mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
379 lines
13 KiB
OpenSCAD
379 lines
13 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// Math helper functions.
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
BSD 2-Clause License
|
|
|
|
Copyright (c) 2017, Revar Desmera
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
function Cpi() = PI; // Deprecated! Use the variable PI instead.
|
|
|
|
|
|
// Quantize a value x to an integer multiple of y, rounding to the nearest multiple.
|
|
function quant(x,y) = floor(x/y+0.5)*y;
|
|
|
|
|
|
// Quantize a value x to an integer multiple of y, rounding down to the previous multiple.
|
|
function quantdn(x,y) = floor(x/y)*y;
|
|
|
|
|
|
// Quantize a value x to an integer multiple of y, rounding up to the next multiple.
|
|
function quantup(x,y) = ceil(x/y)*y;
|
|
|
|
|
|
// Calculate OpenSCAD standard number of segments in a circle based on $fn, $fa, and $fs.
|
|
// r = radius of circle to get the number of segments for.
|
|
function segs(r) = $fn>0?($fn>3?$fn:3):(ceil(max(min(360.0/$fa,abs(r)*2*PI/$fs),5)));
|
|
|
|
|
|
// Interpolate between two values or vectors. 0.0 <= u <= 1.0
|
|
function lerp(a,b,u) = (1-u)*a + u*b;
|
|
|
|
|
|
// Calculate hypotenuse length of 2D triangle.
|
|
function hypot(x,y) = sqrt(x*x+y*y);
|
|
|
|
|
|
// Calculate hypotenuse length of 3D triangle.
|
|
function hypot3(x,y,z) = sqrt(x*x+y*y+z*z);
|
|
|
|
|
|
// Returns all but the first item of a given array.
|
|
function cdr(list) = len(list)>1?[for (i=[1:len(list)-1]) list[i]]:[];
|
|
|
|
|
|
// Reverses a list/array.
|
|
function reverse(list) = [ for (i = [len(list)-1 : -1 : 0]) list[i] ];
|
|
|
|
|
|
// Returns a slice of the given array, wrapping around past the beginning, if end < start
|
|
function wrap_range(list, start, end) =
|
|
let(
|
|
l = len(list),
|
|
st = start<0? (start%l)+l : (start%l),
|
|
en = end<0? (end%l)+l : (end%l)
|
|
)
|
|
(en<st)?
|
|
concat(
|
|
[for (i=[st:l-1]) list[i]],
|
|
[for (i=[0:en]) list[i]]
|
|
)
|
|
:
|
|
[for (i=[st:en]) list[i]]
|
|
;
|
|
|
|
|
|
// Takes an array of arrays and flattens it by one level.
|
|
// flatten([[1,2,3], [4,5,[6,7,8]]]) returns [1,2,3,4,5,[6,7,8]]
|
|
function flatten(l) = [ for (a = l) for (b = a) b ];
|
|
|
|
|
|
// Returns the sum of all entries in the given array.
|
|
// If passed an array of vectors, returns a vector of sums of each part.
|
|
// sum([1,2,3]) returns 6.
|
|
// sum([[1,2,3], [3,4,5], [5,6,7]]) returns [9, 12, 15]
|
|
function sum(v, i=0) = i<len(v)-1 ? v[i] + sum(v, i+1) : v[i];
|
|
|
|
|
|
// Returns the sum of the square of each element of a vector.
|
|
function sum_of_squares(v,n=0) = (n>=len(v))? 0 : ((v[n]*v[n]) + sum_of_squares(v,n+1));
|
|
|
|
|
|
// Returns a 3D vector/point from a 2D or 3D vector.
|
|
function point3d(p) = [p[0], p[1], ((len(p) < 3)? 0 : p[2])];
|
|
|
|
|
|
// Returns an array of 3D vectors/points from a 2D or 3D vector array.
|
|
function path3d(points) = [for (point = points) point3d(point)];
|
|
|
|
|
|
// Returns the distance between a pair of 2D or 3D points.
|
|
function distance(p1, p2) = let(d = point3d(p2) - point3d(p1)) hypot3(d[0], d[1], d[2]);
|
|
|
|
|
|
// Create an identity matrix, for a given number of axes.
|
|
function ident(n) = [for (i = [0:n-1]) [for (j = [0:n-1]) (i==j)?1:0]];
|
|
|
|
|
|
// Create an identity matrix, for 3 axes.
|
|
ident3 = ident(3);
|
|
ident4 = ident(4);
|
|
|
|
|
|
// Takes a 3x3 matrix and returns its 4x4 equivalent.
|
|
function mat3_to_mat4(m) = concat(
|
|
[for (r = [0:2])
|
|
concat(
|
|
[for (c = [0:2]) m[r][c]],
|
|
[0]
|
|
)
|
|
],
|
|
[[0, 0, 0, 1]]
|
|
);
|
|
|
|
|
|
// Returns the 3x3 matrix to perform a rotation of a vector around the X axis.
|
|
// ang = number of degrees to rotate.
|
|
function matrix3_xrot(ang) = [
|
|
[1, 0, 0],
|
|
[0, cos(ang), -sin(ang)],
|
|
[0, sin(ang), cos(ang)]
|
|
];
|
|
|
|
|
|
// Returns the 4x4 matrix to perform a rotation of a vector around the X axis.
|
|
// ang = number of degrees to rotate.
|
|
function matrix4_xrot(ang) = mat3_to_mat4(matrix3_xrot(ang));
|
|
|
|
|
|
// Returns the 3x3 matrix to perform a rotation of a vector around the Y axis.
|
|
// ang = number of degrees to rotate.
|
|
function matrix3_yrot(ang) = [
|
|
[ cos(ang), 0, sin(ang)],
|
|
[ 0, 1, 0],
|
|
[-sin(ang), 0, cos(ang)],
|
|
];
|
|
|
|
|
|
// Returns the 4x4 matrix to perform a rotation of a vector around the Y axis.
|
|
// ang = number of degrees to rotate.
|
|
function matrix4_yrot(ang) = mat3_to_mat4(matrix3_yrot(ang));
|
|
|
|
|
|
// Returns the 3x3 matrix to perform a rotation of a vector around the Z axis.
|
|
// ang = number of degrees to rotate.
|
|
function matrix3_zrot(ang) = [
|
|
[cos(ang), -sin(ang), 0],
|
|
[sin(ang), cos(ang), 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
// Returns the 4x4 matrix to perform a rotation of a vector around the Z axis.
|
|
// ang = number of degrees to rotate.
|
|
function matrix4_zrot(ang) = mat3_to_mat4(matrix3_zrot(ang));
|
|
|
|
|
|
// Returns the 3x3 matrix to perform a rotation of a vector around an axis.
|
|
// u = axis vector to rotate around.
|
|
// ang = number of degrees to rotate.
|
|
function matrix3_rot_by_axis(u, ang) = let(
|
|
u = normalize(u),
|
|
c = cos(ang),
|
|
c2 = 1-c, s = sin(ang)
|
|
) [
|
|
[u[0]*u[0]*c2+c, u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s],
|
|
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c, u[1]*u[2]*c2-u[0]*s],
|
|
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c ]
|
|
];
|
|
|
|
|
|
// Returns the 4x4 matrix to perform a rotation of a vector around an axis.
|
|
// u = axis vector to rotate around.
|
|
// ang = number of degrees to rotate.
|
|
function matrix4_rot_by_axis(u, ang) = mat3_to_mat4(matrix3_rot_by_axis(u, ang));
|
|
|
|
|
|
// moves each point in an array by a given amount.
|
|
function translate_points(pts, v=[0,0,0]) = [for (pt = pts) pt+v];
|
|
|
|
|
|
// Scales each point in an array by a given amount, around a given centerpoint.
|
|
function scale_points(pts, v=[0,0,0], cp=[0,0,0]) = [for (pt = pts) [for (i = [0:len(pt)-1]) (pt[i]-cp[i])*v[i]+cp[i]]];
|
|
|
|
|
|
// Rotates each 2D point in an array by a given amount, around a given centerpoint.
|
|
function rotate_points2d(pts, ang, cp=[0,0]) = let(
|
|
m = matrix3_zrot(ang)
|
|
) [for (pt = pts) m*point3d(pt-cp)+cp];
|
|
|
|
|
|
// Rotates each 3D point in an array by a given amount, around a given centerpoint.
|
|
function rotate_points3d(pts, v=[0,0,0], cp=[0,0,0]) = let(
|
|
m = matrix4_zrot(v[2]) * matrix4_yrot(v[1]) * matrix4_xrot(v[0])
|
|
) [for (pt = pts) m*concat(point3d(pt)-cp, 0)+cp];
|
|
|
|
|
|
// Rotates each 3D point in an array by a given amount, around a given centerpoint and axis.
|
|
function rotate_points3d_around_axis(pts, ang, u=[0,0,0], cp=[0,0,0]) = let(
|
|
m = matrix4_rot_by_axis(u, ang)
|
|
) [for (pt = pts) m*concat(point3d(pt)-cp, 0)+cp];
|
|
|
|
|
|
// Gives the sum of a series of sines, at a given angle.
|
|
// a = angle to get the value for.
|
|
// sines = array of [amplitude, frequency] pairs, where the frequency is the
|
|
// number of times the cycle repeats around the circle.
|
|
function sum_of_sines(a,sines) = len(sines)==0? 0 :
|
|
len(sines)==1?sines[0][0]*sin(a*sines[0][1]+(len(sines[0])>2?sines[0][2]:0)):
|
|
sum_of_sines(a,[sines[0]])+sum_of_sines(a,cdr(sines));
|
|
|
|
|
|
// Constrains value to a range of values between minval and maxval, inclusive.
|
|
// v = value to constrain.
|
|
// minval = minimum value to return, if out of range.
|
|
// maxval = maximum value to return, if out of range.
|
|
function constrain(v, minval, maxval) = min(maxval, max(minval, v));
|
|
|
|
// Returns unit length normalized version of vector v.
|
|
function normalize(v) = v/norm(v);
|
|
|
|
// Returns angle in degrees between two 2D vectors.
|
|
function vector2d_angle(v1,v2) = atan2(v1[1],v1[0]) - atan2(v2[1],v2[0]);
|
|
|
|
// Returns angle in degrees between two 3D vectors.
|
|
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
|
function vector3d_angle(v1,v2) = acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1));
|
|
|
|
|
|
// Convert polar coordinates to cartesian coordinates.
|
|
// Returns [X,Y] cartesian coordinates.
|
|
// r = distance from the origin.
|
|
// theta = angle in degrees, counter-clockwise of X+.
|
|
// Examples:
|
|
// xy = polar_to_xy(20,30);
|
|
// xy = polar_to_xy([40,60]);
|
|
function polar_to_xy(r,theta=undef) = let(
|
|
rad = theta==undef? r[0] : r,
|
|
t = theta==undef? r[1] : theta
|
|
) rad*[cos(t), sin(t)];
|
|
|
|
|
|
// Convert cartesian coordinates to polar coordinates.
|
|
// Returns [radius, theta] where theta is the angle counter-clockwise of X+.
|
|
// x = X coordinate.
|
|
// y = Y coordinate.
|
|
// Examples:
|
|
// plr = xy_to_polar(20,30);
|
|
// plr = xy_to_polar([40,60]);
|
|
function xy_to_polar(x,y=undef) = let(
|
|
xx = y==undef? x[0] : x,
|
|
yy = y==undef? x[1] : y
|
|
) [norm([xx,yy]), atan2(yy,xx)];
|
|
|
|
|
|
// Convert cylindrical coordinates to cartesian coordinates.
|
|
// Returns [X,Y,Z] cartesian coordinates.
|
|
// r = distance from the Z axis.
|
|
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
|
|
// z = Height above XY plane.
|
|
// Examples:
|
|
// xyz = cylindrical_to_xyz(20,30,40);
|
|
// xyz = cylindrical_to_xyz([40,60,50]);
|
|
function cylindrical_to_xyz(r,theta=undef,z=undef) = let(
|
|
rad = theta==undef? r[0] : r,
|
|
t = theta==undef? r[1] : theta,
|
|
zed = theta==undef? r[2] : z
|
|
) [rad*cos(t), rad*sin(t), zed];
|
|
|
|
|
|
// Convert cartesian coordinates to cylindrical coordinates.
|
|
// Returns [radius,theta,Z]. Theta is the angle counter-clockwise
|
|
// of X+ on the XY plane. Z is height above the XY plane.
|
|
// x = X coordinate.
|
|
// y = Y coordinate.
|
|
// z = Z coordinate.
|
|
// Examples:
|
|
// cyl = xyz_to_cylindrical(20,30,40);
|
|
// cyl = xyz_to_cylindrical([40,50,70]);
|
|
function xyz_to_cylindrical(x,y=undef,z=undef) = let(
|
|
xx = y==undef? x[0] : x,
|
|
yy = y==undef? x[1] : y,
|
|
zz = y==undef? x[2] : z
|
|
) [norm([xx,yy]), atan2(yy,xx), zz];
|
|
|
|
|
|
// Convert spherical coordinates to cartesian coordinates.
|
|
// Returns [X,Y,Z] cartesian coordinates.
|
|
// r = distance from origin.
|
|
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
|
|
// phi = angle in degrees from the vertical Z+ axis.
|
|
// Examples:
|
|
// xyz = spherical_to_xyz(20,30,40);
|
|
// xyz = spherical_to_xyz([40,60,50]);
|
|
function spherical_to_xyz(r,theta=undef,phi=undef) = let(
|
|
rad = theta==undef? r[0] : r,
|
|
t = theta==undef? r[1] : theta,
|
|
p = theta==undef? r[2] : phi
|
|
) rad*[sin(p)*cos(t), sin(p)*sin(t), cos(p)];
|
|
|
|
|
|
// Convert cartesian coordinates to spherical coordinates.
|
|
// Returns [r,theta,phi], where phi is the angle from the Z+ pole,
|
|
// and theta is degrees counter-clockwise of X+ on the XY plane.
|
|
// x = X coordinate.
|
|
// y = Y coordinate.
|
|
// z = Z coordinate.
|
|
// Examples:
|
|
// sph = xyz_to_spherical(20,30,40);
|
|
// sph = xyz_to_spherical([40,50,70]);
|
|
function xyz_to_spherical(x,y=undef,z=undef) = let(
|
|
xx = y==undef? x[0] : x,
|
|
yy = y==undef? x[1] : y,
|
|
zz = y==undef? x[2] : z
|
|
) [norm([xx,yy,zz]), atan2(yy,xx), atan2(norm([xx,yy]),zz)];
|
|
|
|
|
|
// Convert altitude/azimuth/range coordinates to cartesian coordinates.
|
|
// Returns [X,Y,Z] cartesian coordinates.
|
|
// alt = altitude angle in degrees above the XY plane.
|
|
// az = azimuth angle in degrees clockwise of Y+ on the XY plane.
|
|
// r = distance from origin.
|
|
// Examples:
|
|
// xyz = altaz_to_xyz(20,30,40);
|
|
// xyz = altaz_to_xyz([40,60,50]);
|
|
function altaz_to_xyz(alt,az=undef,r=undef) = let(
|
|
p = az==undef? alt[0] : alt,
|
|
t = 90 - (az==undef? alt[1] : az),
|
|
rad = az==undef? alt[2] : r
|
|
) rad*[cos(p)*cos(t), cos(p)*sin(t), sin(p)];
|
|
|
|
// Convert cartesian coordinates to altitude/azimuth/range coordinates.
|
|
// Returns [altitude,azimuth,range], where altitude is angle above the
|
|
// XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and
|
|
// range is the distance from the origin.
|
|
// x = X coordinate.
|
|
// y = Y coordinate.
|
|
// z = Z coordinate.
|
|
// Examples:
|
|
// aa = xyz_to_altaz(20,30,40);
|
|
// aa = xyz_to_altaz([40,50,70]);
|
|
function xyz_to_altaz(x,y=undef,z=undef) = let(
|
|
xx = y==undef? x[0] : x,
|
|
yy = y==undef? x[1] : y,
|
|
zz = y==undef? x[2] : z
|
|
) [atan2(zz,norm([xx,yy])), atan2(xx,yy), norm([xx,yy,zz])];
|
|
|
|
|
|
// Returns a slice of an array. An index of 0 is the array start, -1 is array end
|
|
function slice(arr,st,end) = let(
|
|
s=st<0?(len(arr)+st):st,
|
|
e=end<0?(len(arr)+end+1):end
|
|
) [for (i=[s:e-1]) if (e>s) arr[i]];
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|