BOSL2/bottlecaps_adapters.scad
2021-04-17 03:25:41 -07:00

572 lines
23 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: bottlecaps_adapters.scad
// Adapters for various combinations of bottle necks and caps.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/bottlecaps_adapters.scad>
//////////////////////////////////////////////////////////////////////
include <BOSL2/threading.scad>
include <BOSL2/knurling.scad>
// Module: generic_bottle_neck()
// Usage:
// generic_bottle_neck(<wall>)
// Description:
// Creates a bottle neck given specifications.
// Arguments:
// neckDiam = Outer diameter of neck without threads
// innerDiam = Inner diameter of neck
// threadOuterD = Outer diameter of thread
// height = Height of neck above support
// supportDiam = Outer diameter of support ring. Set to 0 for no support.
// threadPitch = Thread pitch
// wall = distance between ID and any wall that may be below the support
// roundLowerSupport = True to round the lower edge of the support ring
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "support-ring" = Centered at the bottom of the support ring.
// Example:
// generic_bottle_neck();
module generic_bottle_neck(
neckDiam = 25,
innerDiam = 21.4,
threadOuterD = 27.2,
height = 17,
supportDiam = 33.0,
threadPitch = 3.2,
roundLowerSupport = false,
wall,
anchor = "support-ring",
spin = 0,
orient = UP
) {
inner_d = innerDiam;
neck_d = neckDiam;
support_d = max(neckDiam, supportDiam);
thread_pitch = threadPitch;
thread_angle = 15;
thread_od = threadOuterD;
diamMagMult = neckDiam / 26.19;
heightMagMult = height / 17.00;
sup_r = 0.30 * (heightMagMult > 1 ? heightMagMult : 1);
support_r = floor(((support_d == neck_d) ? sup_r : min(sup_r, (support_d - neck_d) / 2)) * 5000) / 10000;
support_rad = (wall == undef || !roundLowerSupport) ? support_r :
min(support_r, floor((support_d - (inner_d + 2 * wall)) * 5000) / 10000);
//Too small of a radius will cause errors with the arc, this limits granularity to .0001mm
support_width = 1 * (heightMagMult > 1 ? heightMagMult : 1) * sign(supportDiam);
roundover = 0.58 * diamMagMult;
lip_roundover_r = (roundover > (neck_d - inner_d) / 2) ? 0 : roundover;
h = height + support_width;
threadbase_d = neck_d - 0.8 * diamMagMult;
$fn = segs(33 / 2);
thread_h = (thread_od - threadbase_d) / 2;
anchors = [
anchorpt("support-ring", [0, 0, 0 - h / 2])
];
attachable(anchor, spin, orient, d1 = neck_d, d2 = 0, l = h, anchors = anchors) {
down(h / 2) {
rotate_extrude(convexity = 10) {
polygon(turtle(
state = [inner_d / 2, 0], (support_d != neck_d) ? [
"untilx", support_d / 2 - ((roundLowerSupport) ? support_rad : 0),
"arcleft", ((roundLowerSupport) ? support_rad : 0), 90,
"untily", support_width - support_rad,
"arcleft", support_rad, 90,
"untilx", neck_d / 2,
"right", 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
] : [
"untilx", support_d / 2 - ((roundLowerSupport) ? support_rad : 0),
"arcleft", ((roundLowerSupport) ? support_rad : 0), 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
]
));
}
up(h - threadPitch / 2 - lip_roundover_r) {
difference() {
thread_helix(
d = threadbase_d - 0.1 * diamMagMult,
pitch = thread_pitch,
thread_depth = thread_h + 0.1 * diamMagMult,
thread_angle = thread_angle,
twist = 360 * (height - threadPitch - lip_roundover_r) * .6167 / threadPitch,
higbee = thread_h * 2,
anchor = TOP
);
zrot_copies(rots = [90, 270]) {
zrot_copies(rots = [-28, 28], r = threadbase_d / 2) {
prismoid(
[20 * heightMagMult, 1.82 * diamMagMult],
[20 * heightMagMult, 1.82 * diamMagMult * .6 + 2 * sin(29) * thread_h],
h = thread_h + 0.1 * diamMagMult,
anchor = BOT,
orient = RIGHT
);
}
}
}
}
}
children();
}
}
function generic_bottle_neck(
neckDiam,
innerDiam,
threadOuterD,
height,
supportDiam,
threadPitch,
roundLowerSupport,
wall,
anchor, spin, orient
) = no_function("generic_bottle_neck");
// Module: generic_bottle_cap()
// Usage:
// generic_bottle_cap(wall, <texture>, ...);
// Description:
// Creates a basic threaded cap given specifications.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// ---
// height = Interior height of the cap in mm.
// threadOuterD = Outer diameter of the threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// neckOuterD = Outer diameter of neck in mm.
// threadAngle = Angle of taper on threads.
// threadPitch = Thread pitch in mm.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "inside-top" = Centered on the inside top of the cap.
// Examples:
// generic_bottle_cap();
// generic_bottle_cap(texture="knurled");
// generic_bottle_cap(texture="ribbed");
module generic_bottle_cap(
wall = 2,
texture = "none",
height = 11.2,
threadOuterD = 28.58,
tolerance = .2,
neckOuterD = 25.5,
threadAngle = 15,
threadPitch = 4,
anchor = BOTTOM,
spin = 0,
orient = UP
) {
$fn = segs(33 / 2);
threadOuterDTol = threadOuterD + 2 * tolerance;
w = threadOuterDTol + 2 * wall;
h = height + wall;
neckOuterDTol = neckOuterD + 2 * tolerance;
threadDepth = (threadOuterD - neckOuterD) / 2 + .8;
diamMagMult = (w > 32.58) ? w / 32.58 : 1;
heightMagMult = (height > 11.2) ? height / 11.2 : 1;
anchors = [
anchorpt("inside-top", [0, 0, -(h / 2 - wall)])
];
attachable(anchor, spin, orient, d = w, l = h, anchors = anchors) {
down(h / 2) {
difference() {
union() {
// For the knurled and ribbed caps the PCO caps in BOSL2 cut into the wall
// thickness so the wall+texture are the specified wall thickness. That
// seems wrong so this does specified thickness+texture
if (texture == "knurled") {
knurled_cylinder(d = w + 1.5 * diamMagMult, helix = 45, l = h, anchor = BOTTOM);
cyl(d = w, l = h, anchor = BOTTOM);
} else if (texture == "ribbed") {
zrot_copies(n = 30, r = (w + .2 * diamMagMult) / 2) {
cube([1 * diamMagMult, 1 * diamMagMult, h], anchor = BOTTOM);
}
cyl(d = w, l = h, anchor = BOTTOM);
} else {
cyl(d = w, l = h, anchor = BOTTOM);
}
}
up(wall) cyl(d = threadOuterDTol, h = h, anchor = BOTTOM);
}
difference(){
up(wall + threadPitch / 2) {
thread_helix(d = neckOuterDTol, pitch = threadPitch, thread_depth = threadDepth, thread_angle = threadAngle, twist = 360 * ((height - threadPitch) / threadPitch), higbee = threadDepth, internal = true, anchor = BOTTOM);
}
}
}
children();
}
}
function generic_bottle_cap(
wall, texture, height,
threadOuterD, tolerance,
neckOuterD, threadAngle, threadPitch,
anchor, spin, orient
) = no_function("generic_bottle_cap");
// Module: thread_adapter_NC()
// Usage:
// thread_adapter_NC(wall, [texture]);
// Description:
// Creates a threaded neck to cap adapter
// Arguments:
// wall = Thickness of wall between neck and cap when d=0. Leave undefined to have the outside of the tube go from the OD of the neck support ring to the OD of the cap. Default: undef
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// capWall = Wall thickness of the cap in mm.
// capHeight = Interior height of the cap in mm.
// capThreadOD = Outer diameter of cap threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// capNeckOD = Inner diameter of the cap threads.
// capNeckID = Inner diameter of the hole through the cap.
// capThreadTaperAngle = Angle of taper on threads.
// capThreadPitch = Thread pitch in mm
// neckDiam = Outer diameter of neck w/o threads
// neckID = Inner diameter of neck
// neckThreadOD = 27.2
// neckHeight = Height of neck down to support ring
// neckThreadPitch = Thread pitch in mm.
// neckSupportOD = Outer diameter of neck support ring. Leave undefined to set equal to OD of cap. Set to 0 for no ring. Default: undef
// d = Distance between bottom of neck and top of cap
// taperLeadIn = Length to leave straight before tapering on tube between neck and cap if exists.
// Examples:
// thread_adapter_NC();
module thread_adapter_NC(
wall,
texture = "none",
capWall = 2,
capHeight = 11.2,
capThreadOD = 28.58,
tolerance = .2,
capNeckOD = 25.5,
capNeckID,
capThreadTaperAngle = 15,
capThreadPitch = 4,
neckDiam = 25,
neckID = 21.4,
neckThreadOD = 27.2,
neckHeight = 17,
neckThreadPitch = 3.2,
neckSupportOD,
d = 0,
taperLeadIn = 0
) {
neckSupportOD = (neckSupportOD == undef || (d == 0 && neckSupportOD < capThreadOD + 2 * tolerance)) ? capThreadOD + 2 * (capWall + tolerance) : neckSupportOD;
capNeckID = (capNeckID == undef) ? neckID : capNeckID;
wall = (wall == undef) ? neckSupportOD + neckDiam + capThreadOD + neckID : wall;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(neckSupportOD, neckDiam) - neckID) / 2);
wallt2 = min(wall, (capThreadOD + 2 * (capWall + tolerance) - capNeckID) / 2);
difference(){
union(){
up(d / 2) {
generic_bottle_neck(neckDiam = neckDiam,
innerDiam = neckID,
threadOuterD = neckThreadOD,
height = neckHeight,
supportDiam = neckSupportOD,
threadPitch = neckThreadPitch,
roundLowerSupport = ((wallt1 < (neckSupportOD - neckID) / 2) && (d > 0 || neckSupportOD > (capThreadOD + 2 * (capWall + tolerance)))),
wall = (d > 0) ? wallt1 : min(wallt1, ((capThreadOD + 2 * (capWall + tolerance) - neckID) / 2))
);
}
if (d != 0) {
rotate_extrude(){
polygon(points = [
[0, d / 2],
[neckID / 2 + wallt1, d / 2],
[neckID / 2 + wallt1, d / 2 - taperLeadIn],
[capNeckID / 2 + wallt2, taperLeadIn - d / 2],
[capNeckID / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(wall = capWall,
texture = texture,
height = capHeight,
threadOuterD = capThreadOD,
tolerance = tolerance,
neckOuterD = capNeckOD,
threadAngle = capThreadTaperAngle,
orient = DOWN,
threadPitch = capThreadPitch
);
}
}
rotate_extrude() {
polygon(points = [
[0, d / 2 + 0.1],
[neckID / 2, d / 2],
[neckID / 2, d / 2 - taperLeadIn],
[capNeckID / 2, taperLeadIn - d / 2],
[capNeckID / 2, -d / 2 - capWall],
[0, -d / 2 - capWall - 0.1]
]);
}
}
}
function thread_adapter_NC(
wall, texture, capWall, capHeight, capThreadOD,
tolerance, capNeckOD, capNeckId, capThreadTaperAngle,
capThreadPitch, neckDiam, neckID, neckThreadOD,
neckHeight, neckThreadPitch, neckSupportOD, d, taperLeadIn
) = no_fuction("thread_adapter_NC");
// Module: thread_adapter_CC()
// Usage:
// thread_adapter_CC(wall, [texture]);
// Description:
// Creates a threaded cap to cap adapter.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// capHeight1 = Interior height of top cap.
// capThreadOD1 = Outer diameter of threads on top cap.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// capNeckOD1 = Inner diameter of threads on top cap.
// capThreadPitch1 = Thread pitch of top cap in mm.
// capHeight2 = Interior height of bottom cap. Leave undefined to duplicate capHeight1.
// capThreadOD2 = Outer diameter of threads on bottom cap. Leave undefined to duplicate capThread1.
// capNeckOD2 = Inner diameter of threads on top cap. Leave undefined to duplicate capNeckOD1.
// capThreadPitch2 = Thread pitch of bottom cap in mm. Leave undefinced to duplicate capThreadPitch1.
// d = Distance between caps.
// neckID1 = Inner diameter of cutout in top cap.
// neckID2 = Inner diameter of cutout in bottom cap.
// taperLeadIn = Length to leave straight before tapering on tube between caps if exists.
// Examples:
// thread_adapter_CC();
module thread_adapter_CC(
wall = 2,
texture = "none",
capHeight1 = 11.2,
capThreadOD1 = 28.58,
tolerance = .2,
capNeckOD1 = 25.5,
capThreadPitch1 = 4,
capHeight2,
capThreadOD2,
capNeckOD2,
capThreadPitch2,
d = 0,
neckID1, neckID2,
taperLeadIn = 0
) {
capHeight2 = (capHeight2 == undef) ? capHeight1 : capHeight2;
capThreadOD2 = (capThreadOD2 == undef) ? capThreadOD1 : capThreadOD2;
capNeckOD2 = (capNeckOD2 == undef) ? capNeckOD1 : capNeckOD2;
capThreadPitch2 = (capThreadPitch2 == undef) ? capThreadPitch1 : capThreadPitch2;
neckID2 = (neckID2 == undef && neckID1 != undef) ? neckID1 : neckID2;
taperLeadIn = (d >= taperLeadIn * 2) ? taperLeadIn : d / 2;
$fn = segs(33 / 2);
difference(){
union(){
up(d / 2){
generic_bottle_cap(
orient = UP,
wall = wall,
texture = texture,
height = capHeight1,
threadOuterD = capThreadOD1,
tolerance = tolerance,
neckOuterD = capNeckOD1,
threadPitch = capThreadPitch1
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[capThreadOD1 / 2 + (wall + tolerance), d / 2],
[capThreadOD1 / 2 + (wall + tolerance), d / 2 - taperLeadIn],
[capThreadOD2 / 2 + (wall + tolerance), taperLeadIn - d / 2],
[capThreadOD2 / 2 + (wall + tolerance), -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(
orient = DOWN,
wall = wall,
texture = texture,
height = capHeight2,
threadOuterD = capThreadOD2,
tolerance = tolerance,
neckOuterD = capNeckOD2,
threadPitch = capThreadPitch2
);
}
}
if (neckID1 != undef || neckID2 != undef) {
neckID1 = (neckID1 == undef) ? neckID2 : neckID1;
neckID2 = (neckID2 == undef) ? neckID1 : neckID2;
rotate_extrude() {
polygon(points = [
[0, wall + d / 2 + 0.1],
[neckID1 / 2, wall + d / 2],
[neckID1 / 2, wall + d / 2 - taperLeadIn],
[neckID2 / 2, taperLeadIn - d / 2 - wall],
[neckID2 / 2, -d / 2 - wall],
[0, -d / 2 - wall - 0.1]
]);
}
}
}
}
function thread_adapter_CC(
wall, texture, capHeight1, capThreadOD1, tolerance,
capNeckOD1, capThreadPitch1, capHeight2, capThreadOD2,
capNeckOD2, capThreadPitch2, d, neckID1, neckID2, taperLeadIn
) = no_function("thread_adapter_CC");
// Module: thread_adapter_NN()
// Usage:
// thread_adapter_NN();
// Description:
// Creates a threaded neck to neck adapter.
// Arguments:
// d = Distance between bottoms of necks
// neckOD1 = Outer diameter of top neck w/o threads
// neckID1 = Inner diameter of top neck
// threadOD1 = Outer diameter of threads on top neck
// height1 = Height of top neck above support ring.
// supportOD1 = Outer diameter of the support ring on the top neck. Set to 0 for no ring.
// threadPitch1 = Thread pitch of top neck.
// neckOD2 = Outer diameter of bottom neck w/o threads. Leave undefined to duplicate neckOD1
// neckID2 = Inner diameter of bottom neck. Leave undefined to duplicate neckID1
// threadOD2 = Outer diameter of threads on bottom neck. Leave undefined to duplicate threadOD1
// height2 = Height of bottom neck above support ring. Leave undefined to duplicate height1
// supportOD2 = Outer diameter of the support ring on bottom neck. Set to 0 for no ring. Leave undefined to duplicate supportOD1
// threadPitch2 = Thread pitch of bottom neck. Leave undefined to duplicate threadPitch1
// taperLeadIn = Length to leave straight before tapering on tube between necks if exists.
// wall = Thickness of tube wall between necks. Leave undefined to match outer diameters with the neckODs/supportODs.
// Examples:
// thread_adapter_NN();
module thread_adapter_NN(
d = 0,
neckOD1 = 25,
neckID1 = 21.4,
threadOD1 = 27.2,
height1 = 17,
supportOD1 = 33.0,
threadPitch1 = 3.2,
neckOD2, neckID2,
threadOD2, height2,
supportOD2, threadPitch2,
taperLeadIn = 0, wall
) {
neckOD2 = (neckOD2 == undef) ? neckOD1 : neckOD2;
neckID2 = (neckID2 == undef) ? neckID1 : neckID2;
threadOD2 = (threadOD2 == undef) ? threadOD1 : threadOD2;
height2 = (height2 == undef) ? height1 : height2;
supportOD2 = (supportOD2 == undef) ? supportOD1 : supportOD2;
threadPitch2 = (threadPitch2 == undef) ? threadPitch1 : threadPitch2;
wall = (wall == undef) ? supportOD1 + supportOD2 + neckID1 + neckID2 : wall;
supprtOD2 = (d == 0 && supportOD2 != 0) ? max(neckOD1, supportOD2) : supportOD2;
supprtOD1 = (d == 0 && supportOD1 != 0) ? max(neckOD2, supportOD1) : supportOD1;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(supprtOD1, neckOD1) - neckID1) / 2);
wallt2 = min(wall, (max(supprtOD2, neckOD2) - neckID2) / 2);
taperLeadIn = (d >= taperLeadIn * 2) ? taperLeadIn : d / 2;
difference(){
union(){
up(d / 2){
generic_bottle_neck(orient = UP,
neckDiam = neckOD1,
innerDiam = neckID1,
threadOuterD = threadOD1,
height = height1,
supportDiam = supprtOD1,
threadPitch = threadPitch1,
roundLowerSupport = ((wallt1 < (supprtOD1 - neckID1) / 2) || (supportOD1 > max(neckOD2, supportOD2) && d == 0)),
wall = (d > 0) ? wallt1 : min(wallt1, ((max(neckOD2, supportOD2)) - neckID1) / 2)
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neckID1 / 2 + wallt1, d / 2],
[neckID1 / 2 + wallt1, d / 2 - taperLeadIn],
[neckID2 / 2 + wallt2, taperLeadIn - d / 2],
[neckID2 / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_neck(orient = DOWN,
neckDiam = neckOD2,
innerDiam = neckID2,
threadOuterD = threadOD2,
height = height2,
supportDiam = supprtOD2,
threadPitch = threadPitch2,
roundLowerSupport = ((wallt2 < (supprtOD2 - neckID2) / 2) || (supportOD2 > max(neckOD1, supportOD1) && d == 0)),
wall = (d > 0) ? wallt2 : min(wallt2, ((max(neckOD1, supportOD1)) - neckID2) / 2)
);
}
}
if (neckID1 != undef || neckID2 != undef) {
neckID1 = (neckID1 == undef) ? neckID2 : neckID1;
neckID2 = (neckID2 == undef) ? neckID1 : neckID2;
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neckID1 / 2, d / 2],
[neckID1 / 2, d / 2 - taperLeadIn],
[neckID2 / 2, taperLeadIn - d / 2],
[neckID2 / 2, -d / 2],
[0, -d / 2]
]);
}
}
}
}
function thread_adapter_NN(
d, neckOD1, neckID1, threadOD1, height1,
supportOD1, threadPitch1, neckOD2, neckID2,
threadOD2, height2, supportOD2,
threadPitch2, taperLeadIn, wall
) = no_fuction("thread_adapter_NN");
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap