regions[i])],
|
|
// Corner points are those points where the region touches itself, hence duplicate
|
|
// points in the region's point set
|
|
cornerpts = [for(i=[0:1])
|
|
[for(k=vector_search(points[i],eps,points[i]))
|
|
each if (len(k)>1) select(ptind[i],k)]],
|
|
risect = [for(i=[0:1]) concat(column(intersections,i), cornerpts[i])],
|
|
counts = [count(len(region1)), count(len(region2))],
|
|
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
|
|
)
|
|
[for(i=[0:1]) [for(j=counts[i]) _sort_vectors(select(risect[i],pathind[i][j]))]];
|
|
|
|
|
|
// Section: Breaking up regions into subregions
|
|
|
|
|
|
// Function: split_region_at_region_crossings()
|
|
// Usage:
|
|
// split_region = split_region_at_region_crossings(region1, region2, [closed1], [closed2], [eps])
|
|
// Description:
|
|
// Splits region1 at the places where polygons in region1 touches each other at corners and at locations
|
|
// where region1 intersections region2. Split region2 similarly with respect to region1.
|
|
// The return is a pair of results of the form [split1, split2] where split1=[frags1,frags2,...]
|
|
// and frags1 is a list of paths that when placed end to end (in the given order), give the first polygon of region1.
|
|
// Each path in the list is either entirely inside or entirely outside region2.
|
|
// Then frags2 is the decomposition of the second polygon into path pieces, and so on. Finally split2 is
|
|
// the same list, but for the polygons in region2.
|
|
// You can pass a single polygon in for either region, but the output will be a singleton list, as if
|
|
// you passed in a singleton region. If you set the closed parameters to false then the region components
|
|
// will be treated as open paths instead of polygons.
|
|
// Arguments:
|
|
// region1 = first region
|
|
// region2 = second region
|
|
// closed1 = if false then treat region1 as list of open paths. Default: true
|
|
// closed2 = if false then treat region2 as list of open paths. Default: true
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
// Example(2D):
|
|
// path = square(50,center=false);
|
|
// region = [circle(d=80), circle(d=40)];
|
|
// paths = split_region_at_region_crossings(path, region);
|
|
// color("#aaa") region(region);
|
|
// rainbow(paths[0][0]) stroke($item, width=2);
|
|
// right(110){
|
|
// color("#aaa") region([path]);
|
|
// rainbow(flatten(paths[1])) stroke($item, width=2);
|
|
// }
|
|
function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) =
|
|
let(
|
|
region1=force_region(region1),
|
|
region2=force_region(region2)
|
|
)
|
|
assert(is_region(region1) && is_region(region2),"One of the inputs is not a region")
|
|
let(
|
|
xings = _region_region_intersections(region1, region2, closed1, closed2, eps),
|
|
regions = [region1,region2],
|
|
closed = [closed1,closed2]
|
|
)
|
|
[for(i=[0:1])
|
|
[for(p=idx(xings[i]))
|
|
let(
|
|
crossings = deduplicate([
|
|
[p,0,0],
|
|
each xings[i][p],
|
|
[p,len(regions[i][p])-(closed[i]?1:2), 1],
|
|
],eps=eps),
|
|
subpaths = [
|
|
for (frag = pair(crossings))
|
|
deduplicate(
|
|
_path_select(regions[i][p], frag[0][1], frag[0][2], frag[1][1], frag[1][2], closed=closed[i]),
|
|
eps=eps
|
|
)
|
|
]
|
|
)
|
|
[for(s=subpaths) if (len(s)>1) s]
|
|
]
|
|
];
|
|
|
|
|
|
|
|
// Function: region_parts()
|
|
// Usage:
|
|
// rgns = region_parts(region);
|
|
// Description:
|
|
// Divides a region into a list of connected regions. Each connected region has exactly one clockwise outside boundary
|
|
// and zero or more counter-clockwise outlines defining internal holes. Note that behavior is undefined on invalid regions whose
|
|
// components cross each other.
|
|
// Example(2D,NoAxes):
|
|
// R = [for(i=[1:7]) square(i,center=true)];
|
|
// region_list = region_parts(R);
|
|
// rainbow(region_list) region($item);
|
|
// Example(2D,NoAxes):
|
|
// R = [back(7,square(3,center=true)),
|
|
// square([20,10],center=true),
|
|
// left(5,square(8,center=true)),
|
|
// for(i=[4:2:8])
|
|
// right(5,square(i,center=true))];
|
|
// region_list = region_parts(R);
|
|
// rainbow(region_list) region($item);
|
|
function region_parts(region) =
|
|
let(
|
|
region = force_region(region)
|
|
)
|
|
assert(is_region(region), "Input is not a region")
|
|
let(
|
|
inside = [for(i=idx(region))
|
|
let(pt = mean([region[i][0], region[i][1]]))
|
|
[for(j=idx(region)) i==j ? 0
|
|
: point_in_polygon(pt,region[j]) >=0 ? 1 : 0]
|
|
],
|
|
level = inside*repeat(1,len(region))
|
|
)
|
|
[ for(i=idx(region))
|
|
if(level[i]%2==0)
|
|
let(
|
|
possible_children = search([level[i]+1],level,0)[0],
|
|
keep=search([1], select(inside,possible_children), 0, i)[0]
|
|
)
|
|
[
|
|
clockwise_polygon(region[i]),
|
|
for(good=keep)
|
|
ccw_polygon(region[possible_children[good]])
|
|
]
|
|
];
|
|
|
|
|
|
|
|
|
|
// Section: Offset and 2D Boolean Set Operations
|
|
|
|
|
|
function _offset_chamfer(center, points, delta) =
|
|
let(
|
|
dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])),
|
|
endline = _shift_segment(select(points,[0,2]), delta-dist)
|
|
) [
|
|
line_intersection(endline, select(points,[0,1])),
|
|
line_intersection(endline, select(points,[1,2]))
|
|
];
|
|
|
|
|
|
function _shift_segment(segment, d) =
|
|
assert(!approx(segment[0],segment[1]),"Path has repeated points")
|
|
move(d*line_normal(segment),segment);
|
|
|
|
|
|
// Extend to segments to their intersection point. First check if the segments already have a point in common,
|
|
// which can happen if two colinear segments are input to the path variant of `offset()`
|
|
function _segment_extension(s1,s2) =
|
|
norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2,LINE,LINE);
|
|
|
|
|
|
function _makefaces(direction, startind, good, pointcount, closed) =
|
|
let(
|
|
lenlist = list_bset(good, pointcount),
|
|
numfirst = len(lenlist),
|
|
numsecond = sum(lenlist),
|
|
prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed)
|
|
)
|
|
direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces;
|
|
|
|
|
|
function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) =
|
|
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
|
|
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
|
|
((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces :
|
|
_makefaces_recurse(
|
|
startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind],
|
|
lenlist[firstind]==0? (
|
|
// point in original path has been deleted in offset path, so it has no match. We therefore
|
|
// make a triangular face using the current point from the offset (second) path
|
|
// (The current point in the second path can be equal to numsecond if firstind is the last point)
|
|
concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]])
|
|
// in this case a point or points exist in the offset path corresponding to the original path
|
|
) : (
|
|
concat(faces,
|
|
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
|
|
[for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]],
|
|
// Finish (unconditionally) with a quadrilateral face
|
|
[
|
|
[
|
|
firstind+startind1,
|
|
(firstind+1)%numfirst+startind1,
|
|
(secondind+lenlist[firstind])%numsecond+startind2,
|
|
(secondind+lenlist[firstind]-1)%numsecond+startind2
|
|
]
|
|
]
|
|
)
|
|
)
|
|
);
|
|
|
|
|
|
// Determine which of the shifted segments are good
|
|
function _good_segments(path, d, shiftsegs, closed, quality) =
|
|
let(
|
|
maxind = len(path)-(closed ? 1 : 2),
|
|
pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]],
|
|
pathseg_len = [for(seg=pathseg) norm(seg)],
|
|
pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]],
|
|
// Order matters because as soon as a valid point is found, the test stops
|
|
// This order works better for circular paths because they succeed in the center
|
|
alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1])
|
|
) [
|
|
for (i=[0:len(shiftsegs)-1])
|
|
(i>maxind)? true :
|
|
_segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha)
|
|
];
|
|
|
|
|
|
// Determine if a segment is good (approximately)
|
|
// Input is the path, the path segments normalized to unit length, the length of each path segment
|
|
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
|
|
// The last parameter, index, gives the current alpha index.
|
|
//
|
|
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
|
|
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
|
|
//
|
|
// This test is approximate because it only samples the points listed in alpha. Listing more points
|
|
// will make the test more accurate, but slower.
|
|
function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) =
|
|
index == len(alpha) ? false :
|
|
_point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true :
|
|
_segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1);
|
|
|
|
|
|
// Input is the path, the path segments normalized to unit length, the length of each path segment
|
|
// and a test point. Computes the (minimum) distance from the path to the point, taking into
|
|
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
|
|
function _point_dist(path,pathseg_unit,pathseg_len,pt) =
|
|
min([
|
|
for(i=[0:len(pathseg_unit)-1]) let(
|
|
v = pt-path[i],
|
|
projection = v*pathseg_unit[i],
|
|
segdist = projection < 0? norm(pt-path[i]) :
|
|
projection > pathseg_len[i]? norm(pt-select(path,i+1)) :
|
|
norm(v-projection*pathseg_unit[i])
|
|
) segdist
|
|
]);
|
|
|
|
|
|
// Function: offset()
|
|
// Usage:
|
|
// offsetpath = offset(path, [r|delta], [chamfer], [closed], [check_valid], [quality])
|
|
// path_faces = offset(path, return_faces=true, [r|delta], [chamfer], [closed], [check_valid], [quality], [firstface_index], [flip_faces])
|
|
// Description:
|
|
// Takes a 2D input path, polygon or region and returns a path offset by the specified amount. As with the built-in
|
|
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
|
|
// corners. If you used `delta` you can set `chamfer` to true to get chamfers.
|
|
// For paths and polygons positive offsets make the polygons larger. For paths,
|
|
// positive offsets shift the path to the left, relative to the direction of the path. Note
|
|
// that the path must not include any 180 degree turns, where the path reverses direction.
|
|
// .
|
|
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
|
|
// for this situation. To test validity the code checks that segments have distance larger than (r
|
|
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
|
|
// segments you wanted included in various situations, so you can disable it if you wish by setting
|
|
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
|
|
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
|
|
// increases the number of samples on the segment that are checked.) Run time will increase. In
|
|
// some situations you may be able to decrease run time by setting quality to 0, which causes only
|
|
// segment ends to be checked.
|
|
// .
|
|
// For construction of polyhedra `offset()` can also return face lists. These list faces between
|
|
// the original path and the offset path where the vertices are ordered with the original path
|
|
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
|
|
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
|
|
// value is a list: [offset_path, face_list].
|
|
// Arguments:
|
|
// path = the path to process. A list of 2d points.
|
|
// ---
|
|
// r = offset radius. Distance to offset. Will round over corners.
|
|
// delta = offset distance. Distance to offset with pointed corners.
|
|
// chamfer = chamfer corners when you specify `delta`. Default: false
|
|
// closed = if true path is treate as a polygon. Default: False.
|
|
// check_valid = perform segment validity check. Default: True.
|
|
// quality = validity check quality parameter, a small integer. Default: 1.
|
|
// return_faces = return face list. Default: False.
|
|
// firstface_index = starting index for face list. Default: 0.
|
|
// flip_faces = flip face direction. Default: false
|
|
// Example(2D,NoAxes):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star, width=3);
|
|
// stroke(closed=true, width=3, offset(star, delta=10, closed=true));
|
|
// Example(2D,NoAxes):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star, width=3);
|
|
// stroke(closed=true, width=3,
|
|
// offset(star, delta=10, chamfer=true, closed=true));
|
|
// Example(2D,NoAxes):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star, width=3);
|
|
// stroke(closed=true, width=3,
|
|
// offset(star, r=10, closed=true));
|
|
// Example(2D,NoAxes):
|
|
// star = star(7, r=120, ir=50);
|
|
// #stroke(closed=true, width=3, star);
|
|
// stroke(closed=true, width=3,
|
|
// offset(star, delta=-15, closed=true));
|
|
// Example(2D,NoAxes):
|
|
// star = star(7, r=120, ir=50);
|
|
// #stroke(closed=true, width=3, star);
|
|
// stroke(closed=true, width=3,
|
|
// offset(star, delta=-15, chamfer=true, closed=true));
|
|
// Example(2D,NoAxes):
|
|
// star = star(7, r=120, ir=50);
|
|
// #stroke(closed=true, width=3, star);
|
|
// stroke(closed=true, width=3,
|
|
// offset(star, r=-15, closed=true, $fn=20));
|
|
// Example(2D,NoAxes): This case needs `quality=2` for success
|
|
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
|
|
// polygon(offset(test,r=-1.9, closed=true, quality=2));
|
|
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
|
|
// %down(.1)polygon(test);
|
|
// Example(2D,NoAxes): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
|
|
// star = star(5, r=22, ir=13);
|
|
// stroke(star,width=.3,closed=true);
|
|
// color("green")
|
|
// stroke(offset(star, delta=-9, closed=true),width=.3,closed=true); // Works with check_valid=true (the default)
|
|
// color("red")
|
|
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
|
|
// width=.3,closed=true);
|
|
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
|
|
// star = star(5, r=22, ir=13);
|
|
// color("green")
|
|
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
|
|
// color("red")
|
|
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
|
|
// Example(2D,NoAxes): The extra triangles in this example show that the validity check cannot be skipped
|
|
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
|
|
// stroke(ellipse, closed=true, width=0.3);
|
|
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true),
|
|
// width=0.3, closed=true);
|
|
// Example(2D,NoAxes): The triangles are removed by the validity check
|
|
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
|
|
// stroke(ellipse, closed=true, width=0.3);
|
|
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true),
|
|
// width=0.3, closed=true);
|
|
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
|
|
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
|
|
// #stroke(sinpath, width=2);
|
|
// stroke(offset(sinpath, r=17.5),width=2);
|
|
// Example(2D,NoAxes): Region
|
|
// rgn = difference(circle(d=100),
|
|
// union(square([20,40], center=true),
|
|
// square([40,20], center=true)));
|
|
// #linear_extrude(height=1.1) stroke(rgn, width=1);
|
|
// region(offset(rgn, r=-5));
|
|
function offset(
|
|
path, r=undef, delta=undef, chamfer=false,
|
|
closed=false, check_valid=true,
|
|
quality=1, return_faces=false, firstface_index=0,
|
|
flip_faces=false
|
|
) =
|
|
is_region(path)?
|
|
assert(!return_faces, "return_faces not supported for regions.")
|
|
let(
|
|
ofsregs = [for(R=region_parts(path))
|
|
difference([for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta),
|
|
chamfer=chamfer, check_valid=check_valid, quality=quality,closed=true)])]
|
|
)
|
|
union(ofsregs)
|
|
:
|
|
let(rcount = num_defined([r,delta]))
|
|
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
|
|
assert(is_path(path), "Input must be a path or region")
|
|
let(
|
|
chamfer = is_def(r) ? false : chamfer,
|
|
quality = max(0,round(quality)),
|
|
flip_dir = closed && !is_polygon_clockwise(path)? -1 : 1,
|
|
d = flip_dir * (is_def(r) ? r : delta),
|
|
// shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)],
|
|
shiftsegs = [for(i=[0:len(path)-2]) _shift_segment([path[i],path[i+1]], d),
|
|
if (closed) _shift_segment([last(path),path[0]],d)
|
|
else [path[0],path[1]] // dummy segment, not used
|
|
],
|
|
// good segments are ones where no point on the segment is less than distance d from any point on the path
|
|
good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : repeat(true,len(shiftsegs)),
|
|
goodsegs = bselect(shiftsegs, good),
|
|
goodpath = bselect(path,good)
|
|
)
|
|
assert(len(goodsegs)-(!closed && select(good,-1)?1:0)>0,"Offset of path is degenerate")
|
|
let(
|
|
// Extend the shifted segments to their intersection points
|
|
sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))],
|
|
// If some segments are parallel then the extended segments are undefined. This case is not handled
|
|
// Note if !closed the last corner doesn't matter, so exclude it
|
|
parallelcheck =
|
|
(len(sharpcorners)==2 && !closed) ||
|
|
all_defined(closed? sharpcorners : select(sharpcorners, 1,-2))
|
|
)
|
|
assert(parallelcheck, "Path contains a segment that reverses direction (180 deg turn)")
|
|
let(
|
|
// This is a boolean array that indicates whether a corner is an outside or inside corner
|
|
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
|
|
// If either side turns back it is an inside corner---must check both.
|
|
// Outside corners can get rounded (if r is specified and there is space to round them)
|
|
outsidecorner = len(sharpcorners)==2 ? [false,false]
|
|
:
|
|
[for(i=[0:len(goodsegs)-1])
|
|
let(prevseg=select(goodsegs,i-1))
|
|
(i==0 || i==len(goodsegs)-1) && !closed ? false // In open case first entry is bogus
|
|
:
|
|
(goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0
|
|
&& (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0
|
|
],
|
|
steps = is_def(delta) ? [] : [
|
|
for(i=[0:len(goodsegs)-1])
|
|
r==0 ? 0
|
|
// floor is important here to ensure we don't generate extra segments when nearly straight paths expand outward
|
|
: 1+floor(segs(r)*vector_angle(
|
|
select(goodsegs,i-1)[1]-goodpath[i],
|
|
goodsegs[i][0]-goodpath[i])
|
|
/360)
|
|
],
|
|
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
|
|
// Otherwise it's the same as sharpcorners
|
|
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
|
|
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
|
|
// plain sharpcorners back.
|
|
newcorners = is_def(delta) && !chamfer ? [sharpcorners]
|
|
: [for(i=[0:len(goodsegs)-1])
|
|
(!chamfer && steps[i] <=1) // Don't round if steps is smaller than 2
|
|
|| !outsidecorner[i] // Don't round inside corners
|
|
|| (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path
|
|
? [sharpcorners[i]]
|
|
: chamfer ? _offset_chamfer(
|
|
goodpath[i], [
|
|
select(goodsegs,i-1)[1],
|
|
sharpcorners[i],
|
|
goodsegs[i][0]
|
|
], d
|
|
)
|
|
: // rounded case
|
|
arc(cp=goodpath[i],
|
|
points=[
|
|
select(goodsegs,i-1)[1],
|
|
goodsegs[i][0]
|
|
],
|
|
n=steps[i])
|
|
],
|
|
pointcount = (is_def(delta) && !chamfer)?
|
|
repeat(1,len(sharpcorners)) :
|
|
[for(i=[0:len(goodsegs)-1]) len(newcorners[i])],
|
|
start = [goodsegs[0][0]],
|
|
end = [goodsegs[len(goodsegs)-2][1]],
|
|
edges = closed?
|
|
flatten(newcorners) :
|
|
concat(start,slice(flatten(newcorners),1,-2),end),
|
|
faces = !return_faces? [] :
|
|
_makefaces(
|
|
flip_faces, firstface_index, good,
|
|
pointcount, closed
|
|
)
|
|
) return_faces? [edges,faces] : edges;
|
|
|
|
|
|
|
|
/// Internal Function: _filter_region_parts()
|
|
///
|
|
/// splits region1 into subpaths where either it touches itself or crosses region2. Classifies all of the
|
|
/// subpaths as described below and keeps the ones listed in keep1. A similar process is performed for region2.
|
|
/// All of the kept subpaths are assembled into polygons and returned as a lst.
|
|
/// .
|
|
/// The four types of subpath from the region are defined relative to the second region:
|
|
/// "O" - the subpath is outside the second region
|
|
/// "I" - the subpath is in the second region's interior
|
|
/// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath
|
|
/// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides
|
|
/// You specify which type of subpaths to keep with a string of the desired types such as "OS".
|
|
function _filter_region_parts(region1, region2, keep, eps=EPSILON) =
|
|
// We have to compute common vertices between paths in the region because
|
|
// they can be places where the path must be cut, even though they aren't
|
|
// found my the split_path function.
|
|
let(
|
|
subpaths = split_region_at_region_crossings(region1,region2,eps=eps),
|
|
regions=[force_region(region1),
|
|
force_region(region2)]
|
|
)
|
|
_assemble_path_fragments(
|
|
[for(i=[0:1])
|
|
let(
|
|
keepS = search("S",keep[i])!=[],
|
|
keepU = search("U",keep[i])!=[],
|
|
keepoutside = search("O",keep[i]) !=[],
|
|
keepinside = search("I",keep[i]) !=[],
|
|
all_subpaths = flatten(subpaths[i])
|
|
)
|
|
for (subpath = all_subpaths)
|
|
let(
|
|
midpt = mean([subpath[0], subpath[1]]),
|
|
rel = point_in_region(midpt,regions[1-i],eps=eps),
|
|
keepthis = rel<0 ? keepoutside
|
|
: rel>0 ? keepinside
|
|
: !(keepS || keepU) ? false
|
|
: let(
|
|
sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]),
|
|
rel1 = point_in_region(sidept,regions[0],eps=eps)>0,
|
|
rel2 = point_in_region(sidept,regions[1],eps=eps)>0
|
|
)
|
|
rel1==rel2 ? keepS : keepU
|
|
)
|
|
if (keepthis) subpath
|
|
]
|
|
);
|
|
|
|
|
|
function _list_three(a,b,c) =
|
|
is_undef(b) ? a :
|
|
[
|
|
a,
|
|
if (is_def(b)) b,
|
|
if (is_def(c)) c
|
|
];
|
|
|
|
|
|
|
|
// Function&Module: union()
|
|
// Usage:
|
|
// union() {...}
|
|
// region = union(regions);
|
|
// region = union(REGION1,REGION2);
|
|
// region = union(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function and given a list of regions or 2D polygons,
|
|
// returns the union of all given regions and polygons. Result is a single region.
|
|
// When called as the built-in module, makes the union of the given children.
|
|
// Arguments:
|
|
// regions = List of regions to union.
|
|
// Example(2D):
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// color("green") region(union(shape1,shape2));
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
|
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
let(regions=_list_three(regions,b,c))
|
|
len(regions)==0? [] :
|
|
len(regions)==1? regions[0] :
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
union([
|
|
_filter_region_parts(regions[0],regions[1],["OS", "O"], eps=eps),
|
|
for (i=[2:1:len(regions)-1]) regions[i]
|
|
],
|
|
eps=eps
|
|
);
|
|
|
|
|
|
// Function&Module: difference()
|
|
// Usage:
|
|
// difference() {...}
|
|
// region = difference(regions);
|
|
// region = difference(REGION1,REGION2);
|
|
// region = difference(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function, and given a list of regions or 2D polygons,
|
|
// takes the first region or polygon and differences away all other regions/polygons from it. The resulting
|
|
// region is returned.
|
|
// When called as the built-in module, makes the set difference of the given children.
|
|
// Arguments:
|
|
// regions = List of regions or polygons to difference.
|
|
// Example(2D):
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(difference(shape1,shape2));
|
|
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
let(regions = _list_three(regions,b,c))
|
|
len(regions)==0? []
|
|
: len(regions)==1? regions[0]
|
|
: regions[0]==[] ? []
|
|
: let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
difference([
|
|
_filter_region_parts(regions[0],regions[1],["OU", "I"], eps=eps),
|
|
for (i=[2:1:len(regions)-1]) regions[i]
|
|
],
|
|
eps=eps
|
|
);
|
|
|
|
|
|
// Function&Module: intersection()
|
|
// Usage:
|
|
// intersection() {...}
|
|
// region = intersection(regions);
|
|
// region = intersection(REGION1,REGION2);
|
|
// region = intersection(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function, and given a list of regions or polygons returns the
|
|
// intersection of all given regions. Result is a single region.
|
|
// When called as the built-in module, makes the intersection of all the given children.
|
|
// Arguments:
|
|
// regions = List of regions to intersect.
|
|
// Example(2D):
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(intersection(shape1,shape2));
|
|
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
let(regions = _list_three(regions,b,c))
|
|
len(regions)==0 ? []
|
|
: len(regions)==1? regions[0]
|
|
: regions[0]==[] || regions[1]==[] ? []
|
|
: intersection([
|
|
_filter_region_parts(regions[0],regions[1],["IS","I"],eps=eps),
|
|
for (i=[2:1:len(regions)-1]) regions[i]
|
|
],
|
|
eps=eps
|
|
);
|
|
|
|
|
|
|
|
// Function&Module: exclusive_or()
|
|
// Usage:
|
|
// exclusive_or() {...}
|
|
// region = exclusive_or(regions);
|
|
// region = exclusive_or(REGION1,REGION2);
|
|
// region = exclusive_or(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function and given a list of regions or 2D polygons,
|
|
// returns the exclusive_or of all given regions. Result is a single region.
|
|
// When called as a module, performs a boolean exclusive-or of up to 10 children. Note that when
|
|
// the input regions cross each other the exclusive-or operator will produce shapes that
|
|
// meet at corners (non-simple regions), which do not render in CGAL.
|
|
// Arguments:
|
|
// regions = List of regions or polygons to exclusive_or
|
|
// Example(2D): As Function. A linear_sweep of this shape fails to render in CGAL.
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2])
|
|
// color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(exclusive_or(shape1,shape2));
|
|
// Example(2D): As Module. A linear_extrude() of the resulting geometry fails to render in CGAL.
|
|
// exclusive_or() {
|
|
// square(40,center=false);
|
|
// circle(d=40);
|
|
// }
|
|
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
let(regions = _list_three(regions,b,c))
|
|
len(regions)==0? []
|
|
: len(regions)==1? force_region(regions[0])
|
|
: regions[0]==[] ? exclusive_or(list_tail(regions))
|
|
: regions[1]==[] ? exclusive_or(list_remove(regions,1))
|
|
: exclusive_or([
|
|
_filter_region_parts(regions[0],regions[1],["IO","IO"],eps=eps),
|
|
for (i=[2:1:len(regions)-1]) regions[i]
|
|
],
|
|
eps=eps
|
|
);
|
|
|
|
|
|
module exclusive_or() {
|
|
if ($children==1) {
|
|
children();
|
|
} else if ($children==2) {
|
|
difference() {
|
|
children(0);
|
|
children(1);
|
|
}
|
|
difference() {
|
|
children(1);
|
|
children(0);
|
|
}
|
|
} else if ($children==3) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
}
|
|
children(2);
|
|
}
|
|
} else if ($children==4) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
}
|
|
exclusive_or() {
|
|
children(2);
|
|
children(3);
|
|
}
|
|
}
|
|
} else if ($children==5) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
children(4);
|
|
}
|
|
} else if ($children==6) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
children(4);
|
|
children(5);
|
|
}
|
|
} else if ($children==7) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
}
|
|
} else if ($children==8) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
exclusive_or() {
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
children(7);
|
|
}
|
|
}
|
|
} else if ($children==9) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
exclusive_or() {
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
children(7);
|
|
}
|
|
children(8);
|
|
}
|
|
} else if ($children==10) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
exclusive_or() {
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
children(7);
|
|
}
|
|
children(8);
|
|
children(9);
|
|
}
|
|
} else {
|
|
assert($children<=10, "exclusive_or() can only handle up to 10 children.");
|
|
}
|
|
}
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|