BOSL2/attachments.scad

1987 lines
80 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: attachments.scad
// The modules in this file allows you to attach one object to another by making one object the child of another object.
// You can place the child object in relation to its parent object and control the position and orientation
// relative to the parent. The modifiers allow you to treat children in different ways that simple union, such
// as differencing them from the parent, or changing their color. Attachment only works when the parent and child
// are both written to support attachment. Also included in this file are the tools to make your own "attachable" objects.
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
// Default values for attachment code.
$tags = "";
$overlap = 0;
$color = undef;//"yellow";
$attach_to = undef;
$attach_anchor = [CENTER, CENTER, UP, 0];
$attach_norot = false;
$parent_anchor = BOTTOM;
$parent_spin = 0;
$parent_orient = UP;
$parent_size = undef;
$parent_geom = undef;
$tags_shown = [];
$tags_hidden = [];
// Section: Anchors, Spin, and Orientation
// This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()`
// and `sphere()` builtins, as well as to most of the shapes provided by this library itself.
// - An anchor is a place on an object which you can align the object to, or attach other objects
// to using `attach()` or `position()`. An anchor has a position, a direction, and a spin.
// The direction and spin are used to orient other objects to match when using `attach()`.
// - Spin is a simple rotation around the Z axis.
// - Orientation is rotating an object so that its top is pointed towards a given vector.
// An object will first be translated to its anchor position, then spun, then oriented.
// .
// ## Anchor
// Anchoring is specified with the `anchor` argument in most shape modules. Specifying `anchor`
// when creating an object will translate the object so that the anchor point is at the origin
// (0,0,0). Anchoring always occurs before spin and orientation are applied.
// .
// An anchor can be referred to in one of two ways; as a directional vector, or as a named anchor string.
// .
// When given as a vector, it points, in a general way, towards the face, edge, or corner of the
// object that you want the anchor for, relative to the center of the object. There are directional
// constants named `TOP`, `BOTTOM`, `FRONT`, `BACK`, `LEFT`, and `RIGHT` that you can add together
// to specify an anchor point.
// .
// For example:
// - `[0,0,1]` is the same as `TOP` and refers to the center of the top face.
// - `[-1,0,1]` is the same as `TOP+LEFT`, and refers to the center of the top-left edge.
// - `[1,1,-1]` is the same as `BOTTOM+BACK+RIGHT`, and refers to the bottom-back-right corner.
// .
// When the object is cylindrical, conical, or spherical in nature, the anchors will be located
// around the surface of the cylinder, cone, or sphere, relative to the center. The direction of a
// face anchor will be perpendicular to the face, pointing outward. The direction of a edge anchor
// will be the average of the anchor directions of the two faces the edge is between. The direction
// of a corner anchor will be the average of the anchor directions of the three faces the corner is
// on. The spin of all standard anchors is 0.
// .
// Some more complex objects, like screws and stepper motors, have named anchors to refer to places
// on the object that are not at one of the standard faces, edges or corners. For example, stepper
// motors have anchors for `"screw1"`, `"screw2"`, etc. to refer to the various screwholes on the
// stepper motor shape. The names, positions, directions, and spins of these anchors will be
// specific to the object, and will be documented when they exist.
// .
// ## Spin
// Spin is specified with the `spin` argume// nt in most shape modules. Specifying a scalar `spin`
// when creating an object will rotate the object counter-clockwise around the Z axis by the given
// number of degrees. If given as a 3D vector, the object will be rotated around each of the X, Y, Z
// axes by the number of degrees in each component of the vector. Spin is always applied after
// anchoring, and before orientation.
// .
// ## Orient
// Orientation is specified with the `orient` argument in most shape modules. Specifying `orient`
// when creating an object will rotate the object such that the top of the object will be pointed
// at the vector direction given in the `orient` argument. Orientation is always applied after
// anchoring and spin. The constants `UP`, `DOWN`, `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be
// added together to form the directional vector for this. ie: `LEFT+BACK`
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Section: Attachment Positioning
// Module: position()
// Usage:
// position(from) {...}
//
// Topics: Attachments
// See Also: attachable(), attach(), orient()
//
// Description:
// Attaches children to a parent object at an anchor point. For a more step-by-step explanation
// of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// Example:
// spheroid(d=20) {
// position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(RIGHT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(FRONT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// }
module position(from)
{
assert($parent_geom != undef, "No object to attach to!");
anchors = (is_vector(from)||is_string(from))? [from] : from;
for (anchr = anchors) {
anch = _find_anchor(anchr, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
translate(anch[1]) children();
}
}
// Module: orient()
// Usage:
// orient(dir, <spin=>) ...
// orient(anchor=, <spin=>) ...
// Topics: Attachments
// Description:
// Orients children such that their top is tilted towards the given direction, or towards the
// direction of a given anchor point on the parent. For a more step-by-step explanation of
// attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// dir = The direction to orient towards.
// ---
// anchor = The anchor on the parent which you want to match the orientation of. Use instead of `dir`.
// spin = The spin to add to the children. (Overrides anchor spin.)
// See Also: attachable(), attach(), orient()
// Example: Orienting by Vector
// prismoid([50,50],[30,30],h=40) {
// position(TOP+RIGHT)
// orient(RIGHT)
// prismoid([30,30],[0,5],h=20,anchor=BOT+LEFT);
// }
// Example: When orienting to an anchor, the spin of the anchor may cause confusion:
// prismoid([50,50],[30,30],h=40) {
// position(TOP+RIGHT)
// orient(anchor=RIGHT)
// prismoid([30,30],[0,5],h=20,anchor=BOT+LEFT);
// }
// Example: You can override anchor spin with `spin=`.
// prismoid([50,50],[30,30],h=40) {
// position(TOP+RIGHT)
// orient(anchor=RIGHT,spin=0)
// prismoid([30,30],[0,5],h=20,anchor=BOT+LEFT);
// }
// Example: Or you can anchor the child from the back
// prismoid([50,50],[30,30],h=40) {
// position(TOP+RIGHT)
// orient(anchor=RIGHT)
// prismoid([30,30],[0,5],h=20,anchor=BOT+BACK);
// }
module orient(dir, anchor, spin) {
if (!is_undef(dir)) {
assert(anchor==undef, "Only one of dir= or anchor= may be given to orient()");
assert(is_vector(dir));
spin = default(spin, 0);
assert(is_finite(spin));
rot(spin, from=UP, to=dir) children();
} else {
assert(dir==undef, "Only one of dir= or anchor= may be given to orient()");
assert($parent_geom != undef, "No parent to orient from!");
assert(is_string(anchor) || is_vector(anchor));
anch = _find_anchor(anchor, $parent_geom);
two_d = _attach_geom_2d($parent_geom);
fromvec = two_d? BACK : UP;
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
spin = default(spin, anch[3]);
assert(is_finite(spin));
rot(spin, from=fromvec, to=anch[2]) children();
}
}
// Module: attach()
// Usage:
// attach(from, [overlap=], [norot=]) {...}
// attach(from, to, [overlap=], [norot=]) {...}
// Topics: Attachments
// See Also: attachable(), position(), face_profile(), edge_profile(), corner_profile()
// Description:
// Attaches children to a parent object at an anchor point and orientation. Attached objects will
// be overlapped into the parent object by a little bit, as specified by the `$overlap`
// value (0 by default), or by the overriding `overlap=` argument. This is to prevent OpenSCAD
// from making non-manifold objects. You can define `$overlap=` as an argument in a parent
// module to set the default for all attachments to it. For a more step-by-step explanation of
// attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// to = Optional name of the child anchor point. If given, orients the child such that the named anchors align together rotationally.
// ---
// overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0` by default.
// norot = If true, don't rotate children when attaching to the anchor point. Only translate to the anchor point.
// Example:
// spheroid(d=20) {
// attach(TOP) down(1.5) cyl(l=11.5, d1=10, d2=5, anchor=BOTTOM);
// attach(RIGHT, BOTTOM) down(1.5) cyl(l=11.5, d1=10, d2=5);
// attach(FRONT, BOTTOM, overlap=1.5) cyl(l=11.5, d1=10, d2=5);
// }
module attach(from, to, overlap, norot=false)
{
assert($parent_geom != undef, "No object to attach to!");
overlap = (overlap!=undef)? overlap : $overlap;
anchors = (is_vector(from)||is_string(from))? [from] : from;
for (anchr = anchors) {
anch = _find_anchor(anchr, $parent_geom);
two_d = _attach_geom_2d($parent_geom);
$attach_to = to;
$attach_anchor = anch;
$attach_norot = norot;
olap = two_d? [0,-overlap,0] : [0,0,-overlap];
if (norot || (norm(anch[2]-UP)<1e-9 && anch[3]==0)) {
translate(anch[1]) translate(olap) children();
} else {
fromvec = two_d? BACK : UP;
translate(anch[1]) rot(anch[3],from=fromvec,to=anch[2]) translate(olap) children();
}
}
}
// Section: Attachment Modifiers
// Module: tags()
// Usage:
// tags(tags) {...}
// Topics: Attachments
// See Also: recolor(), hide(), show(), diff(), intersect()
// Description:
// Marks all children with the given tags, so that they will `hide()`/`show()`/`diff()` correctly.
// This is especially useful for working with children that are not attachment enhanced, such as:
// - `square()` (or use [`rect()`](shapes2d.scad#rect))
// - `circle()` (or use [`oval()`](shapes2d.scad#oval))
// - `polygon()`
// - `text()`
// - `projection()`
// - `polyhedron()` (or use [`vnf_polyhedron()`](vnf.scad#vnf_polyhedron))
// - `linear_extrude()` (or use [`linear_sweep()`](regions.scad#linear_sweep))
// - `rotate_extrude()`
// - `surface()`
// - `import()`
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// tags = String containing space delimited set of tags to apply.
module tags(tags)
{
$tags = tags;
if(_attachment_is_shown(tags)) {
children();
}
}
// Module: recolor()
// Usage:
// recolor(c) {...}
// Topics: Attachments
// See Also: tags(), hide(), show(), diff(), intersect()
// Description:
// Sets the color for children that can use the $color special variable. For a more step-by-step
// explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// c = Color name or RGBA vector.
// Example:
// recolor("red") cyl(l=20, d=10);
module recolor(c)
{
$color = c;
children();
}
// Module: hide()
// Usage:
// hide(tags) {...}
// Topics: Attachments
// See Also: tags(), recolor(), show(), diff(), intersect()
// Description:
// Hides all children with the given tags. Overrides any previous `hide()` or `show()` calls.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Example:
// hide("A") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module hide(tags="")
{
$tags_hidden = tags==""? [] : str_split(tags, " ");
$tags_shown = [];
children();
}
// Module: show()
// Usage:
// show(tags) {...}
// Topics: Attachments
// See Also: tags(), recolor(), hide(), diff(), intersect()
// Description:
// Shows only children with the given tags. Overrides any previous `hide()` or `show()` calls.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Example:
// show("A B") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module show(tags="")
{
$tags_shown = tags==""? [] : str_split(tags, " ");
$tags_hidden = [];
children();
}
// Module: diff()
// Usage:
// diff(neg, [keep]) {...}
// diff(neg, pos, [keep]) {...}
// Topics: Attachments
// See Also: tags(), recolor(), show(), hide(), intersect()
// Description:
// If `neg` is given, takes the union of all children with tags that are in `neg`, and differences
// them from the union of all children with tags in `pos`. If `pos` is not given, then all items in
// `neg` are differenced from all items not in `neg`. If `keep` is given, all children with tags in
// `keep` are then unioned with the result. If `keep` is not given, all children without tags in
// `pos` or `neg` are then unioned with the result.
// Cannot be used in conjunction with `intersect()` or `hulling()` on the same parent object.
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// neg = String containing space delimited set of tag names of children to difference away.
// pos = String containing space delimited set of tag names of children to be differenced away from.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// diff("neg", "pos", keep="axle")
// sphere(d=100, $tags="pos") {
// attach(CENTER) xcyl(d=40, l=120, $tags="axle");
// attach(CENTER) cube([40,120,100], anchor=CENTER, $tags="neg");
// }
// Example: Masking
// diff("mask")
// cube([80,90,100], center=true) {
// edge_mask(FWD)
// rounding_edge_mask(l=max($parent_size)*1.01, r=25);
// }
// Example: Working with Non-Attachables Like rotate_extrude()
// back_half()
// diff("remove")
// cuboid(40) {
// attach(TOP)
// recolor("lightgreen")
// cyl(l=10,d=30);
// position(TOP+RIGHT)
// tags("remove")
// xrot(90)
// rotate_extrude()
// right(20)
// circle(5);
// }
module diff(neg, pos, keep)
{
// Don't perform the operation if the current tags are hidden
if (_attachment_is_shown($tags)) {
difference() {
if (pos != undef) {
show(pos) children();
} else {
if (keep == undef) {
hide(neg) children();
} else {
hide(str(neg," ",keep)) children();
}
}
show(neg) children();
}
}
if (keep!=undef) {
show(keep) children();
} else if (pos!=undef) {
hide(str(pos," ",neg)) children();
}
}
// Module: intersect()
// Usage:
// intersect(a, [keep=]) {...}
// intersect(a, b, [keep=]) {...}
// Topics: Attachments
// See Also: tags(), recolor(), show(), hide(), diff()
// Description:
// If `a` is given, takes the union of all children with tags that are in `a`, and `intersection()`s
// them with the union of all children with tags in `b`. If `b` is not given, then the union of all
// items with tags in `a` are intersection()ed with the union of all items without tags in `a`. If
// `keep` is given, then the result is unioned with all the children with tags in `keep`. If `keep`
// is not given, all children without tags in `a` or `b` are unioned with the result.
// Cannot be used in conjunction with `diff()` or `hulling()` on the same parent object.
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// a = String containing space delimited set of tag names of children.
// b = String containing space delimited set of tag names of children.
// ---
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// intersect("wheel", "mask", keep="axle")
// sphere(d=100, $tags="wheel") {
// attach(CENTER) cube([40,100,100], anchor=CENTER, $tags="mask");
// attach(CENTER) xcyl(d=40, l=100, $tags="axle");
// }
// Example: Working with Non-Attachables
// intersect("A", "B")
// cuboid(50, $tags="A") {
// tags("B")
// hull() {
// down(25)
// linear_extrude(height=0.01)
// square(55,center=true);
// up(25)
// linear_extrude(height=0.01)
// circle(d=45);
// }
// }
module intersect(a, b=undef, keep=undef)
{
// Don't perform the operation if the current tags are hidden
if (_attachment_is_shown($tags)) {
intersection() {
if (b != undef) {
show(b) children();
} else {
if (keep == undef) {
hide(a) children();
} else {
hide(str(a," ",keep)) children();
}
}
show(a) children();
}
}
if (keep!=undef) {
show(keep) children();
} else if (b!=undef) {
hide(str(a," ",b)) children();
}
}
// Module: hulling()
// Usage:
// hulling(a) {...}
// Topics: Attachments
// See Also: tags(), recolor(), show(), hide(), diff(), intersect()
// Description:
// If `a` is not given, then all children are `hull()`ed together.
// If `a` is given as a string, then all children with `$tags` that are in `a` are
// `hull()`ed together and the result is then unioned with all the remaining children.
// Cannot be used in conjunction with `diff()` or `intersect()` on the same parent object.
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// a = String containing space delimited set of tag names of children to hull.
// Example:
// hulling("body")
// sphere(d=100, $tags="body") {
// attach(CENTER) cube([40,90,90], anchor=CENTER, $tags="body");
// attach(CENTER) xcyl(d=40, l=120, $tags="other");
// }
module hulling(a)
{
if (is_undef(a)) {
hull() children();
} else {
hull() show(a) children();
children();
}
}
// Section: Attachable Masks
// Module: edge_mask()
// Usage:
// edge_mask([edges], [except]) {...}
// Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), edge_profile(), corner_mask()
// Description:
// Takes a 3D mask shape, and attaches it to the given edges, with the appropriate orientation to be
// `diff()`ed away. The mask shape should be vertically oriented (Z-aligned) with the back-right
// quadrant (X+Y+) shaped to be diffed away from the edge of parent attachable shape. For a more
// step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Figure: A Typical Edge Rounding Mask
// module roundit(l,r) difference() {
// translate([-1,-1,-l/2])
// cube([r+1,r+1,l]);
// translate([r,r])
// cylinder(h=l+1,r=r,center=true, $fn=quantup(segs(r),4));
// }
// roundit(l=30,r=10);
// Arguments:
// edges = Edges to mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
// except = Edges to explicitly NOT mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube([50,60,70],center=true)
// edge_mask([TOP,"Z"],except=[BACK,TOP+LEFT])
// rounding_edge_mask(l=71,r=10);
module edge_mask(edges=EDGES_ALL, except=[]) {
assert($parent_geom != undef, "No object to attach to!");
edges = edges(edges, except=except);
vecs = [
for (i = [0:3], axis=[0:2])
if (edges[axis][i]>0)
EDGE_OFFSETS[axis][i]
];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 2, "Not an edge vector!");
anch = _find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
rotang =
vec.z<0? [90,0,180+v_theta(vec)] :
vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) :
vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+v_theta(vec)] :
[-90,0,180+v_theta(vec)];
translate(anch[1]) rot(rotang) children();
}
}
// Module: corner_mask()
// Usage:
// corner_mask([corners], [except]) {...}
// Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), edge_profile(), edge_mask()
// Description:
// Takes a 3D mask shape, and attaches it to the given corners, with the appropriate orientation to
// be `diff()`ed away. The 3D corner mask shape should be designed to mask away the X+Y+Z+ octant.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// corners = Edges to mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: All corners.
// except = Edges to explicitly NOT mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: No corners.
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube(100, center=true)
// corner_mask([TOP,FRONT],LEFT+FRONT+TOP)
// difference() {
// translate(-0.01*[1,1,1]) cube(20);
// translate([20,20,20]) sphere(r=20);
// }
module corner_mask(corners=CORNERS_ALL, except=[]) {
assert($parent_geom != undef, "No object to attach to!");
corners = corners(corners, except=except);
vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 3, "Not an edge vector!");
anch = _find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
rotang = vec.z<0?
[ 0,0,180+v_theta(vec)-45] :
[180,0,-90+v_theta(vec)-45];
translate(anch[1]) rot(rotang) children();
}
}
// Module: face_profile()
// Usage:
// face_profile(faces, r|d=, [convexity=]) {...}
// Topics: Attachments
// See Also: attachable(), position(), attach(), edge_profile(), corner_profile()
// Description:
// Given a 2D edge profile, extrudes it into a mask for all edges and corners bounding each given face.
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// faces = Faces to mask edges and corners of.
// r = Radius of corner mask.
// ---
// d = Diameter of corner mask.
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube([50,60,70],center=true)
// face_profile(TOP,r=10)
// mask2d_roundover(r=10);
module face_profile(faces=[], r, d, convexity=10) {
faces = is_vector(faces)? [faces] : faces;
assert(all([for (face=faces) is_vector(face) && sum([for (x=face) x!=0? 1 : 0])==1]), "Vector in faces doesn't point at a face.");
r = get_radius(r=r, d=d, dflt=undef);
assert(is_num(r) && r>0);
edge_profile(faces) children();
corner_profile(faces, convexity=convexity, r=r) children();
}
// Module: edge_profile()
// Usage:
// edge_profile([edges], [except], [convexity]) {...}
// Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), corner_profile()
// Description:
// Takes a 2D mask shape and attaches it to the selected edges, with the appropriate orientation and
// extruded length to be `diff()`ed away, to give the edge a matching profile. For a more step-by-step
// explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// edges = Edges to mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
// except = Edges to explicitly NOT mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_roundover(r=10, inset=2);
module edge_profile(edges=EDGES_ALL, except=[], convexity=10) {
assert($parent_geom != undef, "No object to attach to!");
edges = edges(edges, except=except);
vecs = [
for (i = [0:3], axis=[0:2])
if (edges[axis][i]>0)
EDGE_OFFSETS[axis][i]
];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 2, "Not an edge vector!");
anch = _find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
psize = point3d($parent_size);
length = [for (i=[0:2]) if(!vec[i]) psize[i]][0]+0.1;
rotang =
vec.z<0? [90,0,180+v_theta(vec)] :
vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) :
vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+v_theta(vec)] :
[-90,0,180+v_theta(vec)];
translate(anch[1]) {
rot(rotang) {
linear_extrude(height=length, center=true, convexity=convexity) {
children();
}
}
}
}
}
// Module: corner_profile()
// Usage:
// corner_profile([corners], [except], <r=|d=>, [convexity=]) {...}
// Topics: Attachments
// See Also: attachable(), position(), attach(), face_profile(), edge_profile()
// Description:
// Takes a 2D mask shape, rotationally extrudes and converts it into a corner mask, and attaches it
// to the selected corners with the appropriate orientation. Tags it as a "mask" to allow it to be
// `diff()`ed away, to give the corner a matching profile. For a more step-by-step explanation of
// attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// corners = Edges to mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: All corners.
// except = Edges to explicitly NOT mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: No corners.
// ---
// r = Radius of corner mask.
// d = Diameter of corner mask.
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
// Side Effects:
// Sets `$tags = "mask"` for all children.
// Example:
// diff("mask")
// cuboid([50,60,70],rounding=10,edges="Z",anchor=CENTER) {
// corner_profile(BOT,r=10)
// mask2d_teardrop(r=10, angle=40);
// }
module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
assert($parent_geom != undef, "No object to attach to!");
r = get_radius(r=r, d=d, dflt=undef);
assert(is_num(r));
corners = corners(corners, except=except);
vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]];
for (vec = vecs) {
vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0);
assert(vcount == 3, "Not an edge vector!");
anch = _find_anchor(vec, $parent_geom);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
$tags = "mask";
rotang = vec.z<0?
[ 0,0,180+v_theta(vec)-45] :
[180,0,-90+v_theta(vec)-45];
translate(anch[1]) {
rot(rotang) {
render(convexity=convexity)
difference() {
translate(-0.1*[1,1,1]) cube(r+0.1, center=false);
right(r) back(r) zrot(180) {
rotate_extrude(angle=90, convexity=convexity) {
xflip() left(r) {
difference() {
square(r,center=false);
children();
}
}
}
}
}
}
}
}
}
// Section: Making your objects attachable
// Module: attachable()
//
// Usage: Square/Trapezoid Geometry
// attachable(anchor, spin, two_d=true, size=, [size2=], [shift=], ...) {...}
// Usage: Circle/Oval Geometry
// attachable(anchor, spin, two_d=true, r=|d=, ...) {...}
// Usage: 2D Path/Polygon Geometry
// attachable(anchor, spin, two_d=true, path=, [extent=], ...) {...}
// Usage: 2D Region Geometry
// attachable(anchor, spin, two_d=true, region=, [extent=], ...) {...}
// Usage: Cubical/Prismoidal Geometry
// attachable(anchor, spin, [orient], size=, [size2=], [shift=], ...) {...}
// Usage: Cylindrical Geometry
// attachable(anchor, spin, [orient], r=|d=, l=, [axis=], ...) {...}
// Usage: Conical Geometry
// attachable(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...) {...}
// Usage: Spheroid/Ovoid Geometry
// attachable(anchor, spin, [orient], r=|d=, ...) {...}
// Usage: Extruded Path/Polygon Geometry
// attachable(anchor, spin, path=, l=|h=, [extent=], ...) {...}
// Usage: Extruded Region Geometry
// attachable(anchor, spin, region=, l=|h=, [extent=], ...) {...}
// Usage: VNF Geometry
// attachable(anchor, spin, [orient], vnf=, [extent=], ...) {...}
//
// Topics: Attachments
// See Also: reorient()
//
// Description:
// Manages the anchoring, spin, orientation, and attachments for a 3D volume or 2D area.
// A managed 3D volume is assumed to be vertically (Z-axis) oriented, and centered.
// A managed 2D area is just assumed to be centered. The shape to be managed is given
// as the first child to this module, and the second child should be given as `children()`.
// For example, to manage a conical shape:
// ```openscad
// attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) {
// cyl(r1=r1, r2=r2, l=h);
// children();
// }
// ```
// .
// If this is *not* run as a child of `attach()` with the `to` argument
// given, then the following transformations are performed in order:
// * Translates so the `anchor` point is at the origin (0,0,0).
// * Rotates around the Z axis by `spin` degrees counter-clockwise.
// * Rotates so the top of the part points towards the vector `orient`.
// .
// If this is called as a child of `attach(from,to)`, then the info
// for the anchor points referred to by `from` and `to` are fetched,
// which will include position, direction, and spin. With that info,
// the following transformations are performed:
// * Translates this part so it's anchor position matches the parent's anchor position.
// * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector.
// * Rotates this part so it's anchor spin matches the parent's anchor spin.
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
//
// Arguments:
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// ---
// size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length.
// size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape.
// shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift.
// r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis.
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l/h = Length of the cylindrical, conical, or extruded path volume along axis.
// vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from.
// region = The region to generate a shape from.
// extent = If true, calculate anchors by extents, rather than intersection, for VNFs and paths. Default: true.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint.
// anchors = If given as a list of anchor points, allows named anchor points.
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
// axis = The vector pointing along the axis of a cylinder geometry. Default: UP
//
// Side Effects:
// `$parent_anchor` is set to the parent object's `anchor` value.
// `$parent_spin` is set to the parent object's `spin` value.
// `$parent_orient` is set to the parent object's `orient` value.
// `$parent_geom` is set to the parent object's `geom` value.
// `$parent_size` is set to the parent object's cubical `[X,Y,Z]` volume size.
//
// Example(NORENDER): Cubical Shape
// attachable(anchor, spin, orient, size=size) {
// cube(size, center=true);
// children();
// }
//
// Example(NORENDER): Prismoidal Shape
// attachable(
// anchor, spin, orient,
// size=point3d(botsize,h),
// size2=topsize,
// shift=shift
// ) {
// prismoid(botsize, topsize, h=h, shift=shift);
// children();
// }
//
// Example(NORENDER): Cylindrical Shape, Z-Axis Aligned
// attachable(anchor, spin, orient, r=r, l=h) {
// cyl(r=r, l=h);
// children();
// }
//
// Example(NORENDER): Cylindrical Shape, Y-Axis Aligned
// attachable(anchor, spin, orient, r=r, l=h, axis=BACK) {
// cyl(r=r, l=h);
// children();
// }
//
// Example(NORENDER): Cylindrical Shape, X-Axis Aligned
// attachable(anchor, spin, orient, r=r, l=h, axis=RIGHT) {
// cyl(r=r, l=h);
// children();
// }
//
// Example(NORENDER): Conical Shape, Z-Axis Aligned
// attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) {
// cyl(r1=r1, r2=r2, l=h);
// children();
// }
//
// Example(NORENDER): Conical Shape, Y-Axis Aligned
// attachable(anchor, spin, orient, r1=r1, r2=r2, l=h, axis=BACK) {
// cyl(r1=r1, r2=r2, l=h);
// children();
// }
//
// Example(NORENDER): Conical Shape, X-Axis Aligned
// attachable(anchor, spin, orient, r1=r1, r2=r2, l=h, axis=RIGHT) {
// cyl(r1=r1, r2=r2, l=h);
// children();
// }
//
// Example(NORENDER): Spherical Shape
// attachable(anchor, spin, orient, r=r) {
// sphere(r=r);
// children();
// }
//
// Example(NORENDER): Extruded Polygon Shape, by Extents
// attachable(anchor, spin, orient, path=path, l=length) {
// linear_extrude(height=length, center=true)
// polygon(path);
// children();
// }
//
// Example(NORENDER): Extruded Polygon Shape, by Intersection
// attachable(anchor, spin, orient, path=path, l=length, extent=false) {
// linear_extrude(height=length, center=true)
// polygon(path);
// children();
// }
//
// Example(NORENDER): Arbitrary VNF Shape, by Extents
// attachable(anchor, spin, orient, vnf=vnf) {
// vnf_polyhedron(vnf);
// children();
// }
//
// Example(NORENDER): Arbitrary VNF Shape, by Intersection
// attachable(anchor, spin, orient, vnf=vnf, extent=false) {
// vnf_polyhedron(vnf);
// children();
// }
//
// Example(NORENDER): 2D Rectangular Shape
// attachable(anchor, spin, orient, two_d=true, size=size) {
// square(size, center=true);
// children();
// }
//
// Example(NORENDER): 2D Trapezoidal Shape
// attachable(
// anchor, spin, orient,
// two_d=true,
// size=[x1,y],
// size2=x2,
// shift=shift
// ) {
// trapezoid(w1=x1, w2=x2, h=y, shift=shift);
// children();
// }
//
// Example(NORENDER): 2D Circular Shape
// attachable(anchor, spin, orient, two_d=true, r=r) {
// circle(r=r);
// children();
// }
//
// Example(NORENDER): Arbitrary 2D Polygon Shape, by Extents
// attachable(anchor, spin, orient, two_d=true, path=path) {
// polygon(path);
// children();
// }
//
// Example(NORENDER): Arbitrary 2D Polygon Shape, by Intersection
// attachable(anchor, spin, orient, two_d=true, path=path, extent=false) {
// polygon(path);
// children();
// }
module attachable(
anchor, spin, orient,
size, size2, shift,
r,r1,r2, d,d1,d2, l,h,
vnf, path, region,
extent=true,
cp=[0,0,0],
offset=[0,0,0],
anchors=[],
two_d=false,
axis=UP
) {
dummy1 =
assert($children==2, "attachable() expects exactly two children; the shape to manage, and the union of all attachment candidates.")
assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor))
assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin))
assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient));
anchor = default(anchor, CENTER);
spin = default(spin, 0);
orient = default(orient, UP);
region = !is_undef(region)? region :
!is_undef(path)? [path] :
undef;
geom = _attach_geom(
size=size, size2=size2, shift=shift,
r=r, r1=r1, r2=r2, h=h,
d=d, d1=d1, d2=d2, l=l,
vnf=vnf, region=region, extent=extent,
cp=cp, offset=offset, anchors=anchors,
two_d=two_d, axis=axis
);
m = _attach_transform(anchor,spin,orient,geom);
multmatrix(m) {
$parent_anchor = anchor;
$parent_spin = spin;
$parent_orient = orient;
$parent_geom = geom;
$parent_size = _attach_geom_size(geom);
$attach_to = undef;
do_show = _attachment_is_shown($tags);
if (do_show) {
if (is_undef($color)) {
children(0);
} else color($color) {
$color = undef;
children(0);
}
}
children(1);
}
}
// Function: named_anchor()
// Usage:
// a = named_anchor(name, pos, [orient], [spin]);
// Topics: Attachments
// See Also: reorient(), attachable()
// Description:
// Creates an anchor data structure. For a more step-by-step explanation of attachments,
// see the [[Attachments Tutorial|Tutorial-Attachments]].
// Arguments:
// name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces.
// pos = The [X,Y,Z] position of the anchor.
// orient = A vector pointing in the direction parts should project from the anchor position.
// spin = If needed, the angle to rotate the part around the direction vector.
function named_anchor(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, spin];
// Function: reorient()
//
// Usage: Square/Trapezoid Geometry
// mat = reorient(anchor, spin, [orient], two_d=true, size=, [size2=], [shift=], ...);
// pts = reorient(anchor, spin, [orient], two_d=true, size=, [size2=], [shift=], p=, ...);
// Usage: Circle/Oval Geometry
// mat = reorient(anchor, spin, [orient], two_d=true, r=|d=, ...);
// pts = reorient(anchor, spin, [orient], two_d=true, r=|d=, p=, ...);
// Usage: 2D Path/Polygon Geometry
// mat = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], p=, ...);
// Usage: 2D Region/Polygon Geometry
// mat = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], p=, ...);
// Usage: Cubical/Prismoidal Geometry
// mat = reorient(anchor, spin, [orient], size=, [size2=], [shift=], ...);
// pts = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...);
// Usage: Cylindrical Geometry
// mat = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], ...);
// pts = reorient(anchor, spin, [orient], r=|d=, l=, [axis=], p=, ...);
// Usage: Conical Geometry
// mat = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], ...);
// pts = reorient(anchor, spin, [orient], r1=|d1=, r2=|d2=, l=, [axis=], p=, ...);
// Usage: Spheroid/Ovoid Geometry
// mat = reorient(anchor, spin, [orient], r|d=, ...);
// pts = reorient(anchor, spin, [orient], r|d=, p=, ...);
// Usage: Extruded Path/Polygon Geometry
// mat = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], p=, ...);
// Usage: Extruded Region Geometry
// mat = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], p=, ...);
// Usage: VNF Geometry
// mat = reorient(anchor, spin, [orient], vnf, [extent], ...);
// pts = reorient(anchor, spin, [orient], vnf, [extent], p=, ...);
//
// Topics: Attachments
// See Also: reorient(), attachable()
//
// Description:
// Given anchor, spin, orient, and general geometry info for a managed volume, this calculates
// the transformation matrix needed to be applied to the contents of that volume. A managed 3D
// volume is assumed to be vertically (Z-axis) oriented, and centered. A managed 2D area is just
// assumed to be centered.
// .
// If `p` is not given, then the transformation matrix will be returned.
// If `p` contains a VNF, a new VNF will be returned with the vertices transformed by the matrix.
// If `p` contains a path, a new path will be returned with the vertices transformed by the matrix.
// If `p` contains a point, a new point will be returned, transformed by the matrix.
// .
// If `$attach_to` is not defined, then the following transformations are performed in order:
// * Translates so the `anchor` point is at the origin (0,0,0).
// * Rotates around the Z axis by `spin` degrees counter-clockwise.
// * Rotates so the top of the part points towards the vector `orient`.
// .
// If `$attach_to` is defined, as a consequence of `attach(from,to)`, then
// the following transformations are performed in order:
// * Translates this part so it's anchor position matches the parent's anchor position.
// * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector.
// * Rotates this part so it's anchor spin matches the parent's anchor spin.
// .
// For a more step-by-step explanation of attachments, see the [[Attachments Tutorial|Tutorial-Attachments]].
//
// Arguments:
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// ---
// size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length.
// size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape.
// shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift.
// r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis.
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l/h = Length of the cylindrical, conical, or extruded path volume along axis.
// vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from.
// region = The region to generate a shape from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: false.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint.
// anchors = If given as a list of anchor points, allows named anchor points.
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
// axis = The vector pointing along the axis of a cylinder geometry. Default: UP
// p = The VNF, path, or point to transform.
function reorient(
anchor, spin, orient,
size, size2, shift,
r,r1,r2, d,d1,d2, l,h,
vnf, path, region,
extent=true,
offset=[0,0,0],
cp=[0,0,0],
anchors=[],
two_d=false,
axis=UP,
p=undef
) =
assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor))
assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin))
assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient))
let(
anchor = default(anchor, CENTER),
spin = default(spin, 0),
orient = default(orient, UP),
region = !is_undef(region)? region :
!is_undef(path)? [path] :
undef
)
(anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let(
geom = _attach_geom(
size=size, size2=size2, shift=shift,
r=r, r1=r1, r2=r2, h=h,
d=d, d1=d1, d2=d2, l=l,
vnf=vnf, region=region, extent=extent,
cp=cp, offset=offset, anchors=anchors,
two_d=two_d, axis=axis
),
$attach_to = undef
) _attach_transform(anchor,spin,orient,geom,p);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Attachment internal functions
/// Internal Function: _attach_geom()
//
// Usage: Square/Trapezoid Geometry
// geom = _attach_geom(two_d=true, size=, [size2=], [shift=], ...);
// Usage: Circle/Oval Geometry
// geom = _attach_geom(two_d=true, r=|d=, ...);
// Usage: 2D Path/Polygon/Region Geometry
// geom = _attach_geom(two_d=true, region=, [extent=], ...);
// Usage: Cubical/Prismoidal Geometry
// geom = _attach_geom(size=, [size2=], [shift=], ...);
// Usage: Cylindrical Geometry
// geom = _attach_geom(r=|d=, l=|h=, [axis=], ...);
// Usage: Conical Geometry
// geom = _attach_geom(r1|d1=, r2=|d2=, l=, [axis=], ...);
// Usage: Spheroid/Ovoid Geometry
// geom = _attach_geom(r=|d=, ...);
// Usage: Extruded 2D Path/Polygon/Region Geometry
// geom = _attach_geom(region=, l=|h=, [extent=], ...);
// Usage: VNF Geometry
// geom = _attach_geom(vnf=, [extent=], ...);
//
/// Topics: Attachments
/// See Also: reorient(), attachable()
//
// Description:
// Given arguments that describe the geometry of an attachable object, returns the internal geometry description.
// This will probably not not ever need to be called by the end user.
//
// Arguments:
// ---
// size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length.
// size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape.
// shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift.
// r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis.
// r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis.
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l/h = Length of the cylindrical, conical or extruded region volume along axis.
// vnf = The [VNF](vnf.scad) of the volume.
// region = The region to generate a shape from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: true.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint.
// anchors = If given as a list of anchor points, allows named anchor points.
// two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D)
// axis = The vector pointing along the axis of a cylinder geometry. Default: UP
//
// Example(NORENDER): Cubical Shape
// geom = _attach_geom(size=size);
//
// Example(NORENDER): Prismoidal Shape
// geom = _attach_geom(
// size=point3d(botsize,h),
// size2=topsize, shift=shift
// );
//
// Example(NORENDER): Cylindrical Shape, Z-Axis Aligned
// geom = _attach_geom(r=r, h=h);
//
// Example(NORENDER): Cylindrical Shape, Y-Axis Aligned
// geom = _attach_geom(r=r, h=h, axis=BACK);
//
// Example(NORENDER): Cylindrical Shape, X-Axis Aligned
// geom = _attach_geom(r=r, h=h, axis=RIGHT);
//
// Example(NORENDER): Conical Shape, Z-Axis Aligned
// geom = _attach_geom(r1=r1, r2=r2, h=h);
//
// Example(NORENDER): Conical Shape, Y-Axis Aligned
// geom = _attach_geom(r1=r1, r2=r2, h=h, axis=BACK);
//
// Example(NORENDER): Conical Shape, X-Axis Aligned
// geom = _attach_geom(r1=r1, r2=r2, h=h, axis=RIGHT);
//
// Example(NORENDER): Spherical Shape
// geom = _attach_geom(r=r);
//
// Example(NORENDER): Ovoid Shape
// geom = _attach_geom(r=[r_x, r_y, r_z]);
//
// Example(NORENDER): Arbitrary VNF Shape, Anchored by Extents
// geom = _attach_geom(vnf=vnf);
//
// Example(NORENDER): Arbitrary VNF Shape, Anchored by Intersection
// geom = _attach_geom(vnf=vnf, extent=false);
//
// Example(NORENDER): 2D Rectangular Shape
// geom = _attach_geom(two_d=true, size=size);
//
// Example(NORENDER): 2D Trapezoidal Shape
// geom = _attach_geom(two_d=true, size=[x1,y], size2=x2, shift=shift);
//
// Example(NORENDER): 2D Circular Shape
// geom = _attach_geom(two_d=true, r=r);
//
// Example(NORENDER): 2D Oval Shape
// geom = _attach_geom(two_d=true, r=[r_x, r_y]);
//
// Example(NORENDER): Arbitrary 2D Region Shape, Anchored by Extents
// geom = _attach_geom(two_d=true, region=region);
//
// Example(NORENDER): Arbitrary 2D Region Shape, Anchored by Intersection
// geom = _attach_geom(two_d=true, region=region, extent=false);
//
// Example(NORENDER): Extruded Region, Anchored by Extents
// geom = _attach_geom(region=region, l=height);
//
// Example(NORENDER): Extruded Region, Anchored by Intersection
// geom = _attach_geom(region=region, l=length, extent=false);
//
function _attach_geom(
size, size2, shift,
r,r1,r2, d,d1,d2, l,h,
vnf, region,
extent=true,
cp=[0,0,0],
offset=[0,0,0],
anchors=[],
two_d=false,
axis=UP
) =
assert(is_bool(extent))
assert(is_vector(cp) || is_string(cp))
assert(is_vector(offset))
assert(is_list(anchors))
assert(is_bool(two_d))
assert(is_vector(axis))
!is_undef(size)? (
two_d? (
let(
size2 = default(size2, size.x),
shift = default(shift, 0)
)
assert(is_vector(size,2))
assert(is_num(size2))
assert(is_num(shift))
["rect", point2d(size), size2, shift, cp, offset, anchors]
) : (
let(
size2 = default(size2, point2d(size)),
shift = default(shift, [0,0])
)
assert(is_vector(size,3))
assert(is_vector(size2,2))
assert(is_vector(shift,2))
["cuboid", size, size2, shift, axis, cp, offset, anchors]
)
) : !is_undef(vnf)? (
assert(is_vnf(vnf))
assert(two_d == false)
extent? ["vnf_extent", vnf, cp, offset, anchors] :
["vnf_isect", vnf, cp, offset, anchors]
) : !is_undef(region)? (
assert(is_region(region),2)
let( l = default(l, h) )
two_d==true
? assert(is_undef(l))
extent==true
? ["rgn_extent", region, cp, offset, anchors]
: ["rgn_isect", region, cp, offset, anchors]
: assert(is_finite(l))
extent==true
? ["xrgn_extent", region, l, cp, offset, anchors]
: ["xrgn_isect", region, l, cp, offset, anchors]
) :
let(
r1 = get_radius(r1=r1,d1=d1,r=r,d=d,dflt=undef)
)
!is_undef(r1)? (
let( l = default(l, h) )
!is_undef(l)? (
let(
shift = default(shift, [0,0]),
r2 = get_radius(r1=r2,d1=d2,r=r,d=d,dflt=undef)
)
assert(is_num(r1) || is_vector(r1,2))
assert(is_num(r2) || is_vector(r2,2))
assert(is_num(l))
assert(is_vector(shift,2))
["cyl", r1, r2, l, shift, axis, cp, offset, anchors]
) : (
two_d? (
assert(is_num(r1) || is_vector(r1,2))
["circle", r1, cp, offset, anchors]
) : (
assert(is_num(r1) || is_vector(r1,3))
["spheroid", r1, cp, offset, anchors]
)
)
) :
assert(false, "Unrecognizable geometry description.");
/// Internal Function: _attach_geom_2d()
// Usage:
// bool = _attach_geom_2d(geom);
/// Topics: Attachments
/// See Also: reorient(), attachable()
// Description:
// Returns true if the given attachment geometry description is for a 2D shape.
function _attach_geom_2d(geom) =
let( type = geom[0] )
type == "rect" || type == "circle" ||
type == "rgn_isect" || type == "rgn_extent";
/// Internal Function: _attach_geom_size()
// Usage:
// bounds = _attach_geom_size(geom);
/// Topics: Attachments
/// See Also: reorient(), attachable()
// Description:
// Returns the `[X,Y,Z]` bounding size for the given attachment geometry description.
function _attach_geom_size(geom) =
let( type = geom[0] )
type == "cuboid"? ( //size, size2, shift
let(
size=geom[1], size2=geom[2], shift=point2d(geom[3]),
maxx = max(size.x,size2.x),
maxy = max(size.y,size2.y),
z = size.z
) [maxx, maxy, z]
) : type == "cyl"? ( //r1, r2, l, shift
let(
r1=geom[1], r2=geom[2], l=geom[3],
shift=point2d(geom[4]), axis=point3d(geom[5]),
rx1 = default(r1[0],r1),
ry1 = default(r1[1],r1),
rx2 = default(r2[0],r2),
ry2 = default(r2[1],r2),
maxxr = max(rx1,rx2),
maxyr = max(ry1,ry2)
)
approx(axis,UP)? [2*maxxr,2*maxyr,l] :
approx(axis,RIGHT)? [l,2*maxyr,2*maxxr] :
approx(axis,BACK)? [2*maxxr,l,2*maxyr] :
[2*maxxr, 2*maxyr, l]
) : type == "spheroid"? ( //r
let( r=geom[1] )
is_num(r)? [2,2,2]*r : v_mul([2,2,2],point3d(r))
) : type == "vnf_extent" || type=="vnf_isect"? ( //vnf
let(
vnf = geom[1]
) vnf==EMPTY_VNF? [0,0,0] :
let(
mm = pointlist_bounds(geom[1][0]),
delt = mm[1]-mm[0]
) delt
) : type == "xrgn_isect" || type == "xrgn_extent"? ( //path, l
let(
mm = pointlist_bounds(flatten(geom[1])),
delt = mm[1]-mm[0]
) [delt.x, delt.y, geom[2]]
) : type == "rect"? ( //size, size2
let(
size=geom[1], size2=geom[2], shift=geom[3],
maxx = max(size.x,size2+abs(shift))
) [maxx, size.y]
) : type == "circle"? ( //r
let( r=geom[1] )
is_num(r)? [2,2]*r : v_mul([2,2],point2d(r))
) : type == "rgn_isect" || type == "rgn_extent"? ( //path
let(
mm = pointlist_bounds(flatten(geom[1])),
delt = mm[1]-mm[0]
) [delt.x, delt.y]
) :
assert(false, "Unknown attachment geometry type.");
/// Internal Function: _attach_transform()
// Usage: To Get a Transformation Matrix
// mat = _attach_transform(anchor, spin, orient, geom);
// Usage: To Transform Points, Paths, Patches, or VNFs
// new_p = _attach_transform(anchor, spin, orient, geom, p);
/// Topics: Attachments
/// See Also: reorient(), attachable()
// Description:
// Returns the affine3d transformation matrix needed to `anchor`, `spin`, and `orient`
// the given geometry `geom` shape into position.
// Arguments:
// anchor = Anchor point to translate to the origin `[0,0,0]`. See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// geom = The geometry description of the shape.
// p = If given as a VNF, path, or point, applies the affine3d transformation matrix to it and returns the result.
function _attach_transform(anchor, spin, orient, geom, p) =
assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor))
assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin))
assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient))
let(
anchor = default(anchor, CENTER),
spin = default(spin, 0),
orient = default(orient, UP),
two_d = _attach_geom_2d(geom),
m = ($attach_to != undef)? (
let(
anch = _find_anchor($attach_to, geom),
pos = anch[1]
) two_d? (
assert(two_d && is_num(spin))
affine3d_zrot(spin) *
rot(to=FWD, from=point3d(anch[2])) *
affine3d_translate(point3d(-pos))
) : (
assert(is_num(spin) || is_vector(spin,3))
let(
ang = vector_angle(anch[2], DOWN),
axis = vector_axis(anch[2], DOWN),
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3],
axis2 = rot(p=axis,[0,0,ang2])
)
affine3d_rot_by_axis(axis2,ang) * (
is_num(spin)? affine3d_zrot(ang2+spin) : (
affine3d_zrot(spin.z) *
affine3d_yrot(spin.y) *
affine3d_xrot(spin.x) *
affine3d_zrot(ang2)
)
) * affine3d_translate(point3d(-pos))
)
) : (
let(
pos = _find_anchor(anchor, geom)[1]
) two_d? (
assert(two_d && is_num(spin))
affine3d_zrot(spin) *
affine3d_translate(point3d(-pos))
) : (
assert(is_num(spin) || is_vector(spin,3))
let(
axis = vector_axis(UP,orient),
ang = vector_angle(UP,orient)
)
affine3d_rot_by_axis(axis,ang) * (
is_num(spin)? affine3d_zrot(spin) : (
affine3d_zrot(spin.z) *
affine3d_yrot(spin.y) *
affine3d_xrot(spin.x)
)
) * affine3d_translate(point3d(-pos))
)
)
) is_undef(p)? m :
is_vnf(p)? [(p==EMPTY_VNF? p : apply(m, p[0])), p[1]] :
apply(m, p);
function _get_cp(geom) =
let(cp=select(geom,-3))
is_vector(cp) ? cp
: let(
type = in_list(geom[0],["vnf_extent","vnf_isect"]) ? "vnf"
: in_list(geom[0],["rgn_extent","rgn_isect"]) ? "path"
: "other"
)
assert(type!="other", "Invalid cp value")
cp=="centroid" ? centroid(geom[1])
: let(points = type=="vnf"?geom[1][0]:geom[1])
cp=="mean" ? mean(points)
: cp=="box" ? mean(pointlist_bounds(points))
: assert(false,"Invalid cp specification");
/// Internal Function: _find_anchor()
// Usage:
// anchorinfo = _find_anchor(anchor, geom);
/// Topics: Attachments
/// See Also: reorient(), attachable()
// Description:
// Calculates the anchor data for the given `anchor` vector or name, in the given attachment
// geometry. Returns `[ANCHOR, POS, VEC, ANG]` where `ANCHOR` is the requested anchorname
// or vector, `POS` is the anchor position, `VEC` is the direction vector of the anchor, and
// `ANG` is the angle to align with around the rotation axis of th anchor direction vector.
// Arguments:
// anchor = Vector or named anchor string.
// geom = The geometry description of the shape.
function _find_anchor(anchor, geom) =
let(
cp = _get_cp(geom),
offset_raw = select(geom,-2),
offset = [for (i=[0:2]) anchor[i]==0? 0 : offset_raw[i]], // prevents bad centering.
anchors = last(geom),
type = geom[0]
)
is_string(anchor)? (
anchor=="origin"? [anchor, CENTER, UP, 0]
: let(found = search([anchor], anchors, num_returns_per_match=1)[0])
assert(found!=[], str("Unknown anchor: ",anchor))
anchors[found]
) :
assert(is_vector(anchor),str("anchor=",anchor))
let(anchor = point3d(anchor))
anchor==CENTER? [anchor, cp, UP, 0] :
let(
oang = (
approx(point2d(anchor), [0,0])? 0 :
atan2(anchor.y, anchor.x)+90
)
)
type == "cuboid"? ( //size, size2, shift
let(
size=geom[1], size2=geom[2],
shift=point2d(geom[3]), axis=point3d(geom[4]),
anch = rot(from=axis, to=UP, p=anchor),
h = size.z,
u = (anch.z+1)/2, // u is one of 0, 0.5, or 1
axy = point2d(anch),
bot = point3d(v_mul(point2d(size)/2,axy),-h/2),
top = point3d(v_mul(point2d(size2)/2,axy)+shift,h/2),
pos = point3d(cp) + lerp(bot,top,u) + offset,
vecs = [
if (anchor.x!=0) unit(rot(from=UP, to=unit([(top-bot).x,0,h]), p=[axy.x,0,0]), UP),
if (anchor.y!=0) unit(rot(from=UP, to=unit([0,(top-bot).y,h]), p=[0,axy.y,0]), UP),
if (anchor.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP)
],
vec = unit(sum(vecs) / len(vecs)),
pos2 = rot(from=UP, to=axis, p=pos),
vec2 = rot(from=UP, to=axis, p=vec)
) [anchor, pos2, vec2, oang]
) : type == "cyl"? ( //r1, r2, l, shift
let(
rr1=geom[1], rr2=geom[2], l=geom[3],
shift=point2d(geom[4]), axis=point3d(geom[5]),
r1 = is_num(rr1)? [rr1,rr1] : point2d(rr1),
r2 = is_num(rr2)? [rr2,rr2] : point2d(rr2),
anch = rot(from=axis, to=UP, p=anchor),
u = (anch.z+1)/2,
axy = unit(point2d(anch),[0,0]),
bot = point3d(v_mul(r1,axy), -l/2),
top = point3d(v_mul(r2,axy)+shift, l/2),
pos = point3d(cp) + lerp(bot,top,u) + offset,
sidevec = rot(from=UP, to=top-bot, p=point3d(axy)),
vvec = anch==CENTER? UP : unit([0,0,anch.z],UP),
vec = anch==CENTER? UP :
approx(axy,[0,0])? unit(anch,UP) :
approx(anch.z,0)? sidevec :
unit((sidevec+vvec)/2,UP),
pos2 = rot(from=UP, to=axis, p=pos),
vec2 = rot(from=UP, to=axis, p=vec)
) [anchor, pos2, vec2, oang]
) : type == "spheroid"? ( //r
let(
rr = geom[1],
r = is_num(rr)? [rr,rr,rr] : point3d(rr),
anchor = unit(point3d(anchor),CENTER),
pos = point3d(cp) + v_mul(r,anchor) + point3d(offset),
vec = unit(v_mul(r,anchor),UP)
) [anchor, pos, vec, oang]
) : type == "vnf_isect"? ( //vnf
let(
vnf=geom[1]
) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] :
let(
eps = 1/2048,
points = vnf[0],
faces = vnf[1],
rpts = apply(rot(from=anchor, to=RIGHT) * move(-cp), points),
hits = [
for (face = faces)
let(
verts = select(rpts, face),
ys = columns(verts,1),
zs = columns(verts,2)
)
if (max(ys) >= -eps && max(zs) >= -eps &&
min(ys) <= eps && min(zs) <= eps)
let(
poly = select(points, face),
isect = polygon_line_intersection(poly, [cp,cp+anchor], eps=eps),
ptlist = is_undef(isect) ? [] :
is_vector(isect) ? [isect]
: flatten(isect), // parallel to a face
n = len(ptlist)>0 ? polygon_normal(poly) : undef
)
for(pt=ptlist) [anchor * (pt-cp), n, pt]
]
)
assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.")
let(
furthest = max_index(columns(hits,0)),
dist = hits[furthest][0],
pos = hits[furthest][2],
hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]],
unorms = [
for (i = idx(hitnorms))
let(
thisnorm = hitnorms[i],
isdup = [
for (j = [i+1:1:len(hitnorms)-1])
if (approx(thisnorm, hitnorms[j])) 1
] != []
)
if (!isdup) thisnorm
],
n = unit(sum(unorms)),
oang = approx(point2d(n), [0,0])? 0 : atan2(n.y, n.x) + 90
)
[anchor, pos, n, oang]
) : type == "vnf_extent"? ( //vnf
let(
vnf=geom[1]
) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] :
let(
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]),
maxx = max(columns(rpts,0)),
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
avep = sum(select(rpts,idxs))/len(idxs),
mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep,
pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt)
) [anchor, pos, anchor, oang]
) : type == "rect"? ( //size, size2, shift
let(
size=geom[1], size2=geom[2], shift=geom[3],
u = (anchor.y+1)/2, // 0<=u<=1
frpt = [size.x/2*anchor.x, -size.y/2],
bkpt = [size2/2*anchor.x+shift, size.y/2],
pos = point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset),
svec = point3d(line_normal(bkpt,frpt)*anchor.x),
vec = anchor.y < 0? (
anchor.x == 0? FWD :
size.x == 0? unit(-[shift,size.y], FWD) :
unit((point3d(svec) + FWD) / 2, FWD)
) :
anchor.y == 0? ( anchor.x == 0? BACK : svec ) :
( // anchor.y > 0
anchor.x == 0? BACK :
size2 == 0? unit([shift,size.y], BACK) :
unit((point3d(svec) + BACK) / 2, BACK)
)
) [anchor, pos, vec, 0]
) : type == "circle"? ( //r
let(
rr = geom[1],
r = is_num(rr)? [rr,rr] : point2d(rr),
anchor = unit(point2d(anchor),[0,0]),
pos = point2d(cp) + v_mul(r,anchor) + point2d(offset),
vec = unit(v_mul(r,anchor),[0,1])
) [anchor, pos, vec, 0]
) : type == "rgn_isect"? ( //region
let(
rgn_raw = move(-point2d(cp), p=geom[1]),
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point2d(anchor),
isects = [
for (path=rgn, t=triplet(path,true)) let(
seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]],
isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT),
n = is_undef(isect)? [0,1] :
!approx(isect, t[1])? line_normal(seg1) :
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
n2 = vector_angle(anchor,n)>90? -n : n
)
if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2]
],
maxidx = max_index(columns(isects,0)),
isect = isects[maxidx],
pos = point2d(cp) + isect[1],
vec = unit(isect[2],[0,1])
) [anchor, pos, vec, 0]
) : type == "rgn_extent"? ( //region
let(
rgn_raw = geom[1],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point2d(anchor),
m = rot(from=anchor, to=RIGHT) * move(-[cp.x, cp.y, 0]),
rpts = apply(m, flatten(rgn)),
maxx = max(columns(rpts,0)),
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
miny = min([for (i=idxs) rpts[i].y]),
maxy = max([for (i=idxs) rpts[i].y]),
midy = (miny+maxy)/2,
pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,midy])
) [anchor, pos, anchor, 0]
) : type == "xrgn_isect"? ( //region
let(
rgn_raw = move(-point2d(cp), p=geom[1]),
l = geom[2],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point3d(anchor),
xyanch = point2d(anchor)
) approx(xyanch,[0,0])? [anchor, [0,0,anchor.z*l/2], unit(anchor,UP), 0] :
let(
isects = [
for (path=rgn, t=triplet(path,true)) let(
seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]],
isect = line_intersection([[0,0],xyanch], seg1, RAY, SEGMENT),
n = is_undef(isect)? [0,1] :
!approx(isect, t[1])? line_normal(seg1) :
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
n2 = vector_angle(xyanch,n)>90? -n : n
)
if(!is_undef(isect) && !approx(isect,t[0]))
[norm(isect), isect, n2]
],
maxidx = max_index(columns(isects,0)),
isect = isects[maxidx],
pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2,
xyvec = unit(isect[2],[0,1]),
vec = unit((point3d(xyvec)+UP*anchor.z)/2,UP),
oang = approx(xyvec, [0,0])? 0 : atan2(xyvec.y, xyvec.x) + 90
) [anchor, pos, vec, oang]
) : type == "xrgn_extent"? ( //region
let(
rgn_raw = geom[1], l = geom[2],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point3d(anchor),
xyanch = point2d(anchor),
m = (
approx(xyanch,[0,0])? [[1,0,0],[0,1,0],[0,0,1]] :
rot(from=xyanch, to=RIGHT, planar=true)
) * move(-[cp.x, cp.y]),
rpts = apply(m, flatten(rgn)),
maxx = max(columns(rpts,0)),
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
ys = [for (i=idxs) rpts[i].y],
midy = (min(ys)+max(ys))/2,
xypos = point2d(cp) + (
approx(xyanch,[0,0])? [0,0] :
rot(from=RIGHT, to=xyanch, p=[maxx,midy])
),
pos = point3d(xypos) + unit([0,0,anchor.z],CENTER)*l/2,
vec = unit((point3d(xyanch)+UP*anchor.z)/2,UP)
) [anchor, pos, vec, oang]
) :
assert(false, "Unknown attachment geometry type.");
/// Internal Function: _attachment_is_shown()
// Usage:
// bool = _attachment_is_shown(tags);
/// Topics: Attachments
/// See Also: reorient(), attachable()
// Description:
// Returns true if shapes tagged with any of the given space-delimited string of tag names should currently be shown.
function _attachment_is_shown(tags) =
assert(!is_undef($tags_shown))
assert(!is_undef($tags_hidden))
let(
tags = str_split(tags, " "),
shown = !$tags_shown || any([for (tag=tags) in_list(tag, $tags_shown)]),
hidden = any([for (tag=tags) in_list(tag, $tags_hidden)])
) shown && !hidden;
// Section: Visualizing Anchors
/// Internal Function: _standard_anchors()
/// Usage:
/// anchs = _standard_anchors([two_d]);
/// Description:
/// Return the vectors for all standard anchors.
/// Arguments:
/// two_d = If true, returns only the anchors where the Z component is 0. Default: false
function _standard_anchors(two_d=false) = [
for (
zv = [
if (!two_d) TOP,
CENTER,
if (!two_d) BOTTOM
],
yv = [FRONT, CENTER, BACK],
xv = [LEFT, CENTER, RIGHT]
) xv+yv+zv
];
// Module: show_anchors()
// Usage:
// ... show_anchors([s], [std=], [custom=]);
// Description:
// Show all standard anchors for the parent object.
// Arguments:
// s = Length of anchor arrows.
// ---
// std = If true (default), show standard anchors.
// custom = If true (default), show custom anchors.
// Example(FlatSpin,VPD=333):
// cube(50, center=true) show_anchors();
module show_anchors(s=10, std=true, custom=true) {
check = assert($parent_geom != undef) 1;
two_d = _attach_geom_2d($parent_geom);
if (std) {
for (anchor=_standard_anchors(two_d=two_d)) {
if(two_d) {
attach(anchor) anchor_arrow2d(s);
} else {
attach(anchor) anchor_arrow(s);
}
}
}
if (custom) {
for (anchor=last($parent_geom)) {
attach(anchor[0]) {
if(two_d) {
anchor_arrow2d(s, color="cyan");
} else {
anchor_arrow(s, color="cyan");
}
color("black")
noop($tags="anchor-arrow") {
xrot(two_d? 0 : 90) {
back(s/3) {
yrot_copies(n=2)
up(s/30) {
linear_extrude(height=0.01, convexity=12, center=true) {
text(text=anchor[0], size=s/4, halign="center", valign="center");
}
}
}
}
}
color([1, 1, 1, 0.4])
noop($tags="anchor-arrow") {
xrot(two_d? 0 : 90) {
back(s/3) {
zcopies(s/21) cube([s/4.5*len(anchor[0]), s/3, 0.01], center=true);
}
}
}
}
}
}
children();
}
// Module: anchor_arrow()
// Usage:
// anchor_arrow([s], [color], [flag]);
// Description:
// Show an anchor orientation arrow. By default, tagged with the name "anchor-arrow".
// Arguments:
// s = Length of the arrows. Default: `10`
// color = Color of the arrow. Default: `[0.333, 0.333, 1]`
// flag = If true, draw the orientation flag on the arrowhead. Default: true
// Example:
// anchor_arrow(s=20);
module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tags="anchor-arrow") {
$fn=12;
recolor("gray") spheroid(d=s/6) {
attach(CENTER,BOT) recolor(color) cyl(h=s*2/3, d=s/15) {
attach(TOP,BOT) cyl(h=s/3, d1=s/5, d2=0) {
if(flag) {
position(BOT)
recolor([1,0.5,0.5])
cuboid([s/100, s/6, s/4], anchor=FRONT+BOT);
}
children();
}
}
}
}
// Module: anchor_arrow2d()
// Usage:
// anchor_arrow2d([s], [color], [flag]);
// Description:
// Show an anchor orientation arrow.
// Arguments:
// s = Length of the arrows.
// color = Color of the arrow.
// Example:
// anchor_arrow2d(s=20);
module anchor_arrow2d(s=15, color=[0.333,0.333,1], $tags="anchor-arrow") {
noop() color(color) stroke([[0,0],[0,s]], width=s/10, endcap1="butt", endcap2="arrow2");
}
// Module: expose_anchors()
// Usage:
// expose_anchors(opacity) {child1() show_anchors(); child2() show_anchors(); ...}
// Description:
// Used in combination with show_anchors() to display an object in transparent gray with its anchors in solid color.
// Children will appear transparent and any anchor arrows drawn with will appear in solid color.
// Arguments:
// opacity = The opacity of the children. 0.0 is invisible, 1.0 is opaque. Default: 0.2
// Example(FlatSpin,VPD=333):
// expose_anchors() cube(50, center=true) show_anchors();
module expose_anchors(opacity=0.2) {
show("anchor-arrow")
children();
hide("anchor-arrow")
color(is_undef($color)? [0,0,0] :
is_string($color)? $color :
point3d($color), opacity)
children();
}
// Module: frame_ref()
// Usage:
// frame_ref(s, opacity);
// Description:
// Displays X,Y,Z axis arrows in red, green, and blue respectively.
// Arguments:
// s = Length of the arrows.
// opacity = The opacity of the arrows. 0.0 is invisible, 1.0 is opaque. Default: 1.0
// Examples:
// frame_ref(25);
// frame_ref(30, opacity=0.5);
module frame_ref(s=15, opacity=1) {
cube(0.01, center=true) {
attach([1,0,0]) anchor_arrow(s=s, flag=false, color=[1.0, 0.3, 0.3, opacity]);
attach([0,1,0]) anchor_arrow(s=s, flag=false, color=[0.3, 1.0, 0.3, opacity]);
attach([0,0,1]) anchor_arrow(s=s, flag=false, color=[0.3, 0.3, 1.0, opacity]);
children();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap