BOSL2/vnf.scad
2021-03-16 00:07:05 -07:00

1084 lines
42 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: vnf.scad
// VNF structures, holding Vertices 'N' Faces for use with `polyhedron().`
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/vnf.scad>
//////////////////////////////////////////////////////////////////////
include <triangulation.scad>
// Section: Creating Polyhedrons with VNF Structures
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
// first item is a list of vertex points, and the second is a list of face indices into the vertex
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
// merge the various VNFs to get the completed polyhedron vertex list and faces.
EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces.
// Function: is_vnf()
// Usage:
// bool = is_vnf(x);
// Description:
// Returns true if the given value looks like a VNF structure.
function is_vnf(x) =
is_list(x) &&
len(x)==2 &&
is_list(x[0]) &&
is_list(x[1]) &&
(x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0]))) &&
(x[1]==[] || is_vector(x[1][0]));
// Function: is_vnf_list()
// Description: Returns true if the given value looks passingly like a list of VNF structures.
function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]);
// Function: vnf_vertices()
// Description: Given a VNF structure, returns the list of vertex points.
function vnf_vertices(vnf) = vnf[0];
// Function: vnf_faces()
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
function vnf_faces(vnf) = vnf[1];
// Function: vnf_quantize()
// Usage:
// vnf2 = vnf_quantize(vnf,<q>);
// Description:
// Quantizes the vertex coordinates of the VNF to the given quanta `q`.
// Arguments:
// vnf = The VNF to quantize.
// q = The quanta to quantize the VNF coordinates to.
function vnf_quantize(vnf,q=pow(2,-12)) =
[[for (pt = vnf[0]) quant(pt,q)], vnf[1]];
// Function: vnf_get_vertex()
// Usage:
// vvnf = vnf_get_vertex(vnf, p);
// Description:
// Finds the index number of the given vertex point `p` in the given VNF structure `vnf`.
// If said point does not already exist in the VNF vertex list, it is added to the returned VNF.
// Returns: `[INDEX, VNF]` where INDEX is the index of the point in the returned VNF's vertex list,
// and VNF is the possibly modified new VNF structure. If `p` is given as a list of points, then
// the returned INDEX will be a list of indices.
// Arguments:
// vnf = The VNF structue to get the point index from.
// p = The point, or list of points to get the index of.
// Example:
// vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]]
// vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]]
// vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]]
// vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]]
function vnf_get_vertex(vnf=EMPTY_VNF, p) =
let(
isvec = is_vector(p),
pts = isvec? [p] : p,
res = set_union(vnf[0], pts, get_indices=true)
) [
(isvec? res[0][0] : res[0]),
[ res[1], vnf[1] ]
];
// Function: vnf_add_face()
// Usage:
// vnf_add_face(vnf, pts);
// Description:
// Given a VNF structure and a list of face vertex points, adds the face to the VNF structure.
// Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make
// sure that the points are in the correct order to make the face normal point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// pts = The vertex points for the face.
function vnf_add_face(vnf=EMPTY_VNF, pts) =
assert(is_vnf(vnf))
assert(is_path(pts))
let(
res = set_union(vnf[0], pts, get_indices=true),
face = deduplicate(res[0], closed=true)
) [
res[1],
concat(vnf[1], len(face)>2? [face] : [])
];
// Function: vnf_add_faces()
// Usage:
// vnf_add_faces(vnf, faces);
// Description:
// Given a VNF structure and a list of faces, where each face is given as a list of vertex points,
// adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`.
// It is up to the caller to make sure that the points are in the correct order to make the face
// normals point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// faces = The list of faces, where each face is given as a list of vertex points.
function vnf_add_faces(vnf=EMPTY_VNF, faces) =
assert(is_vnf(vnf))
assert(is_list(faces))
let(
res = set_union(vnf[0], flatten(faces), get_indices=true),
idxs = res[0],
nverts = res[1],
offs = cumsum([0, for (face=faces) len(face)]),
ifaces = [
for (i=idx(faces)) [
for (j=idx(faces[i]))
idxs[offs[i]+j]
]
]
) [
nverts,
concat(vnf[1],ifaces)
];
// Function: vnf_merge()
// Usage:
// vnf = vnf_merge([VNF, VNF, VNF, ...], <cleanup>);
// Description:
// Given a list of VNF structures, merges them all into a single VNF structure.
function vnf_merge(vnfs, cleanup=false) =
let (
offs = cumsum([
0, for (vnf = vnfs) len(vnf[0])
])
) [
[for (vnf=vnfs) each vnf[0]],
[
for (i = idx(vnfs)) let(
vnf = vnfs[i],
verts = vnf[0],
faces = vnf[1]
)
for (face = faces) let(
dface = !cleanup ? face :
deduplicate_indexed(verts, face, closed=true)
)
if (len(dface) >= 3)
[ for (j = dface) offs[i] + j ]
]
];
// Function: vnf_compact()
// Usage:
// cvnf = vnf_compact(vnf);
// Description:
// Takes a VNF and consolidates all duplicate vertices, and drops unreferenced vertices.
function vnf_compact(vnf) =
let(
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf,
verts = vnf[0],
faces = [
for (face=vnf[1]) [
for (i=face) verts[i]
]
]
) vnf_add_faces(faces=faces);
// Function: vnf_reverse_faces()
// Usage:
// rvnf = vnf_reverse_faces(vnf);
// Description:
// Reverses the facing of all the faces in the given VNF.
function vnf_reverse_faces(vnf) =
[vnf[0], [for (face=vnf[1]) reverse(face)]];
// Function: vnf_triangulate()
// Usage:
// vnf2 = vnf_triangulate(vnf);
// Description:
// Forces triangulation of faces in the VNF that have more than 3 vertices.
function vnf_triangulate(vnf) =
let(
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf,
verts = vnf[0]
) [verts, triangulate_faces(verts, vnf[1])];
// Function: vnf_vertex_array()
// Usage:
// vnf = vnf_vertex_array(points, <caps>, <cap1>, <cap2>, <reverse>, <col_wrap>, <row_wrap>, <vnf>);
// Description:
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
// the first and/or last rows.
// Arguments:
// points = A list of vertices to divide into columns and rows.
// caps = If true, add endcap faces to the first AND last rows.
// cap1 = If true, add an endcap face to the first row.
// cap2 = If true, add an endcap face to the last row.
// col_wrap = If true, add faces to connect the last column to the first.
// row_wrap = If true, add faces to connect the last row to the first.
// reverse = If true, reverse all face normals.
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "quincunx", and "convex".
// vnf = If given, add all the vertices and faces to this existing VNF structure.
// Example(3D):
// vnf = vnf_vertex_array(
// points=[
// for (h = [0:5:180-EPSILON]) [
// for (t = [0:5:360-EPSILON])
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
// ]
// ],
// col_wrap=true, caps=true, reverse=true, style="alt"
// );
// vnf_polyhedron(vnf);
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360-EPSILON])
// apply(
// zrot(a) * right(30) * xrot(90),
// path3d(circle(d=20))
// )
// ],
// col_wrap=true, row_wrap=true, reverse=true
// );
// vnf_polyhedron(vnf);
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360]) apply(
// zrot(a) * right(30) * xrot(90) * zrot(a/2+60),
// path3d(square([1,10], center=true))
// )
// ],
// col_wrap=true, reverse=true
// );
// vnf_polyhedron(vnf);
// Example(3D): Assembling a Polyhedron from Multiple Parts
// wall_points = [
// for (a = [-90:2:90]) apply(
// up(a) * scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1]),
// path3d(circle(d=100))
// )
// ];
// cap = [
// for (a = [0:0.01:1+EPSILON]) apply(
// up(90-5*sin(a*360*2)) * scale([a,a,1]),
// wall_points[0]
// )
// ];
// cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))];
// cap2 = [for (p=cap) up(90, p=p)];
// vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true);
// vnf2 = vnf_vertex_array(points=cap1, col_wrap=true);
// vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true);
// vnf_polyhedron([vnf1, vnf2, vnf3]);
function vnf_vertex_array(
points,
caps, cap1, cap2,
col_wrap=false,
row_wrap=false,
reverse=false,
style="default",
vnf=EMPTY_VNF
) =
assert((!caps)||(caps&&col_wrap))
assert(in_list(style,["default","alt","quincunx", "convex"]))
assert(is_consistent(points), "Non-rectangular or invalid point array")
let(
pts = flatten(points),
pcnt = len(pts),
rows = len(points),
cols = len(points[0]),
cap1 = first_defined([cap1,caps,false]),
cap2 = first_defined([cap2,caps,false]),
colcnt = cols - (col_wrap?0:1),
rowcnt = rows - (row_wrap?0:1),
verts = [
each pts,
if (style=="quincunx") (
for (r = [0:1:rowcnt-1]) (
for (c = [0:1:colcnt-1]) (
let(
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
) mean([pts[i1], pts[i2], pts[i3], pts[i4]])
)
)
)
]
)
rows<=1 || cols<=1 ? vnf :
vnf_merge(cleanup=true, [
vnf, [
verts,
concat(
[
for (r = [0:1:rowcnt-1]) (
for (c = [0:1:colcnt-1]) each (
let(
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
i4 = ((r+0)%rows)*cols + ((c+1)%cols),
faces = style=="quincunx"? (
let(i5 = pcnt + r*colcnt + c)
[[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
) : style=="alt"? (
[[i1,i4,i2],[i2,i4,i3]]
) : style=="convex"? let(
fsets = [
[[i1,i4,i2],[i2,i4,i3]],
[[i1,i3,i2],[i1,i4,i3]]
],
cps = [for (fset=fsets) [for (f=fset) mean(select(pts,f))]],
ns = cps + [for (fset=fsets) [for (f=fset) polygon_normal(select(pts,f))]],
dists = [for (i=idx(fsets)) norm(cps[i][1]-cps[i][0]) - norm(ns[i][1]-ns[i][0])],
test = reverse? dists[0]>dists[1] : dists[0]<dists[1]
) fsets[test?0:1] : (
[[i1,i3,i2],[i1,i4,i3]]
),
rfaces = reverse? [for (face=faces) reverse(face)] : faces,
ffaces = [for (face=rfaces) if(len(deduplicate_indexed(verts,face,closed=true))>=3) face]
) faces
)
)
],
!cap1? [] : [
reverse?
[for (c = [0:1:cols-1]) c] :
[for (c = [cols-1:-1:0]) c]
],
!cap2? [] : [
reverse?
[for (c = [cols-1:-1:0]) (rows-1)*cols + c] :
[for (c = [0:1:cols-1]) (rows-1)*cols + c]
]
)
]
]);
// Module: vnf_polyhedron()
// Usage:
// vnf_polyhedron(vnf);
// vnf_polyhedron([VNF, VNF, VNF, ...]);
// Description:
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
// Arguments:
// vnf = A VNF structure, or list of VNF structures.
// convexity = Max number of times a line could intersect a wall of the shape.
// extent = If true, calculate anchors by extents, rather than intersection. Default: true.
// cp = Centerpoint of VNF to use for anchoring when `extent` is false. Default: `[0, 0, 0]`
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) {
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf;
cp = is_def(cp) ? cp : vnf_centroid(vnf);
attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) {
polyhedron(vnf[0], vnf[1], convexity=convexity);
children();
}
}
// Module: vnf_wireframe()
// Usage:
// vnf_wireframe(vnf, <r|d>);
// Description:
// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for each edge and a sphere at each vertex.
// Arguments:
// vnf = A vnf structure
// r|d = radius or diameter of the cylinders forming the wire frame. Default: r=1
// Example:
// $fn=32;
// ball = sphere(r=20, $fn=6);
// vnf_wireframe(ball,d=1);
// Example:
// include<BOSL2/polyhedra.scad>
// $fn=32;
// cube_oct = regular_polyhedron_info("vnf", name="cuboctahedron", or=20);
// vnf_wireframe(cube_oct);
// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal.
// include<BOSL2/polyhedra.scad>
// $fn=8;
// octahedron = regular_polyhedron_info("vnf", name="octahedron", or=20);
// vnf_wireframe(octahedron,r=5);
module vnf_wireframe(vnf, r, d)
{
r = get_radius(r=r,d=d,dflt=1);
vertex = vnf[0];
edges = unique([for (face=vnf[1], i=idx(face))
sort([face[i], select(face,i+1)])
]);
for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(r=r);
move_copies(vertex) sphere(r=r);
}
// Function: vnf_volume()
// Usage:
// vol = vnf_volume(vnf);
// Description:
// Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume
// if face direction is counter-clockwise.
// Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume.
function vnf_volume(vnf) =
let(verts = vnf[0])
sum([
for(face=vnf[1], j=[1:1:len(face)-2])
cross(verts[face[j+1]], verts[face[j]]) * verts[face[0]]
])/6;
// Function: vnf_centroid()
// Usage:
// vol = vnf_centroid(vnf);
// Description:
// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
// no holes; otherwise the results are undefined.
// Divide the solid up into tetrahedra with the origin as one vertex. The centroid of a tetrahedron is the average of its vertices.
// The centroid of the total is the volume weighted average.
function vnf_centroid(vnf) =
let(
verts = vnf[0],
vol = sum([
for(face=vnf[1], j=[1:1:len(face)-2]) let(
v0 = verts[face[0]],
v1 = verts[face[j]],
v2 = verts[face[j+1]]
) cross(v2,v1)*v0
]),
pos = sum([
for(face=vnf[1], j=[1:1:len(face)-2]) let(
v0 = verts[face[0]],
v1 = verts[face[j]],
v2 = verts[face[j+1]],
vol = cross(v2,v1)*v0
)
(v0+v1+v2)*vol
])
)
pos/vol/4;
function _triangulate_planar_convex_polygons(polys) =
polys==[]? [] :
let(
tris = [for (poly=polys) if (len(poly)==3) poly],
bigs = [for (poly=polys) if (len(poly)>3) poly],
newtris = [for (poly=bigs) select(poly,-2,0)],
newbigs = [for (poly=bigs) select(poly,0,-2)],
newtris2 = _triangulate_planar_convex_polygons(newbigs),
outtris = concat(tris, newtris, newtris2)
) outtris;
//**
// this function may produce degenerate triangles:
// _triangulate_planar_convex_polygons([ [for(i=[0:1]) [i,i],
// [1,-1], [-1,-1],
// for(i=[-1:0]) [i,i] ] ] )
// == [[[-1, -1], [ 0, 0], [0, 0]]
// [[-1, -1], [-1, -1], [0, 0]]
// [[ 1, -1], [-1, -1], [0, 0]]
// [[ 0, 0], [ 1, 1], [1, -1]] ]
//
// Function: vnf_bend()
// Usage:
// bentvnf = vnf_bend(vnf);
// Description:
// Given a VNF that is entirely above, or entirely below the Z=0 plane, bends the VNF around the
// Y axis, splitting up faces as necessary. Returns the bent VNF. Will error out if the VNF
// straddles the Z=0 plane, or if the bent VNF would wrap more than completely around. The 1:1
// radius is where the curved length of the bent VNF matches the length of the original VNF. If the
// `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are
// not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the
// original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard
// `$fa`, `$fs`, and `$fn` variables.
// Arguments:
// vnf = The original VNF to bend.
// r = If given, the radius where the size of the original shape is the same as in the original.
// d = If given, the diameter where the size of the original shape is the same as in the original.
// axis = The axis to wrap around. "X", "Y", or "Z". Default: "Z"
// Example(3D):
// vnf0 = cube([100,40,10], center=true);
// vnf1 = up(50, p=vnf0);
// vnf2 = down(50, p=vnf0);
// bent1 = vnf_bend(vnf1, axis="Y");
// bent2 = vnf_bend(vnf2, axis="Y");
// vnf_polyhedron([bent1,bent2]);
// Example(3D):
// vnf0 = linear_sweep(star(n=5,step=2,d=100), height=10);
// vnf1 = up(50, p=vnf0);
// vnf2 = down(50, p=vnf0);
// bent1 = vnf_bend(vnf1, axis="Y");
// bent2 = vnf_bend(vnf2, axis="Y");
// vnf_polyhedron([bent1,bent2]);
// Example(3D):
// rgn = union(rect([100,20],center=true), rect([20,100],center=true));
// vnf0 = linear_sweep(zrot(45,p=rgn), height=10);
// vnf1 = up(50, p=vnf0);
// vnf2 = down(50, p=vnf0);
// bent1 = vnf_bend(vnf1, axis="Y");
// bent2 = vnf_bend(vnf2, axis="Y");
// vnf_polyhedron([bent1,bent2]);
// Example(3D): Bending Around X Axis.
// rgnr = union(
// rect([20,100],center=true),
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
// );
// vnf0 = xrot(00,p=linear_sweep(rgnr, height=10));
// vnf1 = up(50, p=vnf0);
// #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="X");
// vnf_polyhedron([bent1]);
// Example(3D): Bending Around Y Axis.
// rgn = union(
// rect([20,100],center=true),
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
// );
// rgnr = zrot(-90, p=rgn);
// vnf0 = xrot(00,p=linear_sweep(rgnr, height=10));
// vnf1 = up(50, p=vnf0);
// #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="Y");
// vnf_polyhedron([bent1]);
// Example(3D): Bending Around Z Axis.
// rgn = union(
// rect([20,100],center=true),
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
// );
// rgnr = zrot(90, p=rgn);
// vnf0 = xrot(90,p=linear_sweep(rgnr, height=10));
// vnf1 = fwd(50, p=vnf0);
// #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="Z");
// vnf_polyhedron([bent1]);
function vnf_bend(vnf,r,d,axis="Z") =
let(
chk_axis = assert(in_list(axis,["X","Y","Z"])),
vnf = vnf_triangulate(vnf),
verts = vnf[0],
bounds = pointlist_bounds(verts),
bmin = bounds[0],
bmax = bounds[1],
dflt = axis=="Z"?
max(abs(bmax.y), abs(bmin.y)) :
max(abs(bmax.z), abs(bmin.z)),
r = get_radius(r=r,d=d,dflt=dflt),
width = axis=="X"? (bmax.y-bmin.y) : (bmax.x - bmin.x)
)
assert(width <= 2*PI*r, "Shape would wrap more than completely around the cylinder.")
let(
span_chk = axis=="Z"?
assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") :
assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."),
min_ang = 180 * bmin.x / (PI * r),
max_ang = 180 * bmax.x / (PI * r),
ang_span = max_ang-min_ang,
steps = ceil(segs(r) * ang_span/360),
step = width / steps,
bend_at = axis=="X"? [for(i = [1:1:steps-1]) i*step+bmin.y] :
[for(i = [1:1:steps-1]) i*step+bmin.x],
facepolys = [for (face=vnf[1]) select(verts,face)],
splits = axis=="X"?
split_polygons_at_each_y(facepolys, bend_at) :
split_polygons_at_each_x(facepolys, bend_at),
newtris = _triangulate_planar_convex_polygons(splits),
bent_faces = [
for (tri = newtris) [
for (p = tri) let(
a = axis=="X"? 180*p.y/(r*PI) * sign(bmax.z) :
axis=="Y"? 180*p.x/(r*PI) * sign(bmax.z) :
180*p.x/(r*PI) * sign(bmax.y)
)
axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] :
axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] :
[p.y*sin(a), p.y*cos(a), p.z]
]
]
) vnf_add_faces(faces=bent_faces);
// Function&Module: vnf_validate()
// Usage: As Function
// fails = vnf_validate(vnf);
// Usage: As Module
// vnf_validate(vnf, <size>);
// Description:
// When called as a function, returns a list of non-manifold errors with the given VNF.
// Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`.
// When called as a module, echoes the non-manifold errors to the console, and color hilites the
// bad edges and vertices, overlaid on a transparent gray polyhedron of the VNF.
// .
// Currently checks for these problems:
// Type | Color | Code | Message
// ------- | -------- | ------------ | ---------------------------------
// WARNING | Yellow | BIG_FACE | Face has more than 3 vertices, and may confuse CGAL.
// WARNING | Brown | NULL_FACE | Face has zero area.
// ERROR | Cyan | NONPLANAR | Face vertices are not coplanar.
// ERROR | Brown | DUP_FACE | Multiple instances of the same face.
// ERROR | Orange | MULTCONN | Multiply Connected Geometry. Too many faces attached at Edge.
// ERROR | Violet | REVERSAL | Faces reverse across edge.
// ERROR | Red | T_JUNCTION | Vertex is mid-edge on another Face.
// ERROR | Blue | FACE_ISECT | Faces intersect.
// ERROR | Magenta | HOLE_EDGE | Edge bounds Hole.
// .
// Still to implement:
// - Overlapping coplanar faces.
// Arguments:
// vnf = The VNF to validate.
// size = The width of the lines and diameter of points used to highlight edges and vertices. Module only. Default: 1
// check_isects = If true, performs slow checks for intersecting faces. Default: false
// Example: BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices.
// vnf = skin([
// path3d(regular_ngon(n=3, d=100),0),
// path3d(regular_ngon(n=5, d=100),100)
// ], slices=0, caps=true, method="tangent");
// vnf_validate(vnf);
// Example: NONPLANAR Errors; Face Vertices are Not Coplanar
// a = [ 0, 0,-50];
// b = [-50,-50, 50];
// c = [-50, 50, 50];
// d = [ 50, 50, 60];
// e = [ 50,-50, 50];
// vnf = vnf_add_faces(faces=[
// [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e]
// ]);
// vnf_validate(vnf);
// Example: MULTCONN Errors; More Than Two Faces Attached to the Same Edge. This confuses CGAL, and can lead to failed renders.
// vnf = vnf_triangulate(linear_sweep(union(square(50), square(50,anchor=BACK+RIGHT)), height=50));
// vnf_validate(vnf);
// Example: REVERSAL Errors; Faces Reversed Across Edge
// vnf1 = skin([
// path3d(square(100,center=true),0),
// path3d(square(100,center=true),100),
// ], slices=0, caps=false);
// vnf = vnf_add_faces(vnf=vnf1, faces=[
// [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]],
// [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]],
// [[-50,-50,100], [-50, 50,100], [ 50, 50,100]],
// [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]],
// ]);
// vnf_validate(vnf);
// Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face.
// vnf1 = skin([
// path3d(square(100,center=true),0),
// path3d(square(100,center=true),100),
// ], slices=0, caps=false);
// vnf = vnf_add_faces(vnf=vnf1, faces=[
// [[-50,-50,0], [50,50,0], [-50,50,0]],
// [[-50,-50,0], [50,-50,0], [50,50,0]],
// [[-50,-50,100], [-50,50,100], [0,50,100]],
// [[-50,-50,100], [0,50,100], [0,-50,100]],
// [[0,-50,100], [0,50,100], [50,50,100]],
// [[0,-50,100], [50,50,100], [50,-50,100]],
// ]);
// vnf_validate(vnf);
// Example: FACE_ISECT Errors; Faces Intersect
// vnf = vnf_merge([
// vnf_triangulate(linear_sweep(square(100,center=true), height=100)),
// move([75,35,30],p=vnf_triangulate(linear_sweep(square(100,center=true), height=100)))
// ]);
// vnf_validate(vnf,size=2,check_isects=true);
// Example: HOLE_EDGE Errors; Edges Adjacent to Holes.
// vnf = skin([
// path3d(regular_ngon(n=4, d=100),0),
// path3d(regular_ngon(n=5, d=100),100)
// ], slices=0, caps=false);
// vnf_validate(vnf,size=2);
function vnf_validate(vnf, show_warns=true, check_isects=false) =
assert(is_path(vnf[0]))
let(
vnf = vnf_compact(vnf),
varr = vnf[0],
faces = vnf[1],
lvarr = len(varr),
edges = sort([
for (face=faces, edge=pair(face,true))
edge[0]<edge[1]? edge : [edge[1],edge[0]]
]),
dfaces = [
for (face=faces) let(
face=deduplicate_indexed(varr,face,closed=true)
) if(len(face)>=3)
face
],
face_areas = [
for (face = faces)
len(face) < 3? 0 :
polygon_area([for (k=face) varr[k]])
],
edgecnts = unique_count(edges),
uniq_edges = edgecnts[0],
issues = []
)
let(
big_faces = !show_warns? [] : [
for (face = faces)
if (len(face) > 3)
_vnf_validate_err("BIG_FACE", [for (i=face) varr[i]])
],
null_faces = !show_warns? [] : [
for (i = idx(faces)) let(
face = faces[i],
area = face_areas[i],
faceverts = [for (k=face) varr[k]]
)
if (is_num(area) && abs(area) < EPSILON)
_vnf_validate_err("NULL_FACE", faceverts)
],
issues = concat(big_faces, null_faces)
)
let(
bad_indices = [
for (face = faces, idx = face)
if (idx < 0 || idx >= lvarr)
_vnf_validate_err("BAD_INDEX", [idx])
],
issues = concat(issues, bad_indices)
) issues? issues :
let(
repeated_faces = [
for (i=idx(dfaces), j=idx(dfaces))
if (i!=j) let(
face1 = dfaces[i],
face2 = dfaces[j]
) if (min(face1) == min(face2)) let(
min1 = min_index(face1),
min2 = min_index(face2)
) if (min1 == min2) let(
sface1 = list_rotate(face1,min1),
sface2 = list_rotate(face2,min2)
) if (sface1 == sface2)
_vnf_validate_err("DUP_FACE", [for (i=sface1) varr[i]])
],
issues = concat(issues, repeated_faces)
) issues? issues :
let(
multconn_edges = unique([
for (i = idx(uniq_edges))
if (edgecnts[1][i]>2)
_vnf_validate_err("MULTCONN", [for (i=uniq_edges[i]) varr[i]])
]),
issues = concat(issues, multconn_edges)
) issues? issues :
let(
reversals = unique([
for(i = idx(dfaces), j = idx(dfaces)) if(i != j)
for(edge1 = pair(faces[i],true))
for(edge2 = pair(faces[j],true))
if(edge1 == edge2) // Valid adjacent faces will never have the same vertex ordering.
if(_edge_not_reported(edge1, varr, multconn_edges))
_vnf_validate_err("REVERSAL", [for (i=edge1) varr[i]])
]),
issues = concat(issues, reversals)
) issues? issues :
let(
t_juncts = unique([
for (v=idx(varr), edge=uniq_edges) let(
ia = edge[0],
ib = v,
ic = edge[1]
)
if (ia!=ib && ib!=ic && ia!=ic) let(
a = varr[ia],
b = varr[ib],
c = varr[ic]
)
if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let(
pt = segment_closest_point([a,c],b)
)
if (approx(pt,b))
_vnf_validate_err("T_JUNCTION", [b])
]),
issues = concat(issues, t_juncts)
) issues? issues :
let(
isect_faces = !check_isects? [] : unique([
for (i = [0:1:len(faces)-2]) let(
f1 = faces[i],
poly1 = select(varr, faces[i]),
plane1 = plane3pt(poly1[0], poly1[1], poly1[2]),
normal1 = [plane1[0], plane1[1], plane1[2]]
)
for (j = [i+1:1:len(faces)-1]) let(
f2 = faces[j],
poly2 = select(varr, f2),
val = poly2 * normal1
)
if( min(val)<=plane1[3] && max(val)>=plane1[3] ) let(
plane2 = plane_from_polygon(poly2),
normal2 = [plane2[0], plane2[1], plane2[2]],
val = poly1 * normal2
)
if( min(val)<=plane2[3] && max(val)>=plane2[3] ) let(
shared_edges = [
for (edge1 = pair(f1, true), edge2 = pair(f2, true))
if (edge1 == [edge2[1], edge2[0]]) 1
]
)
if (!shared_edges) let(
line = plane_intersection(plane1, plane2)
)
if (!is_undef(line)) let(
isects = polygon_line_intersection(poly1, line)
)
if (!is_undef(isects))
for (isect = isects)
if (len(isect) > 1) let(
isects2 = polygon_line_intersection(poly2, isect, bounded=true)
)
if (!is_undef(isects2))
for (seg = isects2)
if (seg[0] != seg[1])
_vnf_validate_err("FACE_ISECT", seg)
]),
issues = concat(issues, isect_faces)
) issues? issues :
let(
hole_edges = unique([
for (i=idx(uniq_edges))
if (edgecnts[1][i]<2)
if (_pts_not_reported(uniq_edges[i], varr, t_juncts))
if (_pts_not_reported(uniq_edges[i], varr, isect_faces))
_vnf_validate_err("HOLE_EDGE", [for (i=uniq_edges[i]) varr[i]])
]),
issues = concat(issues, hole_edges)
) issues? issues :
let(
nonplanars = unique([
for (i = idx(faces)) let(
face = faces[i],
area = face_areas[i],
faceverts = [for (k=face) varr[k]]
)
if (is_num(area) && abs(area) > EPSILON)
if (!coplanar(faceverts))
_vnf_validate_err("NONPLANAR", faceverts)
]),
issues = concat(issues, nonplanars)
) issues;
_vnf_validate_errs = [
["BIG_FACE", "WARNING", "cyan", "Face has more than 3 vertices, and may confuse CGAL"],
["NULL_FACE", "WARNING", "blue", "Face has zero area."],
["BAD_INDEX", "ERROR", "cyan", "Invalid face vertex index."],
["NONPLANAR", "ERROR", "yellow", "Face vertices are not coplanar"],
["DUP_FACE", "ERROR", "brown", "Multiple instances of the same face."],
["MULTCONN", "ERROR", "orange", "Multiply Connected Geometry. Too many faces attached at Edge"],
["REVERSAL", "ERROR", "violet", "Faces Reverse Across Edge"],
["T_JUNCTION", "ERROR", "magenta", "Vertex is mid-edge on another Face"],
["FACE_ISECT", "ERROR", "brown", "Faces intersect"],
["HOLE_EDGE", "ERROR", "red", "Edge bounds Hole"]
];
function _vnf_validate_err(name, extra) =
let(
info = [for (x = _vnf_validate_errs) if (x[0] == name) x][0]
) concat(info, [extra]);
function _pts_not_reported(pts, varr, reports) =
[
for (i = pts, report = reports, pt = report[3])
if (varr[i] == pt) 1
] == [];
function _edge_not_reported(edge, varr, reports) =
let(
edge = sort([for (i=edge) varr[i]])
) [
for (report = reports) let(
pts = sort(report[3])
) if (len(pts)==2 && edge == pts) 1
] == [];
module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) {
faults = vnf_validate(
vnf, show_warns=show_warns,
check_isects=check_isects
);
for (fault = faults) {
err = fault[0];
typ = fault[1];
clr = fault[2];
msg = fault[3];
pts = fault[4];
echo(str(typ, " ", err, " (", clr ,"): ", msg, " at ", pts));
color(clr) {
if (is_vector(pts[0])) {
if (len(pts)==2) {
stroke(pts, width=size, closed=true, endcaps="butt", hull=false, $fn=8);
} else if (len(pts)>2) {
stroke(pts, width=size, closed=true, hull=false, $fn=8);
polyhedron(pts,[[for (i=idx(pts)) i]]);
} else {
move_copies(pts) sphere(d=size*3, $fn=18);
}
}
}
}
color([0.5,0.5,0.5,0.67]) vnf_polyhedron(vnf);
}
// Section: VNF Transformations
// Function: vnf_halfspace()
// Usage:
// vnf_halfspace([a,b,c,d], vnf)
// Description:
// returns the intersection of the VNF with the given half-space.
// Arguments:
// halfspace = half-space to intersect with, given as the four coefficients of the affine inequation a\*x+b\*y+c\*z≥ d.
function _vnf_halfspace_pts(halfspace, points, faces,
inside=undef, coords=[], map=[]) =
/* Recursive function to compute the intersection of points (and edges,
* but not faces) with with the half-space.
* Parameters:
* halfspace a vector(4)
* points a list of points3d
* faces a list of indexes in points
* inside a vector{bool} determining which points belong to the
* half-space; if undef, it is initialized at first loop.
* coords the coordinates of the points in the intersection
* map the logical map (old point) → (new point(s)):
* if point i is kept, then map[i] = new-index-for-i;
* if point i is dropped, then map[i] = [[j1, k1], [j2, k2], …],
* where points j1,… are kept (old index)
* and k1,… are the matching intersections (new index).
* Returns the triple [coords, map, inside].
*
*/
let(i=len(map), n=len(coords)) // we are currently processing point i
// termination test:
i >= len(points) ? [ coords, map, inside ] :
let(inside = !is_undef(inside) ? inside :
[for(x=points) halfspace*concat(x,[-1]) >= 0],
pi = points[i])
// inside half-space: keep the point (and reindex)
inside[i] ? _vnf_halfspace_pts(halfspace, points, faces, inside,
concat(coords, [pi]), concat(map, [n]))
: // else: compute adjacent vertices (adj)
let(adj = unique([for(f=faces) let(m=len(f), j=search(i, f)[0])
each if(j!=undef) [f[(j+1)%m], f[(j+m-1)%m]] ]),
// filter those which lie in half-space:
adj2 = [for(x=adj) if(inside[x]) x],
zi = halfspace*concat(pi, [-1]))
_vnf_halfspace_pts(halfspace, points, faces, inside,
// new points: we append all these intersection points
concat(coords, [for(j=adj2) let(zj=halfspace*concat(points[j],[-1]))
(zi*points[j]-zj*pi)/(zi-zj)]),
// map: we add the info
concat(map, [[for(y=enumerate(adj2)) [y[1], n+y[0]]]]));
function _vnf_halfspace_face(face, map, inside, i=0,
newface=[], newedge=[], exit) =
/* Recursive function to intersect a face of the VNF with the half-plane.
* Arguments:
* face: the list of points of the face (old indices).
* map: as produced by _vnf_halfspace_pts
* inside: vector{bool} containing half-space info
* i: index for iteration
* exit: boolean; is first point in newedge an exit or an entrance from
* half-space?
* newface: list of (new indexes of) points on the face
* newedge: list of new points on the plane (even number of points)
* Return value: [newface, new-edges], where new-edges is a list of
* pairs [entrance-node, exit-node] (new indices).
*/
// termination condition:
(i >= len(face)) ? [ newface,
// if exit==true then we return newedge[1,0], newedge[3,2], ...
// otherwise newedge[0,1], newedge[2,3], ...;
// all edges are oriented (entrance->exit), so that by following the
// arrows we obtain a correctly-oriented face:
let(k = exit ? 0 : 1)
[for(i=[0:2:len(newedge)-2]) [newedge[i+k], newedge[i+1-k]]] ]
: // recursion case: p is current point on face, q is next point
let(p = face[i], q = face[(i+1)%len(face)],
// if p is inside half-plane, keep it in the new face:
newface0 = inside[p] ? concat(newface, [map[p]]) : newface)
// if the current segment does not intersect, this is all:
inside[p] == inside[q] ? _vnf_halfspace_face(face, map, inside, i+1,
newface0, newedge, exit)
: // otherwise, we must add the intersection point:
// rename the two points p,q as inner and outer point:
let(in = inside[p] ? p : q, out = p+q-in,
inter=[for(a=map[out]) if(a[0]==in) a[1]][0])
_vnf_halfspace_face(face, map, inside, i+1,
concat(newface0, [inter]),
concat(newedge, [inter]),
is_undef(exit) ? inside[p] : exit);
function _vnf_halfspace_path_search_edge(edge, paths, i=0, ret=[undef,undef]) =
/* given an oriented edge [x,y] and a set of oriented paths,
* returns the indices [i,j] of paths [before, after] given edge
*/
// termination condition
i >= len(paths) ? ret:
_vnf_halfspace_path_search_edge(edge, paths, i+1,
[last(paths[i]) == edge[0] ? i : ret[0],
paths[i][0] == edge[1] ? i : ret[1]]);
function _vnf_halfspace_paths(edges, i=0, paths=[]) =
/* given a set of oriented edges [x,y],
returns all paths [x,y,z,..] that may be formed from these edges.
A closed path will be returned with equal first and last point.
i: index of currently examined edge
*/
i >= len(edges) ? paths : // termination condition
let(e=edges[i], s = _vnf_halfspace_path_search_edge(e, paths))
_vnf_halfspace_paths(edges, i+1,
// we keep all paths untouched by e[i]
concat([for(i=[0:1:len(paths)-1]) if(i!= s[0] && i != s[1]) paths[i]],
is_undef(s[0])? (
// fresh e: create a new path
is_undef(s[1]) ? [e] :
// e attaches to beginning of previous path
[concat([e[0]], paths[s[1]])]
) :// edge attaches to end of previous path
is_undef(s[1]) ? [concat(paths[s[0]], [e[1]])] :
// edge merges two paths
s[0] != s[1] ? [concat(paths[s[0]], paths[s[1]])] :
// edge closes a loop
[concat(paths[s[0]], [e[1]])]));
function vnf_halfspace(_arg1=_undef, _arg2=_undef,
halfspace=_undef, vnf=_undef) =
// here is where we wish that OpenSCAD had array lvalues...
let(args=get_named_args([_arg1, _arg2], [[halfspace],[vnf]]),
halfspace=args[0], vnf=args[1])
assert(is_vector(halfspace, 4),
"half-space must be passed as a length 4 affine form")
assert(is_vnf(vnf), "must pass a vnf")
// read points
let(tmp1=_vnf_halfspace_pts(halfspace, vnf[0], vnf[1]),
coords=tmp1[0], map=tmp1[1], inside=tmp1[2],
// cut faces and generate edges
tmp2= [for(f=vnf[1]) _vnf_halfspace_face(f, map, inside)],
newfaces=[for(x=tmp2) if(x[0]!=[]) x[0]],
newedges=[for(x=tmp2) each x[1]],
// generate new faces
paths=_vnf_halfspace_paths(newedges),
loops=[for(p=paths) if(p[0] == last(p)) p])
[coords, concat(newfaces, loops)];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap