BOSL2/coords.scad
2020-03-02 19:30:20 -08:00

416 lines
14 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: coords.scad
// Coordinate transformations and coordinate system conversions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Coordinate Manipulation
// Function: point2d()
// Description:
// Returns a 2D vector/point from a 2D or 3D vector.
// If given a 3D point, removes the Z coordinate.
// Arguments:
// p = The coordinates to force into a 2D vector/point.
// fill = Value to fill missing values in vector with.
function point2d(p, fill=0) = [for (i=[0:1]) (p[i]==undef)? fill : p[i]];
// Function: path2d()
// Description:
// Returns a list of 2D vectors/points from a list of 2D or 3D vectors/points.
// If given a 3D point list, removes the Z coordinates from each point.
// Arguments:
// points = A list of 2D or 3D points/vectors.
// fill = Value to fill missing values in vectors with.
function path2d(points, fill=0) = [for (point = points) point2d(point, fill=fill)];
// Function: point3d()
// Description:
// Returns a 3D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 3D vector/point.
// fill = Value to fill missing values in vector with.
function point3d(p, fill=0) = [for (i=[0:2]) (p[i]==undef)? fill : p[i]];
// Function: path3d()
// Description:
// Returns a list of 3D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
// points = A list of 2D or 3D points/vectors.
// fill = Value to fill missing values in vectors with.
function path3d(points, fill=0) = [for (point = points) point3d(point, fill=fill)];
// Function: point4d()
// Description:
// Returns a 4D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 4D vector/point.
// fill = Value to fill missing values in vector with.
function point4d(p, fill=0) = [for (i=[0:3]) (p[i]==undef)? fill : p[i]];
// Function: path4d()
// Description:
// Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
// points = A list of 2D or 3D points/vectors.
// fill = Value to fill missing values in vectors with.
function path4d(points, fill=0) = [for (point = points) point4d(point, fill=fill)];
// Function: translate_points()
// Usage:
// translate_points(pts, v);
// Description:
// Moves each point in an array by a given amount.
// Arguments:
// pts = List of points to translate.
// v = Amount to translate points by.
function translate_points(pts, v=[0,0,0]) =
pts==[]? [] : let(
v=point3d(v)
) [for (pt = pts) pt+v];
// Function: scale_points()
// Usage:
// scale_points(pts, v, [cp]);
// Description:
// Scales each point in an array by a given amount, around a given centerpoint.
// Arguments:
// pts = List of points to scale.
// v = A vector with a scaling factor for each axis.
// cp = Centerpoint to scale around.
function scale_points(pts, v=[1,1,1], cp=[0,0,0]) =
pts==[]? [] : let(
cp = point3d(cp),
v = point3d(v,fill=1)
) [for (pt = pts) vmul(pt-cp,v)+cp];
// Function: rotate_points2d()
// Usage:
// rotate_points2d(pts, a, [cp]);
// Description:
// Rotates each 2D point in an array by a given amount, around an optional centerpoint.
// Arguments:
// pts = List of 3D points to rotate.
// a = Angle to rotate by.
// cp = 2D Centerpoint to rotate around. Default: `[0,0]`
function rotate_points2d(pts, a, cp=[0,0]) =
approx(a,0)? pts :
let(
cp = point2d(cp),
pts = path2d(pts),
m = affine2d_zrot(a)
) [for (pt = pts) point2d(m*concat(pt-cp, [1])+cp)];
// Function: rotate_points3d()
// Usage:
// rotate_points3d(pts, a, [cp], [reverse]);
// rotate_points3d(pts, a, v, [cp], [reverse]);
// rotate_points3d(pts, from, to, [a], [cp], [reverse]);
// Description:
// Rotates each 3D point in an array by a given amount, around a given centerpoint.
// Arguments:
// pts = List of points to rotate.
// a = Rotation angle(s) in degrees.
// v = If given, axis vector to rotate around.
// cp = Centerpoint to rotate around.
// from = If given, the vector to rotate something from. Used with `to`.
// to = If given, the vector to rotate something to. Used with `from`.
// reverse = If true, performs an exactly reversed rotation.
function rotate_points3d(pts, a=0, v=undef, cp=[0,0,0], from=undef, to=undef, reverse=false) =
assert(is_undef(from)==is_undef(to), "`from` and `to` must be given together.")
(is_undef(from) && (a==0 || a==[0,0,0]))? pts :
let (
from = is_undef(from)? undef : (from / norm(from)),
to = is_undef(to)? undef : (to / norm(to)),
cp = point3d(cp),
pts2 = path3d(pts)
)
(!is_undef(from) && approx(from,to) && (a==0 || a == [0,0,0]))? pts2 :
let (
mrot = reverse? (
!is_undef(from)? (
assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]")
assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]")
let (
ang = vector_angle(from, to),
v = vector_axis(from, to)
)
affine3d_rot_by_axis(from, -a) * affine3d_rot_by_axis(v, -ang)
) : !is_undef(v)? (
affine3d_rot_by_axis(v, -a)
) : is_num(a)? (
affine3d_zrot(-a)
) : (
affine3d_xrot(-a.x) * affine3d_yrot(-a.y) * affine3d_zrot(-a.z)
)
) : (
!is_undef(from)? (
assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]")
assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]")
let (
from = from / norm(from),
to = to / norm(from),
ang = vector_angle(from, to),
v = vector_axis(from, to)
)
affine3d_rot_by_axis(v, ang) * affine3d_rot_by_axis(from, a)
) : !is_undef(v)? (
affine3d_rot_by_axis(v, a)
) : is_num(a)? (
affine3d_zrot(a)
) : (
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x)
)
),
m = affine3d_translate(cp) * mrot * affine3d_translate(-cp)
)
[for (pt = pts2) point3d(m*concat(pt, fill=1))];
// Section: Coordinate Systems
// Function: polar_to_xy()
// Usage:
// polar_to_xy(r, theta);
// polar_to_xy([r, theta]);
// Description:
// Convert polar coordinates to 2D cartesian coordinates.
// Returns [X,Y] cartesian coordinates.
// Arguments:
// r = distance from the origin.
// theta = angle in degrees, counter-clockwise of X+.
// Examples:
// xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365]
// xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15]
// xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15]
function polar_to_xy(r,theta=undef) = let(
rad = theta==undef? r[0] : r,
t = theta==undef? r[1] : theta
) rad*[cos(t), sin(t)];
// Function: xy_to_polar()
// Usage:
// xy_to_polar(x,y);
// xy_to_polar([X,Y]);
// Description:
// Convert 2D cartesian coordinates to polar coordinates.
// Returns [radius, theta] where theta is the angle counter-clockwise of X+.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// Examples:
// plr = xy_to_polar(20,30);
// plr = xy_to_polar([40,60]);
function xy_to_polar(x,y=undef) = let(
xx = y==undef? x[0] : x,
yy = y==undef? x[1] : y
) [norm([xx,yy]), atan2(yy,xx)];
// Function: project_plane()
// Usage:
// xy = project_plane(point, a, b, c);
// xy = project_plane(point, [A,B,C]];
// Description:
// Given three points defining a plane, returns the projected planar [X,Y] coordinates of the
// closest point to a 3D `point`. The origin of the planar coordinate system [0,0] will be at point
// `a`, and the Y+ axis direction will be towards point `b`. This coordinate system can be useful
// in taking a set of nearly coplanar points, and converting them to a pure XY set of coordinates
// for manipulation, before convering them back to the original 3D plane.
// Arguments:
// point = The 3D point, or list of 3D points to project into the plane's 2D coordinate system.
// a = A 3D point that the plane passes through. Used to define the plane.
// b = A 3D point that the plane passes through. Used to define the plane.
// c = A 3D point that the plane passes through. Used to define the plane.
// Example:
// pt = [5,-5,5];
// a=[0,0,0]; b=[10,-10,0]; c=[10,0,10];
// xy = project_plane(pt, a, b, c);
// xy2 = project_plane(pt, [a,b,c]);
function project_plane(point, a, b, c) =
is_undef(b) && is_undef(c) && is_list(a)? let(
indices = find_noncollinear_points(a)
) project_plane(point, a[indices[0]], a[indices[1]], a[indices[2]]) :
assert(is_vector(a))
assert(is_vector(b))
assert(is_vector(c))
assert(is_vector(point)||is_path(point))
let(
u = unit(b-a),
v = unit(c-a),
n = unit(cross(u,v)),
w = unit(cross(n,u)),
relpoint = is_vector(point)? (point-a) : translate_points(point,-a)
) relpoint * transpose([w,u]);
// Function: lift_plane()
// Usage:
// xyz = lift_plane(point, a, b, c);
// xyz = lift_plane(point, [A,B,C]);
// Description:
// Given three points defining a plane, converts a planar [X,Y] coordinate to the actual
// corresponding 3D point on the plane. The origin of the planar coordinate system [0,0]
// will be at point `a`, and the Y+ axis direction will be towards point `b`.
// Arguments:
// point = The 2D point, or list of 2D points in the plane's coordinate system to get the 3D position of.
// a = A 3D point that the plane passes through. Used to define the plane.
// b = A 3D point that the plane passes through. Used to define the plane.
// c = A 3D point that the plane passes through. Used to define the plane.
function lift_plane(point, a, b, c) =
is_undef(b) && is_undef(c) && is_list(a)? let(
indices = find_noncollinear_points(a)
) lift_plane(point, a[indices[0]], a[indices[1]], a[indices[2]]) :
assert(is_vector(a))
assert(is_vector(b))
assert(is_vector(c))
assert(is_vector(point)||is_path(point))
let(
u = unit(b-a),
v = unit(c-a),
n = unit(cross(u,v)),
w = unit(cross(n,u)),
remapped = point*[w,u]
) is_vector(remapped)? (a+remapped) : translate_points(remapped,a);
// Function: cylindrical_to_xyz()
// Usage:
// cylindrical_to_xyz(r, theta, z)
// cylindrical_to_xyz([r, theta, z])
// Description:
// Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates.
// Arguments:
// r = distance from the Z axis.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// z = Height above XY plane.
// Examples:
// xyz = cylindrical_to_xyz(20,30,40);
// xyz = cylindrical_to_xyz([40,60,50]);
function cylindrical_to_xyz(r,theta=undef,z=undef) = let(
rad = theta==undef? r[0] : r,
t = theta==undef? r[1] : theta,
zed = theta==undef? r[2] : z
) [rad*cos(t), rad*sin(t), zed];
// Function: xyz_to_cylindrical()
// Usage:
// xyz_to_cylindrical(x,y,z)
// xyz_to_cylindrical([X,Y,Z])
// Description:
// Convert 3D cartesian coordinates to cylindrical coordinates.
// Returns [radius,theta,Z]. Theta is the angle counter-clockwise
// of X+ on the XY plane. Z is height above the XY plane.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// cyl = xyz_to_cylindrical(20,30,40);
// cyl = xyz_to_cylindrical([40,50,70]);
function xyz_to_cylindrical(x,y=undef,z=undef) = let(
p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x)
) [norm([p.x,p.y]), atan2(p.y,p.x), p.z];
// Function: spherical_to_xyz()
// Usage:
// spherical_to_xyz(r, theta, phi);
// spherical_to_xyz([r, theta, phi]);
// Description:
// Convert spherical coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
// Arguments:
// r = distance from origin.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// phi = angle in degrees from the vertical Z+ axis.
// Examples:
// xyz = spherical_to_xyz(20,30,40);
// xyz = spherical_to_xyz([40,60,50]);
function spherical_to_xyz(r,theta=undef,phi=undef) = let(
rad = theta==undef? r[0] : r,
t = theta==undef? r[1] : theta,
p = theta==undef? r[2] : phi
) rad*[sin(p)*cos(t), sin(p)*sin(t), cos(p)];
// Function: xyz_to_spherical()
// Usage:
// xyz_to_spherical(x,y,z)
// xyz_to_spherical([X,Y,Z])
// Description:
// Convert 3D cartesian coordinates to spherical coordinates.
// Returns [r,theta,phi], where phi is the angle from the Z+ pole,
// and theta is degrees counter-clockwise of X+ on the XY plane.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// sph = xyz_to_spherical(20,30,40);
// sph = xyz_to_spherical([40,50,70]);
function xyz_to_spherical(x,y=undef,z=undef) = let(
p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x)
) [norm(p), atan2(p.y,p.x), atan2(norm([p.x,p.y]),p.z)];
// Function: altaz_to_xyz()
// Usage:
// altaz_to_xyz(alt, az, r);
// altaz_to_xyz([alt, az, r]);
// Description:
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
// Arguments:
// alt = altitude angle in degrees above the XY plane.
// az = azimuth angle in degrees clockwise of Y+ on the XY plane.
// r = distance from origin.
// Examples:
// xyz = altaz_to_xyz(20,30,40);
// xyz = altaz_to_xyz([40,60,50]);
function altaz_to_xyz(alt,az=undef,r=undef) = let(
p = az==undef? alt[0] : alt,
t = 90 - (az==undef? alt[1] : az),
rad = az==undef? alt[2] : r
) rad*[cos(p)*cos(t), cos(p)*sin(t), sin(p)];
// Function: xyz_to_altaz()
// Usage:
// xyz_to_altaz(x,y,z);
// xyz_to_altaz([X,Y,Z]);
// Description:
// Convert 3D cartesian coordinates to altitude/azimuth/range coordinates.
// Returns [altitude,azimuth,range], where altitude is angle above the
// XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and
// range is the distance from the origin.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// aa = xyz_to_altaz(20,30,40);
// aa = xyz_to_altaz([40,50,70]);
function xyz_to_altaz(x,y=undef,z=undef) = let(
p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x)
) [atan2(p.z,norm([p.x,p.y])), atan2(p.x,p.y), norm(p)];
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap