mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
e06519bbfb
cumsum broken in two to hide recursion args and avoid repetitive arg validations. back_substitute changed to avoid repetitive arg validations in the recursion. minor change in deriv2 and deriv3 to avoid an unecessary call to is_matrix. change in is_matrix for better performance any() and all() broken in two to avoid repetitive arg validation in the recursion and to hide recursion args. change in polymult to call convolve break of poly_div in two to avoid repetitive arg validations in the recursion.
1392 lines
No EOL
50 KiB
OpenSCAD
1392 lines
No EOL
50 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
||
// LibFile: math.scad
|
||
// Math helper functions.
|
||
// To use, add the following lines to the beginning of your file:
|
||
// ```
|
||
// use <BOSL2/std.scad>
|
||
// ```
|
||
//////////////////////////////////////////////////////////////////////
|
||
|
||
|
||
// Section: Math Constants
|
||
|
||
PHI = (1+sqrt(5))/2; // The golden ratio phi.
|
||
|
||
EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
|
||
|
||
INF = 1/0; // The value `inf`, useful for comparisons.
|
||
|
||
NAN = acos(2); // The value `nan`, useful for comparisons.
|
||
|
||
|
||
|
||
// Section: Simple math
|
||
|
||
// Function: sqr()
|
||
// Usage:
|
||
// sqr(x);
|
||
// Description:
|
||
// Returns the square of the given number or entries in list
|
||
// Examples:
|
||
// sqr(3); // Returns: 9
|
||
// sqr(-4); // Returns: 16
|
||
// sqr([3,4]); // Returns: [9,16]
|
||
// sqr([[1,2],[3,4]]); // Returns [[1,4],[9,16]]
|
||
// sqr([[1,2],3]); // Returns [[1,4],9]
|
||
function sqr(x) =
|
||
is_list(x) ? [for(val=x) sqr(val)] :
|
||
is_finite(x) ? x*x :
|
||
assert(is_finite(x) || is_vector(x), "Input is not a number nor a list of numbers.");
|
||
|
||
|
||
// Function: log2()
|
||
// Usage:
|
||
// foo = log2(x);
|
||
// Description:
|
||
// Returns the logarithm base 2 of the value given.
|
||
// Examples:
|
||
// log2(0.125); // Returns: -3
|
||
// log2(16); // Returns: 4
|
||
// log2(256); // Returns: 8
|
||
function log2(x) =
|
||
assert( is_finite(x), "Input is not a number.")
|
||
ln(x)/ln(2);
|
||
|
||
// this may return NAN or INF; should it check x>0 ?
|
||
|
||
// Function: hypot()
|
||
// Usage:
|
||
// l = hypot(x,y,[z]);
|
||
// Description:
|
||
// Calculate hypotenuse length of a 2D or 3D triangle.
|
||
// Arguments:
|
||
// x = Length on the X axis.
|
||
// y = Length on the Y axis.
|
||
// z = Length on the Z axis. Optional.
|
||
// Example:
|
||
// l = hypot(3,4); // Returns: 5
|
||
// l = hypot(3,4,5); // Returns: ~7.0710678119
|
||
function hypot(x,y,z=0) =
|
||
assert( is_vector([x,y,z]), "Improper number(s).")
|
||
norm([x,y,z]);
|
||
|
||
|
||
// Function: factorial()
|
||
// Usage:
|
||
// x = factorial(n,[d]);
|
||
// Description:
|
||
// Returns the factorial of the given integer value, or n!/d! if d is given.
|
||
// Arguments:
|
||
// n = The integer number to get the factorial of. (n!)
|
||
// d = If given, the returned value will be (n! / d!)
|
||
// Example:
|
||
// x = factorial(4); // Returns: 24
|
||
// y = factorial(6); // Returns: 720
|
||
// z = factorial(9); // Returns: 362880
|
||
function factorial(n,d=0) =
|
||
assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers")
|
||
assert(d<=n, "d cannot be larger than n")
|
||
product([1,for (i=[n:-1:d+1]) i]);
|
||
|
||
|
||
// Function: binomial()
|
||
// Usage:
|
||
// x = binomial(n);
|
||
// Description:
|
||
// Returns the binomial coefficients of the integer `n`.
|
||
// Arguments:
|
||
// n = The integer to get the binomial coefficients of
|
||
// Example:
|
||
// x = binomial(3); // Returns: [1,3,3,1]
|
||
// y = binomial(4); // Returns: [1,4,6,4,1]
|
||
// z = binomial(6); // Returns: [1,6,15,20,15,6,1]
|
||
function binomial(n) =
|
||
assert( is_int(n) && n>0, "Input is not an integer greater than 0.")
|
||
[for( c = 1, i = 0;
|
||
i<=n;
|
||
c = c*(n-i)/(i+1), i = i+1
|
||
) c ] ;
|
||
|
||
|
||
// Function: binomial_coefficient()
|
||
// Usage:
|
||
// x = binomial_coefficient(n,k);
|
||
// Description:
|
||
// Returns the k-th binomial coefficient of the integer `n`.
|
||
// Arguments:
|
||
// n = The integer to get the binomial coefficient of
|
||
// k = The binomial coefficient index
|
||
// Example:
|
||
// x = binomial_coefficient(3,2); // Returns: 3
|
||
// y = binomial_coefficient(10,6); // Returns: 210
|
||
function binomial_coefficient(n,k) =
|
||
assert( is_int(n) && is_int(k), "Some input is not a number.")
|
||
k < 0 || k > n ? 0 :
|
||
k ==0 || k ==n ? 1 :
|
||
let( k = min(k, n-k),
|
||
b = [for( c = 1, i = 0;
|
||
i<=k;
|
||
c = c*(n-i)/(i+1), i = i+1
|
||
) c] )
|
||
b[len(b)-1];
|
||
|
||
|
||
// Function: lerp()
|
||
// Usage:
|
||
// x = lerp(a, b, u);
|
||
// l = lerp(a, b, LIST);
|
||
// Description:
|
||
// Interpolate between two values or vectors.
|
||
// If `u` is given as a number, returns the single interpolated value.
|
||
// If `u` is 0.0, then the value of `a` is returned.
|
||
// If `u` is 1.0, then the value of `b` is returned.
|
||
// If `u` is a range, or list of numbers, returns a list of interpolated values.
|
||
// It is valid to use a `u` value outside the range 0 to 1. The result will be an extrapolation
|
||
// along the slope formed by `a` and `b`.
|
||
// Arguments:
|
||
// a = First value or vector.
|
||
// b = Second value or vector.
|
||
// u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
|
||
// Example:
|
||
// x = lerp(0,20,0.3); // Returns: 6
|
||
// x = lerp(0,20,0.8); // Returns: 16
|
||
// x = lerp(0,20,-0.1); // Returns: -2
|
||
// x = lerp(0,20,1.1); // Returns: 22
|
||
// p = lerp([0,0],[20,10],0.25); // Returns [5,2.5]
|
||
// l = lerp(0,20,[0.4,0.6]); // Returns: [8,12]
|
||
// l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15]
|
||
// Example(2D):
|
||
// p1 = [-50,-20]; p2 = [50,30];
|
||
// stroke([p1,p2]);
|
||
// pts = lerp(p1, p2, [0:1/8:1]);
|
||
// // Points colored in ROYGBIV order.
|
||
// rainbow(pts) translate($item) circle(d=3,$fn=8);
|
||
function lerp(a,b,u) =
|
||
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
|
||
is_finite(u)? (1-u)*a + u*b :
|
||
assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.")
|
||
[for (v = u) (1-v)*a + v*b ];
|
||
|
||
|
||
|
||
// Section: Hyperbolic Trigonometry
|
||
|
||
// Function: sinh()
|
||
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
|
||
function sinh(x) =
|
||
assert(is_finite(x), "The input must be a finite number.")
|
||
(exp(x)-exp(-x))/2;
|
||
|
||
|
||
// Function: cosh()
|
||
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
|
||
function cosh(x) =
|
||
assert(is_finite(x), "The input must be a finite number.")
|
||
(exp(x)+exp(-x))/2;
|
||
|
||
|
||
// Function: tanh()
|
||
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
|
||
function tanh(x) =
|
||
assert(is_finite(x), "The input must be a finite number.")
|
||
sinh(x)/cosh(x);
|
||
|
||
|
||
// Function: asinh()
|
||
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
|
||
function asinh(x) =
|
||
assert(is_finite(x), "The input must be a finite number.")
|
||
ln(x+sqrt(x*x+1));
|
||
|
||
|
||
// Function: acosh()
|
||
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
|
||
function acosh(x) =
|
||
assert(is_finite(x), "The input must be a finite number.")
|
||
ln(x+sqrt(x*x-1));
|
||
|
||
|
||
// Function: atanh()
|
||
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
|
||
function atanh(x) =
|
||
assert(is_finite(x), "The input must be a finite number.")
|
||
ln((1+x)/(1-x))/2;
|
||
|
||
|
||
// Section: Quantization
|
||
|
||
// Function: quant()
|
||
// Description:
|
||
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
|
||
// If `x` is a list, then every item in that list will be recursively quantized.
|
||
// Arguments:
|
||
// x = The value to quantize.
|
||
// y = The multiple to quantize to.
|
||
// Example:
|
||
// quant(12,4); // Returns: 12
|
||
// quant(13,4); // Returns: 12
|
||
// quant(13.1,4); // Returns: 12
|
||
// quant(14,4); // Returns: 16
|
||
// quant(14.1,4); // Returns: 16
|
||
// quant(15,4); // Returns: 16
|
||
// quant(16,4); // Returns: 16
|
||
// quant(9,3); // Returns: 9
|
||
// quant(10,3); // Returns: 9
|
||
// quant(10.4,3); // Returns: 9
|
||
// quant(10.5,3); // Returns: 12
|
||
// quant(11,3); // Returns: 12
|
||
// quant(12,3); // Returns: 12
|
||
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
|
||
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
|
||
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
|
||
function quant(x,y) =
|
||
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
|
||
is_list(x)
|
||
? [for (v=x) quant(v,y)]
|
||
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
||
floor(x/y+0.5)*y;
|
||
|
||
|
||
// Function: quantdn()
|
||
// Description:
|
||
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
|
||
// If `x` is a list, then every item in that list will be recursively quantized down.
|
||
// Arguments:
|
||
// x = The value to quantize.
|
||
// y = The multiple to quantize to.
|
||
// Examples:
|
||
// quantdn(12,4); // Returns: 12
|
||
// quantdn(13,4); // Returns: 12
|
||
// quantdn(13.1,4); // Returns: 12
|
||
// quantdn(14,4); // Returns: 12
|
||
// quantdn(14.1,4); // Returns: 12
|
||
// quantdn(15,4); // Returns: 12
|
||
// quantdn(16,4); // Returns: 16
|
||
// quantdn(9,3); // Returns: 9
|
||
// quantdn(10,3); // Returns: 9
|
||
// quantdn(10.4,3); // Returns: 9
|
||
// quantdn(10.5,3); // Returns: 9
|
||
// quantdn(11,3); // Returns: 9
|
||
// quantdn(12,3); // Returns: 12
|
||
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
|
||
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
|
||
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
|
||
function quantdn(x,y) =
|
||
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
|
||
is_list(x)
|
||
? [for (v=x) quantdn(v,y)]
|
||
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
||
floor(x/y)*y;
|
||
|
||
|
||
// Function: quantup()
|
||
// Description:
|
||
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
|
||
// If `x` is a list, then every item in that list will be recursively quantized up.
|
||
// Arguments:
|
||
// x = The value to quantize.
|
||
// y = The multiple to quantize to.
|
||
// Examples:
|
||
// quantup(12,4); // Returns: 12
|
||
// quantup(13,4); // Returns: 16
|
||
// quantup(13.1,4); // Returns: 16
|
||
// quantup(14,4); // Returns: 16
|
||
// quantup(14.1,4); // Returns: 16
|
||
// quantup(15,4); // Returns: 16
|
||
// quantup(16,4); // Returns: 16
|
||
// quantup(9,3); // Returns: 9
|
||
// quantup(10,3); // Returns: 12
|
||
// quantup(10.4,3); // Returns: 12
|
||
// quantup(10.5,3); // Returns: 12
|
||
// quantup(11,3); // Returns: 12
|
||
// quantup(12,3); // Returns: 12
|
||
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
|
||
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
|
||
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
|
||
function quantup(x,y) =
|
||
assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.")
|
||
is_list(x)
|
||
? [for (v=x) quantup(v,y)]
|
||
: assert( is_finite(x), "The input to quantize must be a number or a list of numbers.")
|
||
ceil(x/y)*y;
|
||
|
||
|
||
// Section: Constraints and Modulos
|
||
|
||
// Function: constrain()
|
||
// Usage:
|
||
// constrain(v, minval, maxval);
|
||
// Description:
|
||
// Constrains value to a range of values between minval and maxval, inclusive.
|
||
// Arguments:
|
||
// v = value to constrain.
|
||
// minval = minimum value to return, if out of range.
|
||
// maxval = maximum value to return, if out of range.
|
||
// Example:
|
||
// constrain(-5, -1, 1); // Returns: -1
|
||
// constrain(5, -1, 1); // Returns: 1
|
||
// constrain(0.3, -1, 1); // Returns: 0.3
|
||
// constrain(9.1, 0, 9); // Returns: 9
|
||
// constrain(-0.1, 0, 9); // Returns: 0
|
||
function constrain(v, minval, maxval) =
|
||
assert( is_finite(v+minval+maxval), "Input must be finite number(s).")
|
||
min(maxval, max(minval, v));
|
||
|
||
|
||
// Function: posmod()
|
||
// Usage:
|
||
// posmod(x,m)
|
||
// Description:
|
||
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
|
||
// Arguments:
|
||
// x = The value to constrain.
|
||
// m = Modulo value.
|
||
// Example:
|
||
// posmod(-700,360); // Returns: 340
|
||
// posmod(-270,360); // Returns: 90
|
||
// posmod(-120,360); // Returns: 240
|
||
// posmod(120,360); // Returns: 120
|
||
// posmod(270,360); // Returns: 270
|
||
// posmod(700,360); // Returns: 340
|
||
// posmod(3,2.5); // Returns: 0.5
|
||
function posmod(x,m) =
|
||
assert( is_finite(x) && is_finite(m) && !approx(m,0) , "Input must be finite numbers. The divisor cannot be zero.")
|
||
(x%m+m)%m;
|
||
|
||
|
||
// Function: modang(x)
|
||
// Usage:
|
||
// ang = modang(x)
|
||
// Description:
|
||
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
|
||
// Example:
|
||
// modang(-700,360); // Returns: 20
|
||
// modang(-270,360); // Returns: 90
|
||
// modang(-120,360); // Returns: -120
|
||
// modang(120,360); // Returns: 120
|
||
// modang(270,360); // Returns: -90
|
||
// modang(700,360); // Returns: -20
|
||
function modang(x) =
|
||
assert( is_finite(x), "Input must be a finite number.")
|
||
let(xx = posmod(x,360)) xx<180? xx : xx-360;
|
||
|
||
|
||
// Function: modrange()
|
||
// Usage:
|
||
// modrange(x, y, m, [step])
|
||
// Description:
|
||
// Returns a normalized list of numbers from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
|
||
// Arguments:
|
||
// x = The start value to constrain.
|
||
// y = The end value to constrain.
|
||
// m = Modulo value.
|
||
// step = Step by this amount.
|
||
// Examples:
|
||
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
|
||
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
|
||
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
|
||
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
|
||
function modrange(x, y, m, step=1) =
|
||
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." )
|
||
let(
|
||
a = posmod(x, m),
|
||
b = posmod(y, m),
|
||
c = step>0? (a>b? b+m : b)
|
||
: (a<b? b-m : b)
|
||
) [for (i=[a:step:c]) (i%m+m)%m ];
|
||
|
||
|
||
|
||
// Section: Random Number Generation
|
||
|
||
// Function: rand_int()
|
||
// Usage:
|
||
// rand_int(minval,maxval,N,[seed]);
|
||
// Description:
|
||
// Return a list of random integers in the range of minval to maxval, inclusive.
|
||
// Arguments:
|
||
// minval = Minimum integer value to return.
|
||
// maxval = Maximum integer value to return.
|
||
// N = Number of random integers to return.
|
||
// seed = If given, sets the random number seed.
|
||
// Example:
|
||
// ints = rand_int(0,100,3);
|
||
// int = rand_int(-10,10,1)[0];
|
||
function rand_int(minval, maxval, N, seed=undef) =
|
||
assert( is_finite(minval+maxval+N) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.")
|
||
assert(maxval >= minval, "Max value cannot be smaller than minval")
|
||
let (rvect = is_def(seed) ? rands(minval,maxval+1,N,seed) : rands(minval,maxval+1,N))
|
||
[for(entry = rvect) floor(entry)];
|
||
|
||
|
||
// Function: gaussian_rands()
|
||
// Usage:
|
||
// gaussian_rands(mean, stddev, [N], [seed])
|
||
// Description:
|
||
// Returns a random number with a gaussian/normal distribution.
|
||
// Arguments:
|
||
// mean = The average random number returned.
|
||
// stddev = The standard deviation of the numbers to be returned.
|
||
// N = Number of random numbers to return. Default: 1
|
||
// seed = If given, sets the random number seed.
|
||
function gaussian_rands(mean, stddev, N=1, seed=undef) =
|
||
assert( is_finite(mean+stddev+N) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.")
|
||
let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed))
|
||
[for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])];
|
||
|
||
|
||
// Function: log_rands()
|
||
// Usage:
|
||
// log_rands(minval, maxval, factor, [N], [seed]);
|
||
// Description:
|
||
// Returns a single random number, with a logarithmic distribution.
|
||
// Arguments:
|
||
// minval = Minimum value to return.
|
||
// maxval = Maximum value to return. `minval` <= X < `maxval`.
|
||
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
|
||
// N = Number of random numbers to return. Default: 1
|
||
// seed = If given, sets the random number seed.
|
||
function log_rands(minval, maxval, factor, N=1, seed=undef) =
|
||
assert( is_finite(minval+maxval+N)
|
||
&& (is_undef(seed) || is_finite(seed) )
|
||
&& factor>0,
|
||
"Input must be finite numbers. `factor` should be greater than zero.")
|
||
assert(maxval >= minval, "maxval cannot be smaller than minval")
|
||
let(
|
||
minv = 1-1/pow(factor,minval),
|
||
maxv = 1-1/pow(factor,maxval),
|
||
nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed)
|
||
) [for (num=nums) -ln(1-num)/ln(factor)];
|
||
|
||
|
||
|
||
// Section: GCD/GCF, LCM
|
||
|
||
// Function: gcd()
|
||
// Usage:
|
||
// gcd(a,b)
|
||
// Description:
|
||
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
|
||
function gcd(a,b) =
|
||
assert(is_int(a) && is_int(b),"Arguments to gcd must be integers")
|
||
b==0 ? abs(a) : gcd(b,a % b);
|
||
|
||
|
||
// Computes lcm for two integers
|
||
function _lcm(a,b) =
|
||
assert(is_int(a) && is_int(b), "Invalid non-integer parameters to lcm")
|
||
assert(a!=0 && b!=0, "Arguments to lcm must be non zero")
|
||
abs(a*b) / gcd(a,b);
|
||
|
||
|
||
// Computes lcm for a list of values
|
||
function _lcmlist(a) =
|
||
len(a)==1
|
||
? a[0]
|
||
: _lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])]));
|
||
|
||
|
||
// Function: lcm()
|
||
// Usage:
|
||
// lcm(a,b)
|
||
// lcm(list)
|
||
// Description:
|
||
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
|
||
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
|
||
// as an argument.
|
||
function lcm(a,b=[]) =
|
||
!is_list(a) && !is_list(b)
|
||
? _lcm(a,b)
|
||
: let( arglist = concat(force_list(a),force_list(b)) )
|
||
assert(len(arglist)>0, "Invalid call to lcm with empty list(s)")
|
||
_lcmlist(arglist);
|
||
|
||
|
||
|
||
// Section: Sums, Products, Aggregate Functions.
|
||
|
||
// Function: sum()
|
||
// Description:
|
||
// Returns the sum of all entries in the given consistent list.
|
||
// If passed an array of vectors, returns the sum the vectors.
|
||
// If passed an array of matrices, returns the sum of the matrices.
|
||
// If passed an empty list, the value of `dflt` will be returned.
|
||
// Arguments:
|
||
// v = The list to get the sum of.
|
||
// dflt = The default value to return if `v` is an empty list. Default: 0
|
||
// Example:
|
||
// sum([1,2,3]); // returns 6.
|
||
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
|
||
function sum(v, dflt=0) =
|
||
is_list(v) && len(v) == 0 ? dflt :
|
||
is_vector(v) || is_matrix(v)? [for(i=v) 1]*v :
|
||
assert(is_consistent(v), "Input to sum is non-numeric or inconsistent")
|
||
_sum(v,v[0]*0);
|
||
|
||
function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
|
||
|
||
|
||
// Function: cumsum()
|
||
// Description:
|
||
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
|
||
// If passed an array of vectors, returns a list of cumulative vectors sums.
|
||
// Arguments:
|
||
// v = The list to get the sum of.
|
||
// Example:
|
||
// cumsum([1,1,1]); // returns [1,2,3]
|
||
// cumsum([2,2,2]); // returns [2,4,6]
|
||
// cumsum([1,2,3]); // returns [1,3,6]
|
||
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
|
||
function cumsum(v) =
|
||
assert(is_consistent(v), "The input is not consistent." )
|
||
_cumsum(v,_i=0,_acc=[]);
|
||
|
||
function _cumsum(v,_i=0,_acc=[]) =
|
||
_i==len(v) ? _acc :
|
||
_cumsum(
|
||
v, _i+1,
|
||
concat(
|
||
_acc,
|
||
[_i==0 ? v[_i] : select(_acc,-1)+v[_i]]
|
||
)
|
||
);
|
||
|
||
|
||
// Function: sum_of_squares()
|
||
// Description:
|
||
// Returns the sum of the square of each element of a vector.
|
||
// Arguments:
|
||
// v = The vector to get the sum of.
|
||
// Example:
|
||
// sum_of_squares([1,2,3]); // Returns: 14.
|
||
// sum_of_squares([1,2,4]); // Returns: 21
|
||
// sum_of_squares([-3,-2,-1]); // Returns: 14
|
||
function sum_of_squares(v) = sum(vmul(v,v));
|
||
|
||
|
||
// Function: sum_of_sines()
|
||
// Usage:
|
||
// sum_of_sines(a,sines)
|
||
// Description:
|
||
// Gives the sum of a series of sines, at a given angle.
|
||
// Arguments:
|
||
// a = Angle to get the value for.
|
||
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
|
||
// Examples:
|
||
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
|
||
function sum_of_sines(a, sines) =
|
||
assert( is_finite(a) && is_matrix(sines,undef,3), "Invalid input.")
|
||
sum([ for (s = sines)
|
||
let(
|
||
ss=point3d(s),
|
||
v=ss[0]*sin(a*ss[1]+ss[2])
|
||
) v
|
||
]);
|
||
|
||
|
||
// Function: deltas()
|
||
// Description:
|
||
// Returns a list with the deltas of adjacent entries in the given list.
|
||
// The list should be a consistent list of numeric components (numbers, vectors, matrix, etc).
|
||
// Given [a,b,c,d], returns [b-a,c-b,d-c].
|
||
// Arguments:
|
||
// v = The list to get the deltas of.
|
||
// Example:
|
||
// deltas([2,5,9,17]); // returns [3,4,8].
|
||
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
|
||
function deltas(v) =
|
||
assert( is_consistent(v) && len(v)>1 , "Inconsistent list or with length<=1.")
|
||
[for (p=pair(v)) p[1]-p[0]] ;
|
||
|
||
|
||
// Function: product()
|
||
// Description:
|
||
// Returns the product of all entries in the given list.
|
||
// If passed a list of vectors of same dimension, returns a vector of products of each part.
|
||
// If passed a list of square matrices, returns the resulting product matrix.
|
||
// Arguments:
|
||
// v = The list to get the product of.
|
||
// Example:
|
||
// product([2,3,4]); // returns 24.
|
||
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
||
function product(v) =
|
||
assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)),
|
||
"Invalid input.")
|
||
_product(v, 1, v[0]);
|
||
|
||
function _product(v, i=0, _tot) =
|
||
i>=len(v) ? _tot :
|
||
_product( v,
|
||
i+1,
|
||
( is_vector(v[i])? vmul(_tot,v[i]) : _tot*v[i] ) );
|
||
|
||
|
||
|
||
// Function: outer_product()
|
||
// Description:
|
||
// Compute the outer product of two vectors, a matrix.
|
||
// Usage:
|
||
// M = outer_product(u,v);
|
||
function outer_product(u,v) =
|
||
assert(is_vector(u) && is_vector(v), "The inputs must be vectors.")
|
||
[for(ui=u) ui*v];
|
||
|
||
|
||
// Function: mean()
|
||
// Description:
|
||
// Returns the arithmetic mean/average of all entries in the given array.
|
||
// If passed a list of vectors, returns a vector of the mean of each part.
|
||
// Arguments:
|
||
// v = The list of values to get the mean of.
|
||
// Example:
|
||
// mean([2,3,4]); // returns 3.
|
||
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
|
||
function mean(v) =
|
||
assert(is_list(v) && len(v)>0, "Invalid list.")
|
||
sum(v)/len(v);
|
||
|
||
|
||
// Function: convolve()
|
||
// Usage:
|
||
// x = convolve(p,q);
|
||
// Description:
|
||
// Given two vectors, finds the convolution of them.
|
||
// The length of the returned vector is len(p)+len(q)-1 .
|
||
// Arguments:
|
||
// p = The first vector.
|
||
// q = The second vector.
|
||
// Example:
|
||
// a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1]
|
||
// b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3]
|
||
function convolve(p,q) =
|
||
p==[] || q==[] ? [] :
|
||
assert( is_vector(p) && is_vector(q), "The inputs should be vectors.")
|
||
let( n = len(p),
|
||
m = len(q))
|
||
[for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) )
|
||
[for(j=[k1:k2]) p[i-j] ] * [for(j=[k1:k2]) q[j] ]
|
||
];
|
||
|
||
|
||
|
||
// Section: Matrix math
|
||
|
||
// Function: linear_solve()
|
||
// Usage: linear_solve(A,b)
|
||
// Description:
|
||
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
||
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
||
// If A is rank deficient or singular then linear_solve returns []. If b is a matrix that is compatible with A
|
||
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
|
||
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then
|
||
// transpose the returned value.
|
||
function linear_solve(A,b) =
|
||
assert(is_matrix(A), "Input should be a matrix.")
|
||
let(
|
||
m = len(A),
|
||
n = len(A[0])
|
||
)
|
||
assert(is_vector(b,m) || is_matrix(b,m),"Incompatible matrix and right hand side")
|
||
let (
|
||
qr = m<n? qr_factor(transpose(A)) : qr_factor(A),
|
||
maxdim = max(n,m),
|
||
mindim = min(n,m),
|
||
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
|
||
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
|
||
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
||
)
|
||
zeros != [] ? [] :
|
||
m<n
|
||
// avoiding input validation in back_substitute
|
||
? let( n = len(R),
|
||
Rt = [for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]] )
|
||
Q*reverse(_back_substitute(Rt,reverse(b)))
|
||
: _back_substitute(R, transpose(Q)*b);
|
||
|
||
// Function: matrix_inverse()
|
||
// Usage:
|
||
// matrix_inverse(A)
|
||
// Description:
|
||
// Compute the matrix inverse of the square matrix A. If A is singular, returns undef.
|
||
// Note that if you just want to solve a linear system of equations you should NOT
|
||
// use this function. Instead use linear_solve, or use qr_factor. The computation
|
||
// will be faster and more accurate.
|
||
function matrix_inverse(A) =
|
||
assert(is_matrix(A,square=true),"Input to matrix_inverse() must be a square matrix")
|
||
linear_solve(A,ident(len(A)));
|
||
|
||
|
||
// Function: submatrix()
|
||
// Usage: submatrix(M, ind1, ind2)
|
||
// Description:
|
||
// Returns a submatrix with the specified index ranges or index sets.
|
||
function submatrix(M,ind1,ind2) =
|
||
assert( is_matrix(M), "Input must be a matrix." )
|
||
[for(i=ind1)
|
||
[for(j=ind2)
|
||
assert( ! is_undef(M[i][j]), "Invalid indexing." )
|
||
M[i][j] ] ];
|
||
|
||
|
||
// Function: qr_factor()
|
||
// Usage: qr = qr_factor(A)
|
||
// Description:
|
||
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
|
||
// used to solve linear systems of equations.
|
||
function qr_factor(A) =
|
||
assert(is_matrix(A), "Input must be a matrix." )
|
||
let(
|
||
m = len(A),
|
||
n = len(A[0])
|
||
)
|
||
let(
|
||
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)),
|
||
Rzero = [
|
||
for(i=[0:m-1]) [
|
||
for(j=[0:n-1])
|
||
i>j ? 0 : qr[1][i][j]
|
||
]
|
||
]
|
||
) [qr[0],Rzero];
|
||
|
||
function _qr_factor(A,Q, column, m, n) =
|
||
column >= min(m-1,n) ? [Q,A] :
|
||
let(
|
||
x = [for(i=[column:1:m-1]) A[i][column]],
|
||
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
|
||
u = x - concat([alpha],repeat(0,m-1)),
|
||
v = alpha==0 ? u : u / norm(u),
|
||
Qc = ident(len(x)) - 2*outer_product(v,v),
|
||
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
|
||
)
|
||
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
||
|
||
|
||
// Function: back_substitute()
|
||
// Usage: back_substitute(R, b, [transpose])
|
||
// Description:
|
||
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
|
||
// ignored. If transpose==true then instead solve transpose(R)*x=b.
|
||
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
||
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
|
||
// is singular (e.g. has a zero on the diagonal) then it returns [].
|
||
function back_substitute(R, b, transpose = false) =
|
||
assert(is_matrix(R, square=true))
|
||
let(n=len(R))
|
||
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
||
transpose
|
||
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
||
reverse(b)))
|
||
: _back_substitute(R,b);
|
||
|
||
function _back_substitute(R, b, x=[]) =
|
||
let(n=len(R))
|
||
len(x) == n ? x
|
||
: let(ind = n - len(x) - 1)
|
||
R[ind][ind] == 0 ? []
|
||
: let(
|
||
newvalue = len(x)==0
|
||
? b[ind]/R[ind][ind]
|
||
: (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||
)
|
||
_back_substitute(R, b, concat([newvalue],x));
|
||
|
||
|
||
// Function: det2()
|
||
// Description:
|
||
// Optimized function that returns the determinant for the given 2x2 square matrix.
|
||
// Arguments:
|
||
// M = The 2x2 square matrix to get the determinant of.
|
||
// Example:
|
||
// M = [ [6,-2], [1,8] ];
|
||
// det = det2(M); // Returns: 50
|
||
function det2(M) =
|
||
assert( 0*M==[[0,0],[0,0]], "Matrix should be 2x2." )
|
||
M[0][0] * M[1][1] - M[0][1]*M[1][0];
|
||
|
||
|
||
// Function: det3()
|
||
// Description:
|
||
// Optimized function that returns the determinant for the given 3x3 square matrix.
|
||
// Arguments:
|
||
// M = The 3x3 square matrix to get the determinant of.
|
||
// Example:
|
||
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
|
||
// det = det3(M); // Returns: -334
|
||
function det3(M) =
|
||
assert( 0*M==[[0,0,0],[0,0,0],[0,0,0]], "Matrix should be 3x3." )
|
||
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
|
||
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
|
||
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
|
||
|
||
|
||
// Function: determinant()
|
||
// Description:
|
||
// Returns the determinant for the given square matrix.
|
||
// Arguments:
|
||
// M = The NxN square matrix to get the determinant of.
|
||
// Example:
|
||
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
|
||
// det = determinant(M); // Returns: 2267
|
||
function determinant(M) =
|
||
assert(is_matrix(M,square=true), "Input should be a square matrix." )
|
||
len(M)==1? M[0][0] :
|
||
len(M)==2? det2(M) :
|
||
len(M)==3? det3(M) :
|
||
sum(
|
||
[for (col=[0:1:len(M)-1])
|
||
((col%2==0)? 1 : -1) *
|
||
M[col][0] *
|
||
determinant(
|
||
[for (r=[1:1:len(M)-1])
|
||
[for (c=[0:1:len(M)-1])
|
||
if (c!=col) M[c][r]
|
||
]
|
||
]
|
||
)
|
||
]
|
||
);
|
||
|
||
|
||
// Function: is_matrix()
|
||
// Usage:
|
||
// is_matrix(A,[m],[n],[square])
|
||
// Description:
|
||
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
||
// are omitted or set to undef then true is returned for any positive dimension.
|
||
// If `square` is true then the matrix is required to be square.
|
||
// specify m != n and require a square matrix then the result will always be false.
|
||
// Arguments:
|
||
// A = matrix to test
|
||
// m = optional height of matrix
|
||
// n = optional width of matrix
|
||
// square = set to true to require a square matrix. Default: false
|
||
function is_matrix(A,m,n,square=false) =
|
||
is_list(A[0])
|
||
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
|
||
&& (is_undef(n) || len(A[0])==n )
|
||
&& (is_undef(m) || len(A)==m )
|
||
&& ( !square || len(A)==len(A[0]));
|
||
|
||
|
||
// Section: Comparisons and Logic
|
||
|
||
// Function: approx()
|
||
// Usage:
|
||
// approx(a,b,[eps])
|
||
// Description:
|
||
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
|
||
// Arguments:
|
||
// a = First value.
|
||
// b = Second value.
|
||
// eps = The maximum allowed difference between `a` and `b` that will return true.
|
||
// Example:
|
||
// approx(-0.3333333333,-1/3); // Returns: true
|
||
// approx(0.3333333333,1/3); // Returns: true
|
||
// approx(0.3333,1/3); // Returns: false
|
||
// approx(0.3333,1/3,eps=1e-3); // Returns: true
|
||
// approx(PI,3.1415926536); // Returns: true
|
||
function approx(a,b,eps=EPSILON) =
|
||
a==b? true :
|
||
a*0!=b*0? false :
|
||
is_list(a)
|
||
? ([for (i=idx(a)) if( !approx(a[i],b[i],eps=eps)) 1] == [])
|
||
: is_num(a) && is_num(b) && (abs(a-b) <= eps);
|
||
|
||
|
||
|
||
function _type_num(x) =
|
||
is_undef(x)? 0 :
|
||
is_bool(x)? 1 :
|
||
is_num(x)? 2 :
|
||
is_nan(x)? 3 :
|
||
is_string(x)? 4 :
|
||
is_list(x)? 5 : 6;
|
||
|
||
|
||
// Function: compare_vals()
|
||
// Usage:
|
||
// compare_vals(a, b);
|
||
// Description:
|
||
// Compares two values. Lists are compared recursively.
|
||
// Returns <0 if a<b. Returns >0 if a>b. Returns 0 if a==b.
|
||
// If types are not the same, then undef < bool < nan < num < str < list < range.
|
||
// Arguments:
|
||
// a = First value to compare.
|
||
// b = Second value to compare.
|
||
function compare_vals(a, b) =
|
||
(a==b)? 0 :
|
||
let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) :
|
||
is_list(a)? compare_lists(a,b) :
|
||
is_nan(a)? 0 :
|
||
(a<b)? -1 : (a>b)? 1 : 0;
|
||
|
||
|
||
// Function: compare_lists()
|
||
// Usage:
|
||
// compare_lists(a, b)
|
||
// Description:
|
||
// Compare contents of two lists using `compare_vals()`.
|
||
// Returns <0 if `a`<`b`.
|
||
// Returns 0 if `a`==`b`.
|
||
// Returns >0 if `a`>`b`.
|
||
// Arguments:
|
||
// a = First list to compare.
|
||
// b = Second list to compare.
|
||
function compare_lists(a, b) =
|
||
a==b? 0
|
||
: let(
|
||
cmps = [ for(i=[0:1:min(len(a),len(b))-1])
|
||
let( cmp = compare_vals(a[i],b[i]) )
|
||
if(cmp!=0) cmp
|
||
]
|
||
)
|
||
cmps==[]? (len(a)-len(b)) : cmps[0];
|
||
|
||
|
||
// Function: any()
|
||
// Description:
|
||
// Returns true if any item in list `l` evaluates as true.
|
||
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
|
||
// Arguments:
|
||
// l = The list to test for true items.
|
||
// Example:
|
||
// any([0,false,undef]); // Returns false.
|
||
// any([1,false,undef]); // Returns true.
|
||
// any([1,5,true]); // Returns true.
|
||
// any([[0,0], [0,0]]); // Returns false.
|
||
// any([[0,0], [1,0]]); // Returns true.
|
||
function any(l) =
|
||
assert(is_list(l), "The input is not a list." )
|
||
_any(l, i=0, succ=false);
|
||
|
||
function _any(l, i=0, succ=false) =
|
||
(i>=len(l) || succ)? succ :
|
||
_any( l,
|
||
i+1,
|
||
succ = is_list(l[i]) ? _any(l[i]) : !(!l[i])
|
||
);
|
||
|
||
|
||
// Function: all()
|
||
// Description:
|
||
// Returns true if all items in list `l` evaluate as true.
|
||
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
|
||
// Arguments:
|
||
// l = The list to test for true items.
|
||
// Example:
|
||
// all([0,false,undef]); // Returns false.
|
||
// all([1,false,undef]); // Returns false.
|
||
// all([1,5,true]); // Returns true.
|
||
// all([[0,0], [0,0]]); // Returns false.
|
||
// all([[0,0], [1,0]]); // Returns false.
|
||
// all([[1,1], [1,1]]); // Returns true.
|
||
function all(l, i=0, fail=false) =
|
||
assert( is_list(l), "The input is not a list." )
|
||
_all(l, i=0, fail=false);
|
||
|
||
function _all(l, i=0, fail=false) =
|
||
(i>=len(l) || fail)? !fail :
|
||
_all( l,
|
||
i+1,
|
||
fail = is_list(l[i]) ? !_all(l[i]) : !l[i]
|
||
) ;
|
||
|
||
|
||
// Function: count_true()
|
||
// Usage:
|
||
// count_true(l)
|
||
// Description:
|
||
// Returns the number of items in `l` that evaluate as true.
|
||
// If `l` is a lists of lists, this is applied recursively to each
|
||
// sublist. Returns the total count of items that evaluate as true
|
||
// in all recursive sublists.
|
||
// Arguments:
|
||
// l = The list to test for true items.
|
||
// nmax = If given, stop counting if `nmax` items evaluate as true.
|
||
// Example:
|
||
// count_true([0,false,undef]); // Returns 0.
|
||
// count_true([1,false,undef]); // Returns 1.
|
||
// count_true([1,5,false]); // Returns 2.
|
||
// count_true([1,5,true]); // Returns 3.
|
||
// count_true([[0,0], [0,0]]); // Returns 0.
|
||
// count_true([[0,0], [1,0]]); // Returns 1.
|
||
// count_true([[1,1], [1,1]]); // Returns 4.
|
||
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
||
function count_true(l, nmax) =
|
||
!is_list(l) ? !(!l) ? 1: 0 :
|
||
let( c = [for( i = 0,
|
||
n = !is_list(l[i]) ? !(!l[i]) ? 1: 0 : undef,
|
||
c = !is_undef(n)? n : count_true(l[i], nmax),
|
||
s = c;
|
||
i<len(l) && (is_undef(nmax) || s<nmax);
|
||
i = i+1,
|
||
n = !is_list(l[i]) ? !(!l[i]) ? 1: 0 : undef,
|
||
c = !is_undef(n) || (i==len(l))? n : count_true(l[i], nmax-s),
|
||
s = s+c
|
||
) s ] )
|
||
len(c)<len(l)? nmax: c[len(c)-1];
|
||
|
||
|
||
|
||
// Section: Calculus
|
||
|
||
// Function: deriv()
|
||
// Usage: deriv(data, [h], [closed])
|
||
// Description:
|
||
// Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
|
||
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
|
||
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
|
||
// data[len(data)-1]. This function uses a symetric derivative approximation
|
||
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
|
||
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
|
||
// .
|
||
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
|
||
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
|
||
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method
|
||
// is used: f'(t) = (f(t+h)-f(t))/h.
|
||
// Arguments:
|
||
// data = the list of the elements to compute the derivative of.
|
||
// h = the parametric sampling of the data.
|
||
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
|
||
function deriv(data, h=1, closed=false) =
|
||
assert( is_consistent(data) , "Input list is not consistent or not numerical.")
|
||
assert( len(data)>=2, "Input `data` should have at least 2 elements.")
|
||
assert( is_finite(h) || is_vector(h), "The sampling `h` must be a number or a list of numbers." )
|
||
assert( is_num(h) || len(h) == len(data)-(closed?0:1),
|
||
str("Vector valued `h` must have length ",len(data)-(closed?0:1)))
|
||
is_vector(h) ? _deriv_nonuniform(data, h, closed=closed) :
|
||
let( L = len(data) )
|
||
closed
|
||
? [
|
||
for(i=[0:1:L-1])
|
||
(data[(i+1)%L]-data[(L+i-1)%L])/2/h
|
||
]
|
||
: let(
|
||
first = L<3 ? data[1]-data[0] :
|
||
3*(data[1]-data[0]) - (data[2]-data[1]),
|
||
last = L<3 ? data[L-1]-data[L-2]:
|
||
(data[L-3]-data[L-2])-3*(data[L-2]-data[L-1])
|
||
)
|
||
[
|
||
first/2/h,
|
||
for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h,
|
||
last/2/h
|
||
];
|
||
|
||
|
||
function _dnu_calc(f1,fc,f2,h1,h2) =
|
||
let(
|
||
f1 = h2<h1 ? lerp(fc,f1,h2/h1) : f1 ,
|
||
f2 = h1<h2 ? lerp(fc,f2,h1/h2) : f2
|
||
)
|
||
(f2-f1) / 2 / min(h1,h2);
|
||
|
||
|
||
function _deriv_nonuniform(data, h, closed) =
|
||
let( L = len(data) )
|
||
closed
|
||
? [for(i=[0:1:L-1])
|
||
_dnu_calc(data[(L+i-1)%L], data[i], data[(i+1)%L], select(h,i-1), h[i]) ]
|
||
: [
|
||
(data[1]-data[0])/h[0],
|
||
for(i=[1:1:L-2]) _dnu_calc(data[i-1],data[i],data[i+1], h[i-1],h[i]),
|
||
(data[L-1]-data[L-2])/h[L-2]
|
||
];
|
||
|
||
|
||
// Function: deriv2()
|
||
// Usage: deriv2(data, [h], [closed])
|
||
// Description:
|
||
// Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued.
|
||
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
|
||
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
|
||
// data[len(data)-1]. For internal points this function uses the approximation
|
||
// f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false),
|
||
// when sufficient points are available, the method is either the four point expression
|
||
// f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or
|
||
// f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
|
||
// if five points are available.
|
||
// Arguments:
|
||
// data = the list of the elements to compute the derivative of.
|
||
// h = the constant parametric sampling of the data.
|
||
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
|
||
function deriv2(data, h=1, closed=false) =
|
||
assert( is_consistent(data) , "Input list is not consistent or not numerical.")
|
||
assert( is_finite(h), "The sampling `h` must be a number." )
|
||
let( L = len(data) )
|
||
assert( L>=3, "Input list has less than 3 elements.")
|
||
closed
|
||
? [
|
||
for(i=[0:1:L-1])
|
||
(data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h
|
||
]
|
||
:
|
||
let(
|
||
first =
|
||
L==3? data[0] - 2*data[1] + data[2] :
|
||
L==4? 2*data[0] - 5*data[1] + 4*data[2] - data[3] :
|
||
(35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12,
|
||
last =
|
||
L==3? data[L-1] - 2*data[L-2] + data[L-3] :
|
||
L==4? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] :
|
||
(35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12
|
||
) [
|
||
first/h/h,
|
||
for(i=[1:1:L-2]) (data[i+1]-2*data[i]+data[i-1])/h/h,
|
||
last/h/h
|
||
];
|
||
|
||
|
||
// Function: deriv3()
|
||
// Usage: deriv3(data, [h], [closed])
|
||
// Description:
|
||
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
|
||
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
|
||
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
|
||
// data[len(data)-1]. This function uses a five point derivative estimate, so the input data must include
|
||
// at least five points:
|
||
// f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end
|
||
// the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
|
||
// f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
|
||
function deriv3(data, h=1, closed=false) =
|
||
assert( is_consistent(data) , "Input list is not consistent or not numerical.")
|
||
assert( len(data)>=5, "Input list has less than 5 elements.")
|
||
assert( is_finite(h), "The sampling `h` must be a number." )
|
||
let(
|
||
L = len(data),
|
||
h3 = h*h*h
|
||
)
|
||
closed? [
|
||
for(i=[0:1:L-1])
|
||
(-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3
|
||
] :
|
||
let(
|
||
first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2,
|
||
second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2,
|
||
last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2,
|
||
prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2
|
||
) [
|
||
first/h3,
|
||
second/h3,
|
||
for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3,
|
||
prelast/h3,
|
||
last/h3
|
||
];
|
||
|
||
|
||
// Section: Complex Numbers
|
||
|
||
// Function: C_times()
|
||
// Usage: C_times(z1,z2)
|
||
// Description:
|
||
// Multiplies two complex numbers represented by 2D vectors.
|
||
function C_times(z1,z2) =
|
||
assert( is_vector(z1+z2,2), "Complex numbers should be represented by 2D vectors." )
|
||
[ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ];
|
||
|
||
// Function: C_div()
|
||
// Usage: C_div(z1,z2)
|
||
// Description:
|
||
// Divides two complex numbers represented by 2D vectors.
|
||
function C_div(z1,z2) =
|
||
assert( is_vector(z1,2) && is_vector(z2), "Complex numbers should be represented by 2D vectors." )
|
||
assert( !approx(z2,0), "The divisor `z2` cannot be zero." )
|
||
let(den = z2.x*z2.x + z2.y*z2.y)
|
||
[(z1.x*z2.x + z1.y*z2.y)/den, (z1.y*z2.x - z1.x*z2.y)/den];
|
||
|
||
// For the sake of consistence with Q_mul and vmul, C_times should be called C_mul
|
||
|
||
// Section: Polynomials
|
||
|
||
// Function: polynomial()
|
||
// Usage:
|
||
// polynomial(p, z)
|
||
// Description:
|
||
// Evaluates specified real polynomial, p, at the complex or real input value, z.
|
||
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
||
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
||
// The result is a number if `z` is a number and a complex number otherwise.
|
||
function polynomial(p,z,k,total) =
|
||
is_undef(k)
|
||
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
||
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
|
||
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
|
||
: k==len(p) ? total
|
||
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
|
||
|
||
// Function: poly_mult()
|
||
// Usage:
|
||
// polymult(p,q)
|
||
// polymult([p1,p2,p3,...])
|
||
// Description:
|
||
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
||
// computes the coefficient list of the product polynomial.
|
||
function poly_mult(p,q) =
|
||
is_undef(q) ?
|
||
len(p)==2
|
||
? poly_mult(p[0],p[1])
|
||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
||
:
|
||
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
||
p*p==0 || q*q==0
|
||
? [0]
|
||
: _poly_trim(convolve(p,q));
|
||
|
||
|
||
// Function: poly_div()
|
||
// Usage:
|
||
// [quotient,remainder] = poly_div(n,d)
|
||
// Description:
|
||
// Computes division of the numerator polynomial by the denominator polynomial and returns
|
||
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
|
||
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
|
||
// the returned quotient will be [].
|
||
function poly_div(n,d) =
|
||
assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
|
||
let( d = _poly_trim(d),
|
||
n = _poly_trim(n) )
|
||
assert( d!=[0] , "Denominator cannot be a zero polynomial." )
|
||
n==[0]
|
||
? [[0],[0]]
|
||
: _poly_div(n,d,q=[]);
|
||
|
||
function _poly_div(n,d,q) =
|
||
len(n)<len(d) ? [q,_poly_trim(n)] :
|
||
let(
|
||
t = n[0] / d[0],
|
||
newq = concat(q,[t]),
|
||
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
|
||
)
|
||
_poly_div(newn,d,newq);
|
||
|
||
|
||
// Internal Function: _poly_trim()
|
||
// Usage:
|
||
// _poly_trim(p,[eps])
|
||
// Description:
|
||
// Removes leading zero terms of a polynomial. By default zeros must be exact,
|
||
// or give epsilon for approximate zeros.
|
||
function _poly_trim(p,eps=0) =
|
||
let( nz = [for(i=[0:1:len(p)-1]) if ( !approx(p[i],0,eps)) i])
|
||
len(nz)==0 ? [0] : select(p,nz[0],-1);
|
||
|
||
|
||
// Function: poly_add()
|
||
// Usage:
|
||
// sum = poly_add(p,q)
|
||
// Description:
|
||
// Computes the sum of two polynomials.
|
||
function poly_add(p,q) =
|
||
assert( is_vector(p) && is_vector(q), "Invalid input polynomial(s)." )
|
||
let( plen = len(p),
|
||
qlen = len(q),
|
||
long = plen>qlen ? p : q,
|
||
short = plen>qlen ? q : p
|
||
)
|
||
_poly_trim(long + concat(repeat(0,len(long)-len(short)),short));
|
||
|
||
|
||
// Function: poly_roots()
|
||
// Usage:
|
||
// poly_roots(p,[tol])
|
||
// Description:
|
||
// Returns all complex roots of the specified real polynomial p.
|
||
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
||
// where a_n is the z^n coefficient. The tol parameter gives
|
||
// the stopping tolerance for the iteration. The polynomial
|
||
// must have at least one non-zero coefficient. Convergence is poor
|
||
// if the polynomial has any repeated roots other than zero.
|
||
// Arguments:
|
||
// p = polynomial coefficients with higest power coefficient first
|
||
// tol = tolerance for iteration. Default: 1e-14
|
||
|
||
// Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method
|
||
//
|
||
// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
|
||
// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
|
||
function poly_roots(p,tol=1e-14,error_bound=false) =
|
||
assert( is_vector(p), "Invalid polynomial." )
|
||
let( p = _poly_trim(p,eps=0) )
|
||
assert( p!=[0], "Input polynomial cannot be zero." )
|
||
p[len(p)-1] == 0 ? // Strip trailing zero coefficients
|
||
let( solutions = poly_roots(select(p,0,-2),tol=tol, error_bound=error_bound))
|
||
(error_bound ? [ [[0,0], each solutions[0]], [0, each solutions[1]]]
|
||
: [[0,0], each solutions]) :
|
||
len(p)==1 ? (error_bound ? [[],[]] : []) : // Nonzero constant case has no solutions
|
||
len(p)==2 ? let( solution = [[-p[1]/p[0],0]]) // Linear case needs special handling
|
||
(error_bound ? [solution,[0]] : solution)
|
||
:
|
||
let(
|
||
n = len(p)-1, // polynomial degree
|
||
pderiv = [for(i=[0:n-1]) p[i]*(n-i)],
|
||
|
||
s = [for(i=[0:1:n]) abs(p[i])*(4*(n-i)+1)], // Error bound polynomial from Bini
|
||
|
||
// Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf
|
||
beta = -p[1]/p[0]/n,
|
||
r = 1+pow(abs(polynomial(p,beta)/p[0]),1/n),
|
||
init = [for(i=[0:1:n-1]) // Initial guess for roots
|
||
let(angle = 360*i/n+270/n/PI)
|
||
[beta,0]+r*[cos(angle),sin(angle)]
|
||
],
|
||
roots = _poly_roots(p,pderiv,s,init,tol=tol),
|
||
error = error_bound ? [for(xi=roots) n * (norm(polynomial(p,xi))+tol*polynomial(s,norm(xi))) /
|
||
abs(norm(polynomial(pderiv,xi))-tol*polynomial(s,norm(xi)))] : 0
|
||
)
|
||
error_bound ? [roots, error] : roots;
|
||
|
||
// Internal function
|
||
// p = polynomial
|
||
// pderiv = derivative polynomial of p
|
||
// z = current guess for the roots
|
||
// tol = root tolerance
|
||
// i=iteration counter
|
||
function _poly_roots(p, pderiv, s, z, tol, i=0) =
|
||
assert(i<45, str("Polyroot exceeded iteration limit. Current solution:", z))
|
||
let(
|
||
n = len(z),
|
||
svals = [for(zk=z) tol*polynomial(s,norm(zk))],
|
||
p_of_z = [for(zk=z) polynomial(p,zk)],
|
||
done = [for(k=[0:n-1]) norm(p_of_z[k])<=svals[k]],
|
||
newton = [for(k=[0:n-1]) C_div(p_of_z[k], polynomial(pderiv,z[k]))],
|
||
zdiff = [for(k=[0:n-1]) sum([for(j=[0:n-1]) if (j!=k) C_div([1,0], z[k]-z[j])])],
|
||
w = [for(k=[0:n-1]) done[k] ? [0,0] : C_div( newton[k],
|
||
[1,0] - C_times(newton[k], zdiff[k]))]
|
||
)
|
||
all(done) ? z : _poly_roots(p,pderiv,s,z-w,tol,i+1);
|
||
|
||
|
||
// Function: real_roots()
|
||
// Usage:
|
||
// real_roots(p, [eps], [tol])
|
||
// Description:
|
||
// Returns the real roots of the specified real polynomial p.
|
||
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
||
// where a_n is the x^n coefficient. This function works by
|
||
// computing the complex roots and returning those roots where
|
||
// the imaginary part is closed to zero. By default it uses a computed
|
||
// error bound from the polynomial solver to decide whether imaginary
|
||
// parts are zero. You can specify eps, in which case the test is
|
||
// z.y/(1+norm(z)) < eps. Because
|
||
// of poor convergence and higher error for repeated roots, such roots may
|
||
// be missed by the algorithm because their imaginary part is large.
|
||
// Arguments:
|
||
// p = polynomial to solve as coefficient list, highest power term first
|
||
// eps = used to determine whether imaginary parts of roots are zero
|
||
// tol = tolerance for the complex polynomial root finder
|
||
|
||
function real_roots(p,eps=undef,tol=1e-14) =
|
||
assert( is_vector(p), "Invalid polynomial." )
|
||
let( p = _poly_trim(p,eps=0) )
|
||
assert( p!=[0], "Input polynomial cannot be zero." )
|
||
let(
|
||
roots_err = poly_roots(p,error_bound=true),
|
||
roots = roots_err[0],
|
||
err = roots_err[1]
|
||
)
|
||
is_def(eps)
|
||
? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
|
||
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
|
||
|
||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap |