mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
654 lines
25 KiB
OpenSCAD
654 lines
25 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: paths.scad
|
|
// Polylines, polygons and paths.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
include <BOSL2/triangulation.scad>
|
|
|
|
|
|
// Section: Functions
|
|
|
|
|
|
// Function: simplify2d_path()
|
|
// Description:
|
|
// Takes a 2D polyline and removes unnecessary collinear points.
|
|
// Usage:
|
|
// simplify2d_path(path, [eps])
|
|
// Arguments:
|
|
// path = A list of 2D path points.
|
|
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
|
|
function simplify2d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
|
|
|
|
|
|
// Function: simplify3d_path()
|
|
// Description:
|
|
// Takes a 3D polyline and removes unnecessary collinear points.
|
|
// Usage:
|
|
// simplify3d_path(path, [eps])
|
|
// Arguments:
|
|
// path = A list of 3D path points.
|
|
// eps = Largest angle delta between segments to count as colinear. Default: 1e-6
|
|
function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
|
|
|
|
|
|
// Function: path_length()
|
|
// Usage:
|
|
// path_length(path,[closed])
|
|
// Description:
|
|
// Returns the length of the path.
|
|
// Arguments:
|
|
// path = The list of points of the path to measure.
|
|
// closed = true if the path is closed. Default: false
|
|
// Example:
|
|
// path = [[0,0], [5,35], [60,-25], [80,0]];
|
|
// echo(path_length(path));
|
|
function path_length(path,closed=false) =
|
|
len(path)<2? 0 :
|
|
sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0);
|
|
|
|
|
|
// Function: path3d_spiral()
|
|
// Description:
|
|
// Returns a 3D spiral path.
|
|
// Usage:
|
|
// path3d_spiral(turns, h, n, r|d, [cp], [scale]);
|
|
// Arguments:
|
|
// h = Height of spiral.
|
|
// turns = Number of turns in spiral.
|
|
// n = Number of spiral sides.
|
|
// r = Radius of spiral.
|
|
// d = Radius of spiral.
|
|
// cp = Centerpoint of spiral. Default: `[0,0]`
|
|
// scale = [X,Y] scaling factors for each axis. Default: `[1,1]`
|
|
// Example(3D):
|
|
// trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true);
|
|
function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let(
|
|
rr=get_radius(r=r, d=d, dflt=100),
|
|
cnt=floor(turns*n),
|
|
dz=h/cnt
|
|
) [
|
|
for (i=[0:1:cnt]) [
|
|
rr * cos(i*360/n) * scale.x + cp.x,
|
|
rr * sin(i*360/n) * scale.y + cp.y,
|
|
i*dz
|
|
]
|
|
];
|
|
|
|
|
|
// Function: points_along_path3d()
|
|
// Usage:
|
|
// points_along_path3d(polyline, path);
|
|
// Description:
|
|
// Calculates the vertices needed to create a `polyhedron()` of the
|
|
// extrusion of `polyline` along `path`. The closed 2D path shold be
|
|
// centered on the XY plane. The 2D path is extruded perpendicularly
|
|
// along the 3D path. Produces a list of 3D vertices. Vertex count
|
|
// is `len(polyline)*len(path)`. Gives all the reoriented vertices
|
|
// for `polyline` at the first point in `path`, then for the second,
|
|
// and so on.
|
|
// Arguments:
|
|
// polyline = A closed list of 2D path points.
|
|
// path = A list of 3D path points.
|
|
function points_along_path3d(
|
|
polyline, // The 2D polyline to drag along the 3D path.
|
|
path, // The 3D polyline path to follow.
|
|
q=Q_Ident(), // Used in recursion
|
|
n=0 // Used in recursion
|
|
) = let(
|
|
end = len(path)-1,
|
|
v1 = (n == 0)? [0, 0, 1] : normalize(path[n]-path[n-1]),
|
|
v2 = (n == end)? normalize(path[n]-path[n-1]) : normalize(path[n+1]-path[n]),
|
|
crs = cross(v1, v2),
|
|
axis = norm(crs) <= 0.001? [0, 0, 1] : crs,
|
|
ang = vector_angle(v1, v2),
|
|
hang = ang * (n==0? 1.0 : 0.5),
|
|
hrot = Quat(axis, hang),
|
|
arot = Quat(axis, ang),
|
|
roth = Q_Mul(hrot, q),
|
|
rotm = Q_Mul(arot, q)
|
|
) concat(
|
|
[for (i = [0:1:len(polyline)-1]) Q_Rot_Vector(point3d(polyline[i]),roth) + path[n]],
|
|
(n == end)? [] : points_along_path3d(polyline, path, rotm, n+1)
|
|
);
|
|
|
|
|
|
|
|
// Section: 2D Modules
|
|
|
|
|
|
// Module: modulated_circle()
|
|
// Description:
|
|
// Creates a 2D polygon circle, modulated by one or more superimposed sine waves.
|
|
// Arguments:
|
|
// r = radius of the base circle.
|
|
// sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle.
|
|
// Example(2D):
|
|
// modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6);
|
|
module modulated_circle(r=40, sines=[10])
|
|
{
|
|
freqs = len(sines)>0? [for (i=sines) i[1]] : [5];
|
|
points = [
|
|
for (a = [0 : (360/segs(r)/max(freqs)) : 360])
|
|
let(nr=r+sum_of_sines(a,sines)) [nr*cos(a), nr*sin(a)]
|
|
];
|
|
polygon(points);
|
|
}
|
|
|
|
|
|
// Section: 3D Modules
|
|
|
|
|
|
// Module: extrude_from_to()
|
|
// Description:
|
|
// Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
|
|
// Arguments:
|
|
// pt1 = starting point of extrusion.
|
|
// pt2 = ending point of extrusion.
|
|
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
|
|
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
|
|
// scale = scale multiplier for end of extrusion compared the start.
|
|
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
|
|
// Example(FlatSpin):
|
|
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
|
|
// xspread(3) circle(3, $fn=32);
|
|
// }
|
|
module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slices=undef) {
|
|
rtp = xyz_to_spherical(pt2-pt1);
|
|
translate(pt1) {
|
|
rotate([0, rtp[2], rtp[1]]) {
|
|
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: spiral_sweep()
|
|
// Description:
|
|
// Takes a closed 2D polyline path, centered on the XY plane, and
|
|
// extrudes it along a 3D spiral path of a given radius, height and twist.
|
|
// Arguments:
|
|
// polyline = Array of points of a polyline path, to be extruded.
|
|
// h = height of the spiral to extrude along.
|
|
// r = radius of the spiral to extrude along.
|
|
// twist = number of degrees of rotation to spiral up along height.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
|
|
// Example:
|
|
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
|
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
|
|
module spiral_sweep(polyline, h, r, twist=360, center=undef, anchor=BOTTOM, spin=0, orient=UP) {
|
|
pline_count = len(polyline);
|
|
steps = ceil(segs(r)*(twist/360));
|
|
|
|
poly_points = [
|
|
for (
|
|
p = [0:1:steps]
|
|
) let (
|
|
a = twist * (p/steps),
|
|
dx = r*cos(a),
|
|
dy = r*sin(a),
|
|
dz = h * (p/steps),
|
|
pts = affine3d_apply(
|
|
polyline, [
|
|
affine3d_xrot(90),
|
|
affine3d_zrot(a),
|
|
affine3d_translate([dx, dy, dz-h/2])
|
|
]
|
|
)
|
|
) for (pt = pts) pt
|
|
];
|
|
|
|
poly_faces = concat(
|
|
[[for (b = [0:1:pline_count-1]) b]],
|
|
[
|
|
for (
|
|
p = [0:1:steps-1],
|
|
b = [0:1:pline_count-1],
|
|
i = [0:1]
|
|
) let (
|
|
b2 = (b == pline_count-1)? 0 : b+1,
|
|
p0 = p * pline_count + b,
|
|
p1 = p * pline_count + b2,
|
|
p2 = (p+1) * pline_count + b2,
|
|
p3 = (p+1) * pline_count + b,
|
|
pt = (i==0)? [p0, p2, p1] : [p0, p3, p2]
|
|
) pt
|
|
],
|
|
[[for (b = [pline_count-1:-1:0]) b+(steps)*pline_count]]
|
|
);
|
|
|
|
tri_faces = triangulate_faces(poly_points, poly_faces);
|
|
orient_and_anchor([r,r,h], orient, anchor, spin=spin, center=center, geometry="cylinder", chain=true) {
|
|
polyhedron(points=poly_points, faces=tri_faces, convexity=10);
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: path_sweep()
|
|
// Description:
|
|
// Takes a closed 2D path `polyline`, centered on the XY plane, and extrudes it perpendicularly along a 3D path `path`, forming a solid.
|
|
// Arguments:
|
|
// polyline = Array of points of a polyline path, to be extruded.
|
|
// path = Array of points of a polyline path, to extrude along.
|
|
// ang = Angle in degrees to rotate 2D polyline before extrusion.
|
|
// convexity = max number of surfaces any single ray could pass through.
|
|
// Example(FlatSpin):
|
|
// shape = [[0,-10], [5,-3], [5,3], [0,10], [30,0]];
|
|
// path = concat(
|
|
// [for (a=[30:30:180]) [50*cos(a)+50, 50*sin(a), 20*sin(a)]],
|
|
// [for (a=[330:-30:180]) [50*cos(a)-50, 50*sin(a), 20*sin(a)]]
|
|
// );
|
|
// path_sweep(shape, path, ang=140);
|
|
module path_sweep(polyline, path, ang=0, convexity=10) {
|
|
pline_count = len(polyline);
|
|
path_count = len(path);
|
|
|
|
polyline = rotate_points2d(path2d(polyline), ang);
|
|
poly_points = points_along_path3d(polyline, path);
|
|
|
|
poly_faces = concat(
|
|
[[for (b = [0:1:pline_count-1]) b]],
|
|
[
|
|
for (
|
|
p = [0:1:path_count-2],
|
|
b = [0:1:pline_count-1],
|
|
i = [0:1]
|
|
) let (
|
|
b2 = (b == pline_count-1)? 0 : b+1,
|
|
p0 = p * pline_count + b,
|
|
p1 = p * pline_count + b2,
|
|
p2 = (p+1) * pline_count + b2,
|
|
p3 = (p+1) * pline_count + b,
|
|
pt = (i==0)? [p0, p2, p1] : [p0, p3, p2]
|
|
) pt
|
|
],
|
|
[[for (b = [pline_count-1:-1:0]) b+(path_count-1)*pline_count]]
|
|
);
|
|
|
|
tri_faces = triangulate_faces(poly_points, poly_faces);
|
|
polyhedron(points=poly_points, faces=tri_faces, convexity=convexity);
|
|
}
|
|
|
|
|
|
|
|
// Module: path_extrude()
|
|
// Description:
|
|
// Extrudes 2D children along a 3D polyline path. This may be slow.
|
|
// Arguments:
|
|
// path = array of points for the bezier path to extrude along.
|
|
// convexity = maximum number of walls a ran can pass through.
|
|
// clipsize = increase if artifacts are left. Default: 1000
|
|
// Example(FlatSpin):
|
|
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
|
|
// path_extrude(path) circle(r=10, $fn=6);
|
|
module path_extrude(path, convexity=10, clipsize=100) {
|
|
function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let(
|
|
v2 = path[i+1] - path[i],
|
|
ang = vector_angle(v,v2),
|
|
axis = ang>0.001? normalize(cross(v,v2)) : [0,0,1],
|
|
newq = Q_Mul(Quat(axis, ang), q),
|
|
dist = norm(v2)
|
|
) i < (len(path)-2)?
|
|
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
|
|
[[dist, newq, ang]];
|
|
|
|
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
|
|
ptcount = len(path);
|
|
pquats = polyquats(path);
|
|
for (i = [0:1:ptcount-2]) {
|
|
pt1 = path[i];
|
|
pt2 = path[i+1];
|
|
dist = pquats[i][0];
|
|
q = pquats[i][1];
|
|
difference() {
|
|
translate(pt1) {
|
|
Qrot(q) {
|
|
down(clipsize/2/2) {
|
|
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
translate(pt1) {
|
|
hq = (i > 0)? Q_Slerp(q, pquats[i-1][1], 0.5) : q;
|
|
Qrot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
|
|
}
|
|
translate(pt2) {
|
|
hq = (i < ptcount-2)? Q_Slerp(q, pquats[i+1][1], 0.5) : q;
|
|
Qrot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: trace_polyline()
|
|
// Description:
|
|
// Renders lines between each point of a polyline path.
|
|
// Can also optionally show the individual vertex points.
|
|
// Arguments:
|
|
// pline = The array of points in the polyline.
|
|
// showpts = If true, draw vertices and control points.
|
|
// N = Mark the first and every Nth vertex after in a different color and shape.
|
|
// size = Diameter of the lines drawn.
|
|
// color = Color to draw the lines (but not vertices) in.
|
|
// Example(FlatSpin):
|
|
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
|
|
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
|
|
module trace_polyline(pline, showpts=false, N=1, size=1, color="yellow") {
|
|
sides = segs(size/2);
|
|
if (showpts) {
|
|
for (i = [0:1:len(pline)-1]) {
|
|
translate(pline[i]) {
|
|
if (i%N == 0) {
|
|
color("blue") sphere(d=size*2.5, $fn=8);
|
|
} else {
|
|
color("red") {
|
|
cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
|
xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
|
yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (N!=3) {
|
|
path_sweep(circle(d=size,$fn=sides), path3d(pline));
|
|
} else {
|
|
for (i = [0:1:len(pline)-2]) {
|
|
if (N!=3 || (i%N) != 1) {
|
|
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: debug_polygon()
|
|
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
|
|
// Arguments:
|
|
// points = The array of 2D polygon vertices.
|
|
// paths = The path connections between the vertices.
|
|
// convexity = The max number of walls a ray can pass through the given polygon paths.
|
|
// Example(Big2D):
|
|
// debug_polygon(
|
|
// points=concat(
|
|
// regular_ngon(or=10, n=8),
|
|
// regular_ngon(or=8, n=8)
|
|
// ),
|
|
// paths=[
|
|
// [for (i=[0:7]) i],
|
|
// [for (i=[15:-1:8]) i]
|
|
// ]
|
|
// );
|
|
module debug_polygon(points, paths=undef, convexity=2, size=1)
|
|
{
|
|
pths = is_undef(paths)? [for (i=[0:1:len(points)-1]) i] : is_num(paths[0])? [paths] : paths;
|
|
echo(points=points);
|
|
echo(paths=paths);
|
|
linear_extrude(height=0.01, convexity=convexity, center=true) {
|
|
polygon(points=points, paths=paths, convexity=convexity);
|
|
}
|
|
for (i = [0:1:len(points)-1]) {
|
|
color("red") {
|
|
up(0.2) {
|
|
translate(points[i]) {
|
|
linear_extrude(height=0.1, convexity=10, center=true) {
|
|
text(text=str(i), size=size, halign="center", valign="center");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (j = [0:1:len(paths)-1]) {
|
|
path = paths[j];
|
|
translate(points[path[0]]) {
|
|
color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12);
|
|
}
|
|
translate(points[path[len(path)-1]]) {
|
|
color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4);
|
|
}
|
|
for (i = [0:1:len(path)-1]) {
|
|
midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2;
|
|
color("blue") {
|
|
up(0.2) {
|
|
translate(midpt) {
|
|
linear_extrude(height=0.1, convexity=10, center=true) {
|
|
text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Module: path_spread()
|
|
//
|
|
// Description:
|
|
// Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed
|
|
// with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false.
|
|
// If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths.
|
|
// If you specify `sp` then the copies will start at `sp`.
|
|
//
|
|
// Usage:
|
|
// path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ...
|
|
//
|
|
// Arguments:
|
|
// path = the path where children are placed
|
|
// n = number of copies
|
|
// spacing = space between copies
|
|
// sp = if given, copies will start distance sp from the path start and spread beyond that point
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the center of each copy
|
|
// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`.
|
|
// `$dir` is set to the direction vector of the path at the point where the copy is placed.
|
|
// `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point
|
|
//
|
|
// Example(2D):
|
|
// spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100;
|
|
// stroke(spiral,width=.25);
|
|
// color("red") path_spread(spiral, n=100) circle(r=1);
|
|
// Example(2D):
|
|
// circle = regular_ngon(n=64, or=10);
|
|
// stroke(circle,width=1,close=true);
|
|
// color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3);
|
|
// Example(2D):
|
|
// heptagon = regular_ngon(n=7, or=10);
|
|
// stroke(heptagon, width=1, close=true);
|
|
// color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT);
|
|
// Example(2D): Direction at the corners is the average of the two adjacent edges
|
|
// heptagon = regular_ngon(n=7, or=10);
|
|
// stroke(heptagon, width=1, close=true);
|
|
// color("purple") path_spread(heptagon, n=7, closed=true) square([0.5,3],anchor=FRONT);
|
|
// Example(2D): Don't rotate the children
|
|
// heptagon = regular_ngon(n=7, or=10);
|
|
// stroke(heptagon, width=1, close=true);
|
|
// color("red") path_spread(heptagon, n=9, closed=true, rotate_children=false) square([0.5,3],anchor=FRONT);
|
|
// Example(2D): Open path, specify `n`
|
|
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
|
|
// stroke(sinwav,width=.1);
|
|
// color("red")path_spread(sinwav, n=5) square([.2,1.5],anchor=FRONT);
|
|
// Example(2D)): Open path, specify `n` and `spacing`
|
|
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
|
|
// stroke(sinwav,width=.1);
|
|
// color("red")path_spread(sinwav, n=5, spacing=1) square([.2,1.5],anchor=FRONT);
|
|
// Example(2D)): Closed path, specify `n` and `spacing`, copies centered around circle[0]
|
|
// circle = regular_ngon(n=64,or=10);
|
|
// stroke(circle,width=.1,close=true);
|
|
// color("red")path_spread(circle, n=10, spacing=1, closed=true) square([.2,1.5],anchor=FRONT);
|
|
// Example(2D): Open path, specify `spacing`
|
|
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
|
|
// stroke(sinwav,width=.1);
|
|
// color("red")path_spread(sinwav, spacing=5) square([.2,1.5],anchor=FRONT);
|
|
// Example(2D): Open path, specify `sp`
|
|
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
|
|
// stroke(sinwav,width=.1);
|
|
// color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT);
|
|
// Example(2D):
|
|
// wedge = arc(angle=[0,100], r=10, $fn=64);
|
|
// difference(){
|
|
// polygon(concat([[0,0]],wedge));
|
|
// path_spread(wedge,n=5,spacing=3) fwd(.1)square([1,4],anchor=FRONT);
|
|
// }
|
|
// Example(Spin): 3d example, with children rotated into the plane of the path
|
|
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
|
|
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
|
|
// path_spread(tilted_circle, n=15,closed=true) {
|
|
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
|
|
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
|
|
// }
|
|
// Example(Spin): 3d example, with rotate_children set to false
|
|
// tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]);
|
|
// path_sweep(regular_ngon(n=16,or=.1),tilted_circle);
|
|
// path_spread(tilted_circle, n=25,rotate_children=false,closed=true) {
|
|
// color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder
|
|
// color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder
|
|
// }
|
|
module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=false)
|
|
{
|
|
length = path_length(path,closed);
|
|
distances = is_def(sp) ? (
|
|
is_def(n) && is_def(spacing) ? list_range(s=sp, step=spacing, n=n) :
|
|
is_def(n) ? list_range(s=sp, e=length, n=n) :
|
|
list_range(s=sp, step=spacing, e=length)
|
|
) :
|
|
is_def(n) && is_undef(spacing) ? (closed ? let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) :
|
|
list_range(s=0, e=length, n=n)
|
|
) :
|
|
let( n = is_def(n) ? n : floor(length/spacing)+(closed?0:1),
|
|
ptlist = list_range(s=0,step=spacing,n=n),
|
|
listcenter = mean(ptlist)
|
|
)
|
|
closed ? sort([for(entry=ptlist) posmod(entry-listcenter,length)]) :
|
|
[for(entry=ptlist) entry + length/2-listcenter ];
|
|
distOK = min(distances)>=0 && max(distances)<=length;
|
|
assert(distOK,"Cannot fit all of the copies");
|
|
cutlist = path_cut(path, distances, closed, direction=true);
|
|
planar = len(path[0])==2;
|
|
if (true) for(i=[0:1:len(cutlist)-1]) {
|
|
$pos = cutlist[i][0];
|
|
$idx = i;
|
|
$dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2];
|
|
$normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3];
|
|
translate($pos) {
|
|
if (rotate_children) {
|
|
if(planar) rot(from=[0,1],to=cutlist[i][3]) children();
|
|
else multmatrix(mat3_to_mat4(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]]))) children();
|
|
}
|
|
else children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Function: path_cut()
|
|
//
|
|
// Usage
|
|
// path_cut(path, dists, [closed], [direction])
|
|
//
|
|
// Description:
|
|
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut points and indices of the next point in the path after that point.
|
|
// So for example, a return value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after this point is path[5].
|
|
// If the path is too short then path_cut returns undef. If you set `direction` to true then `path_cut` will also return the tangent vector to the path
|
|
// and a normal vector to the path. It tries to find a normal vector that is coplanar to the path near the cut point. If this fails it will return a normal
|
|
// vector parallel to the xy plane. The output with direction vectors will be `[point, next_index, tangent, normal]`.
|
|
//
|
|
// Arguments:
|
|
// path = path to cut
|
|
// dists = distances where the path should be cut (a list) or a scalar single distance
|
|
// closed = set to true if the curve is closed. Default: false
|
|
// direction = set to true to return direction vectors. Default: false
|
|
//
|
|
// Example(NORENDER):
|
|
// square=[[0,0],[1,0],[1,1],[0,1]];
|
|
// path_cut(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
|
|
// path_cut(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
|
|
// path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
|
|
// path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
|
|
function path_cut(path, dists, closed=false, direction=false) =
|
|
let( long_enough = len(path) >= (closed ? 3 : 2))
|
|
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
|
|
!is_list(dists) ? _path_cut(path, [dists],closed, direction)[0] :
|
|
let(cuts = _path_cut(path,dists,closed))
|
|
!direction ? cuts :
|
|
let( dir = _path_cuts_dir(path, cuts, closed),
|
|
normals = _path_cuts_normals(path, cuts, dir, closed)
|
|
)
|
|
zip(cuts, array_group(dir,1), array_group(normals,1));
|
|
|
|
// Main recursive path cut function
|
|
function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
|
|
dind == len(dists) ? result :
|
|
let(
|
|
lastpt = len(result)>0 ? select(result,-1)[0] : [],
|
|
dpartial = len(result)==0 ? 0 : norm(lastpt-path[pind]),
|
|
nextpoint = dpartial > dists[dind]-dtotal ?
|
|
[lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind]
|
|
:
|
|
_path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
|
|
)
|
|
nextpoint == undef ? concat(result, replist(undef,len(dists)-dind)):
|
|
_path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
|
|
|
|
// Search for a single cut point in the path
|
|
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
|
|
ind>=len(path) ? undef :
|
|
ind==len(path)-1 && !closed ? (dist<eps? [path[ind],ind+1] : undef) :
|
|
let(d = norm(path[ind]-select(path,ind+1)))
|
|
d > dist ? [lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
|
|
_path_cut_single(path, dist-d,closed, ind+1, eps);
|
|
|
|
// Find normal directions to the path, coplanar to local part of the path
|
|
// Or return a vector parallel to the x-y plane if the above fails
|
|
function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
|
[for(i=[0:len(cuts)-1])
|
|
len(path[0])==2? [-dirs[i].y,dirs[i].x] :
|
|
let(
|
|
plane = len(path)<3 ? undef :
|
|
let( start = max(min(cuts[i][1],len(path)-1),2))
|
|
_path_plane(path, start, start-2)
|
|
)
|
|
plane==undef ? normalize([-dirs[i].y, dirs[i].x,0]) :
|
|
normalize(cross(dirs[i],cross(plane[0],plane[1])))
|
|
];
|
|
|
|
// Scan from the specified point (ind) to find a noncoplanar triple to use
|
|
// to define the plane of the path.
|
|
function _path_plane(path, ind, i,closed) =
|
|
i<(closed?-1:0) ? undef :
|
|
!collinear(path[ind],path[ind-1], select(path,i)) ? [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : _path_plane(path, ind, i-1);
|
|
|
|
// Find the direction of the path at the cut points
|
|
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
|
[for(ind=[0:len(cuts)-1])
|
|
let(
|
|
nextind = cuts[ind][1],
|
|
nextpath = normalize(select(path, nextind+1)-select(path, nextind)),
|
|
thispath = normalize(select(path, nextind) - path[nextind-1]),
|
|
lastpath = normalize(path[nextind-1] - select(path, nextind-2)),
|
|
nextdir =
|
|
nextind==len(path) && !closed ? lastpath :
|
|
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps) ?
|
|
normalize(nextpath+thispath) :
|
|
(nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps) ?
|
|
normalize(thispath+lastpath) :
|
|
thispath
|
|
)
|
|
nextdir];
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|