mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
1065 lines
39 KiB
OpenSCAD
1065 lines
39 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: mutators.scad
|
|
// Functions and modules to mutate children in various ways.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Volume Division Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: bounding_box()
|
|
// Usage:
|
|
// bounding_box() ...
|
|
// Description:
|
|
// Returns the smallest axis-aligned square (or cube) shape that contains all the 2D (or 3D)
|
|
// children given. The module children() is supposed to be a 3d shape when planar=false and
|
|
// a 2d shape when planar=true otherwise the system will issue a warning of mixing dimension
|
|
// or scaling by 0.
|
|
// Arguments:
|
|
// excess = The amount that the bounding box should be larger than needed to bound the children, in each axis.
|
|
// planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false
|
|
// Example(3D):
|
|
// module shapes() {
|
|
// translate([10,8,4]) cube(5);
|
|
// translate([3,0,12]) cube(2);
|
|
// }
|
|
// #bounding_box() shapes();
|
|
// shapes();
|
|
// Example(2D):
|
|
// module shapes() {
|
|
// translate([10,8]) square(5);
|
|
// translate([3,0]) square(2);
|
|
// }
|
|
// #bounding_box(planar=true) shapes();
|
|
// shapes();
|
|
module bounding_box(excess=0, planar=false) {
|
|
// a 3d (or 2d when planar=true) approx. of the children projection on X axis
|
|
module _xProjection() {
|
|
if (planar) {
|
|
projection()
|
|
rotate([90,0,0])
|
|
linear_extrude(1, center=true)
|
|
hull()
|
|
children();
|
|
} else {
|
|
xs = excess<.1? 1: excess;
|
|
linear_extrude(xs, center=true)
|
|
projection()
|
|
rotate([90,0,0])
|
|
linear_extrude(xs, center=true)
|
|
projection()
|
|
hull()
|
|
children();
|
|
}
|
|
}
|
|
|
|
// a bounding box with an offset of 1 in all axis
|
|
module _oversize_bbox() {
|
|
if (planar) {
|
|
minkowski() {
|
|
_xProjection() children(); // x axis
|
|
rotate(-90) _xProjection() rotate(90) children(); // y axis
|
|
}
|
|
} else {
|
|
minkowski() {
|
|
_xProjection() children(); // x axis
|
|
rotate(-90) _xProjection() rotate(90) children(); // y axis
|
|
rotate([0,-90,0]) _xProjection() rotate([0,90,0]) children(); // z axis
|
|
}
|
|
}
|
|
}
|
|
|
|
// offsets a cube by `excess`
|
|
module _shrink_cube() {
|
|
intersection() {
|
|
translate((1-excess)*[ 1, 1, 1]) children();
|
|
translate((1-excess)*[-1,-1,-1]) children();
|
|
}
|
|
}
|
|
|
|
if(planar) {
|
|
offset(excess-1/2) _oversize_bbox() children();
|
|
} else {
|
|
render(convexity=2)
|
|
if (excess>.1) {
|
|
_oversize_bbox() children();
|
|
} else {
|
|
_shrink_cube() _oversize_bbox() children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Function&Module: half_of()
|
|
//
|
|
// Usage: as module
|
|
// half_of(v, [cp], [s], [planar]) ...
|
|
// Usage: as function
|
|
// result = half_of(p,v,[cp]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a cut plane, and masks away everything that is on one side. The v parameter is either a plane specification or
|
|
// a normal vector. The s parameter is needed for the module
|
|
// version to control the size of the masking cube, which affects preview display.
|
|
// When called as a function, you must supply a vnf, path or region in p. If planar is set to true for the module version the operation
|
|
// is performed in and UP and DOWN are treated as equivalent to BACK and FWD respectively.
|
|
//
|
|
// Arguments:
|
|
// p = path, region or VNF to slice. (Function version)
|
|
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
|
|
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. Default: [0,0,0]
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Ignored for function version. Default: 1000
|
|
// planar = If true, perform a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
|
|
//
|
|
// Examples:
|
|
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
|
|
// half_of(DOWN+LEFT, s=200) sphere(d=150);
|
|
// Example(2D):
|
|
// half_of([1,1], planar=true) circle(d=50);
|
|
module half_of(v=UP, cp, s=1000, planar=false)
|
|
{
|
|
cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] :
|
|
is_vector(cp)? cp :
|
|
is_num(cp)? cp*unit(v) :
|
|
[0,0,0];
|
|
v = is_vector(v,4)? plane_normal(v) : v;
|
|
if (cp != [0,0,0]) {
|
|
translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
|
|
} else if (planar) {
|
|
v = (v==UP)? BACK : (v==DOWN)? FWD : v;
|
|
ang = atan2(v.y, v.x);
|
|
difference() {
|
|
children();
|
|
rotate(ang+90) {
|
|
back(s/2) square(s, center=true);
|
|
}
|
|
}
|
|
} else {
|
|
difference() {
|
|
children();
|
|
rot(from=UP, to=-v) {
|
|
up(s/2) cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function half_of(p, v=UP, cp) =
|
|
is_vnf(p) ?
|
|
assert(is_vector(v) && (len(v)==3 || len(v)==4),str("Must give 3-vector or plane specification",v))
|
|
assert(select(v,0,2)!=[0,0,0], "vector v must be nonzero")
|
|
let(
|
|
plane = is_vector(v,4) ? assert(cp==undef, "Don't use cp with plane definition.") v
|
|
: is_undef(cp) ? [each v, 0]
|
|
: is_num(cp) ? [each v, cp*(v*v)/norm(v)]
|
|
: assert(is_vector(cp,3),"Centerpoint must be a 3-vector")
|
|
[each v, cp*v]
|
|
)
|
|
vnf_halfspace(plane, p)
|
|
: is_path(p) || is_region(p) ?
|
|
let(
|
|
v = (v==UP)? BACK : (v==DOWN)? FWD : v,
|
|
cp = is_undef(cp) ? [0,0]
|
|
: is_num(cp) ? v*cp
|
|
: assert(is_vector(cp,2) || (is_vector(cp,3) && cp.z==0),"Centerpoint must be 2-vector")
|
|
cp
|
|
)
|
|
assert(is_vector(v,2) || (is_vector(v,3) && v.z==0),"Must give 2-vector")
|
|
assert(!all_zero(v), "Vector v must be nonzero")
|
|
let(
|
|
bounds = pointlist_bounds(move(-cp,p)),
|
|
L = 2*max(flatten(bounds)),
|
|
n = unit(v),
|
|
u = [-n.y,n.x],
|
|
box = [cp+u*L, cp+(v+u)*L, cp+(v-u)*L, cp-u*L]
|
|
)
|
|
intersection(box,p)
|
|
: assert(false, "Input must be a region, path or VNF");
|
|
|
|
|
|
|
|
/* This code cut 3d paths but leaves behind connecting line segments
|
|
is_path(p) ?
|
|
//assert(len(p[0]) == d, str("path must have dimension ", d))
|
|
let(z = [for(x=p) (x-cp)*v])
|
|
[ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [],
|
|
// we assume a closed path here;
|
|
// to make this correct for an open path,
|
|
// just replace this by [] when i==len(p)-1:
|
|
let(j=(i+1)%len(p))
|
|
// the remaining path may have flattened sections, but this cannot
|
|
// create self-intersection or whiskers:
|
|
z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ]
|
|
:
|
|
*/
|
|
|
|
|
|
// Function&Module: left_half()
|
|
//
|
|
// Usage: as module
|
|
// left_half([s], [x]) ...
|
|
// left_half(planar=true, [s], [x]) ...
|
|
// Usage: as function
|
|
// result = left_half(p, [x]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, perform a 2D operation.
|
|
//
|
|
// Examples:
|
|
// left_half() sphere(r=20);
|
|
// left_half(x=-8) sphere(r=20);
|
|
// Example(2D):
|
|
// left_half(planar=true) circle(r=20);
|
|
module left_half(s=1000, x=0, planar=false)
|
|
{
|
|
dir = LEFT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
|
|
|
|
|
|
|
|
// Function&Module: right_half()
|
|
//
|
|
// Usage: as module
|
|
// right_half([s], [x]) ...
|
|
// right_half(planar=true, [s], [x]) ...
|
|
// Usage: as function
|
|
// result = right_half(p, [x]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true perform a 2D operation.
|
|
//
|
|
// Examples(FlatSpin,VPD=175):
|
|
// right_half() sphere(r=20);
|
|
// right_half(x=-5) sphere(r=20);
|
|
// Example(2D):
|
|
// right_half(planar=true) circle(r=20);
|
|
module right_half(s=1000, x=0, planar=false)
|
|
{
|
|
dir = RIGHT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]);
|
|
|
|
|
|
|
|
// Function&Module: front_half()
|
|
//
|
|
// Usage:
|
|
// front_half([s], [y]) ...
|
|
// front_half(planar=true, [s], [y]) ...
|
|
// Usage: as function
|
|
// result = front_half(p, [y]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true perform a 2D operation.
|
|
//
|
|
// Examples(FlatSpin,VPD=175):
|
|
// front_half() sphere(r=20);
|
|
// front_half(y=5) sphere(r=20);
|
|
// Example(2D):
|
|
// front_half(planar=true) circle(r=20);
|
|
module front_half(s=1000, y=0, planar=false)
|
|
{
|
|
dir = FWD;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]);
|
|
|
|
|
|
|
|
// Function&Module: back_half()
|
|
//
|
|
// Usage:
|
|
// back_half([s], [y]) ...
|
|
// back_half(planar=true, [s], [y]) ...
|
|
// Usage: as function
|
|
// result = back_half(p, [y]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true perform a 2D operation.
|
|
//
|
|
// Examples:
|
|
// back_half() sphere(r=20);
|
|
// back_half(y=8) sphere(r=20);
|
|
// Example(2D):
|
|
// back_half(planar=true) circle(r=20);
|
|
module back_half(s=1000, y=0, planar=false)
|
|
{
|
|
dir = BACK;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function back_half(p,y=0) = half_of(p, BACK, [0,y,0]);
|
|
|
|
|
|
|
|
// Function&Module: bottom_half()
|
|
//
|
|
// Usage:
|
|
// bottom_half([s], [z]) ...
|
|
// Usage: as function
|
|
// result = bottom_half(p, [z]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
//
|
|
// Examples:
|
|
// bottom_half() sphere(r=20);
|
|
// bottom_half(z=-10) sphere(r=20);
|
|
module bottom_half(s=1000, z=0)
|
|
{
|
|
dir = DOWN;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
function bottom_half(p,z=0) = half_of(p,BOTTOM,[0,0,z]);
|
|
|
|
|
|
|
|
// Function&Module: top_half()
|
|
//
|
|
// Usage:
|
|
// top_half([s], [z]) ...
|
|
// result = top_half(p, [z]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
//
|
|
// Examples(Spin,VPD=175):
|
|
// top_half() sphere(r=20);
|
|
// top_half(z=5) sphere(r=20);
|
|
module top_half(s=1000, z=0)
|
|
{
|
|
dir = UP;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
function top_half(p,z=0) = half_of(p,UP,[0,0,z]);
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Warp Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: chain_hull()
|
|
//
|
|
// Usage:
|
|
// chain_hull() ...
|
|
//
|
|
// Description:
|
|
// Performs hull operations between consecutive pairs of children,
|
|
// then unions all of the hull results. This can be a very slow
|
|
// operation, but it can provide results that are hard to get
|
|
// otherwise.
|
|
//
|
|
// Side Effects:
|
|
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
|
|
// `$primary` is set to true when the child is the first in a chain pair.
|
|
//
|
|
// Example:
|
|
// chain_hull() {
|
|
// cube(5, center=true);
|
|
// translate([30, 0, 0]) sphere(d=15);
|
|
// translate([60, 30, 0]) cylinder(d=10, h=20);
|
|
// translate([60, 60, 0]) cube([10,1,20], center=false);
|
|
// }
|
|
// Example: Using `$idx` and `$primary`
|
|
// chain_hull() {
|
|
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// }
|
|
module chain_hull()
|
|
{
|
|
union() {
|
|
if ($children == 1) {
|
|
children();
|
|
} else if ($children > 1) {
|
|
for (i =[1:1:$children-1]) {
|
|
$idx = i;
|
|
hull() {
|
|
let($primary=true) children(i-1);
|
|
let($primary=false) children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: path_extrude2d()
|
|
// Usage:
|
|
// path_extrude2d(path, [caps]) {...}
|
|
// Description:
|
|
// Extrudes 2D children along the given 2D path, with optional rounded endcaps.
|
|
// Arguments:
|
|
// path = The 2D path to extrude the geometry along.
|
|
// caps = If true, caps each end of the path with a `rotate_extrude()`d copy of the children. This may interact oddly when given asymmetric profile children.
|
|
// Example:
|
|
// path = [
|
|
// each right(50, p=arc(d=100,angle=[90,180])),
|
|
// each left(50, p=arc(d=100,angle=[0,-90])),
|
|
// ];
|
|
// path_extrude2d(path,caps=false) {
|
|
// fwd(2.5) square([5,6],center=true);
|
|
// fwd(6) square([10,5],center=true);
|
|
// }
|
|
// Example:
|
|
// path_extrude2d(arc(d=100,angle=[180,270]))
|
|
// trapezoid(w1=10, w2=5, h=10, anchor=BACK);
|
|
// Example:
|
|
// include <BOSL2/beziers.scad>
|
|
// path = bezier_path([
|
|
// [-50,0], [-25,50], [0,0], [50,0]
|
|
// ]);
|
|
// path_extrude2d(path, caps=false)
|
|
// trapezoid(w1=10, w2=1, h=5, anchor=BACK);
|
|
module path_extrude2d(path, caps=true) {
|
|
thin = 0.01;
|
|
path = deduplicate(path);
|
|
for (p=pair(path)) {
|
|
delt = p[1]-p[0];
|
|
translate(p[0]) {
|
|
rot(from=BACK,to=delt) {
|
|
minkowski() {
|
|
cube([thin,norm(delt),thin], anchor=FRONT);
|
|
rotate([90,0,0]) linear_extrude(height=thin,center=true) children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (t=triplet(path)) {
|
|
ang = v_theta(t[2]-t[1]) - v_theta(t[1]-t[0]);
|
|
delt = t[2] - t[1];
|
|
translate(t[1]) {
|
|
minkowski() {
|
|
cube(thin,center=true);
|
|
if (ang >= 0) {
|
|
rotate(90-ang)
|
|
rot(from=LEFT,to=delt)
|
|
rotate_extrude(angle=ang+0.01)
|
|
right_half(planar=true) children();
|
|
} else {
|
|
rotate(-90)
|
|
rot(from=RIGHT,to=delt)
|
|
rotate_extrude(angle=-ang+0.01)
|
|
left_half(planar=true) children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (caps) {
|
|
move_copies([path[0],last(path)])
|
|
rotate_extrude()
|
|
right_half(planar=true) children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: cylindrical_extrude()
|
|
// Usage:
|
|
// cylindrical_extrude(size, ir|id, or|od, [convexity]) ...
|
|
// Description:
|
|
// Extrudes all 2D children outwards, curved around a cylindrical shape.
|
|
// Arguments:
|
|
// or = The outer radius to extrude to.
|
|
// od = The outer diameter to extrude to.
|
|
// ir = The inner radius to extrude from.
|
|
// id = The inner diameter to extrude from.
|
|
// size = The [X,Y] size of the 2D children to extrude. Default: [1000,1000]
|
|
// convexity = The max number of times a line could pass though a wall. Default: 10
|
|
// spin = Amount in degrees to spin around cylindrical axis. Default: 0
|
|
// orient = The orientation of the cylinder to wrap around, given as a vector. Default: UP
|
|
// Example:
|
|
// cylindrical_extrude(or=50, ir=45)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
// Example: Spin Around the Cylindrical Axis
|
|
// cylindrical_extrude(or=50, ir=45, spin=90)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
// Example: Orient to the Y Axis.
|
|
// cylindrical_extrude(or=40, ir=35, orient=BACK)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
module cylindrical_extrude(or, ir, od, id, size=1000, convexity=10, spin=0, orient=UP) {
|
|
assert(is_num(size) || is_vector(size,2));
|
|
size = is_num(size)? [size,size] : size;
|
|
ir = get_radius(r=ir,d=id);
|
|
or = get_radius(r=or,d=od);
|
|
index_r = or;
|
|
circumf = 2 * PI * index_r;
|
|
width = min(size.x, circumf);
|
|
assert(width <= circumf, "Shape would more than completely wrap around.");
|
|
sides = segs(or);
|
|
step = circumf / sides;
|
|
steps = ceil(width / step);
|
|
rot(from=UP, to=orient) rot(spin) {
|
|
for (i=[0:1:steps-2]) {
|
|
x = (i+0.5-steps/2) * step;
|
|
zrot(360 * x / circumf) {
|
|
fwd(or*cos(180/sides)) {
|
|
xrot(-90) {
|
|
linear_extrude(height=or-ir, scale=[ir/or,1], center=false, convexity=convexity) {
|
|
yflip()
|
|
intersection() {
|
|
left(x) children();
|
|
rect([quantup(step,pow(2,-15)),size.y],center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: extrude_from_to()
|
|
// Description:
|
|
// Extrudes a 2D shape between the 3d points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
|
|
// Arguments:
|
|
// pt1 = starting point of extrusion.
|
|
// pt2 = ending point of extrusion.
|
|
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
|
|
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
|
|
// scale = scale multiplier for end of extrusion compared the start.
|
|
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
|
|
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
|
|
// xcopies(3) circle(3, $fn=32);
|
|
// }
|
|
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
|
|
assert(is_vector(pt1));
|
|
assert(is_vector(pt2));
|
|
pt1 = point3d(pt1);
|
|
pt2 = point3d(pt2);
|
|
rtp = xyz_to_spherical(pt2-pt1);
|
|
translate(pt1) {
|
|
rotate([0, rtp[2], rtp[1]]) {
|
|
if (rtp[0] > 0) {
|
|
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: spiral_sweep()
|
|
// Description:
|
|
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
|
|
// of a given radius, height and twist. The origin in the profile traces out the helix of the specified radius.
|
|
// If twist is positive the path will be right-handed; if twist is negative the path will be left-handed.
|
|
// .
|
|
// Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance
|
|
// over which to taper.
|
|
// Arguments:
|
|
// poly = Array of points of a polygon path, to be extruded.
|
|
// h = height of the spiral to extrude along.
|
|
// r = Radius of the spiral to extrude along. Default: 50
|
|
// twist = number of degrees of rotation to spiral up along height.
|
|
// ---
|
|
// d = Diameter of the spiral to extrude along.
|
|
// higbee = Length to taper thread ends over.
|
|
// higbee1 = Taper length at start
|
|
// higbee2 = Taper length at end
|
|
// internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
|
|
// Example:
|
|
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
|
|
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
|
|
module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor, spin=0, orient=UP) {
|
|
higsample = 10; // Oversample factor for higbee tapering
|
|
dummy1=assert(is_num(twist) && twist != 0);
|
|
bounds = pointlist_bounds(poly);
|
|
yctr = (bounds[0].y+bounds[1].y)/2;
|
|
xmin = bounds[0].x;
|
|
xmax = bounds[1].x;
|
|
poly = path3d(clockwise_polygon(poly));
|
|
anchor = get_anchor(anchor,center,BOT,BOT);
|
|
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50);
|
|
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50);
|
|
sides = segs(max(r1,r2));
|
|
dir = sign(twist);
|
|
ang_step = 360/sides*dir;
|
|
anglist = [for(ang = [0:ang_step:twist-EPSILON]) ang,
|
|
twist];
|
|
higbee1 = first_defined([higbee1, higbee, 0]);
|
|
higbee2 = first_defined([higbee2, higbee, 0]);
|
|
higang1 = 360 * higbee1 / (2 * r1 * PI);
|
|
higang2 = 360 * higbee2 / (2 * r2 * PI);
|
|
dummy2=assert(higbee1>=0 && higbee2>=0)
|
|
assert(higang1 < dir*twist/2,"Higbee1 is more than half the threads")
|
|
assert(higang2 < dir*twist/2,"Higbee2 is more than half the threads");
|
|
function polygon_r(N,theta) =
|
|
let( alpha = 360/N )
|
|
cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2));
|
|
higofs = pow(0.05,2); // Smallest hig scale is the square root of this value
|
|
function taperfunc(x) = sqrt((1-higofs)*x+higofs);
|
|
interp_ang = [
|
|
for(i=idx(anglist,e=-2))
|
|
each lerpn(anglist[i],anglist[i+1],
|
|
(higang1>0 && higang1>dir*anglist[i+1]
|
|
|| (higang2>0 && higang2>dir*(twist-anglist[i]))) ? ceil((anglist[i+1]-anglist[i])/ang_step*higsample)
|
|
: 1,
|
|
endpoint=false),
|
|
last(anglist)
|
|
];
|
|
skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h));
|
|
points = [
|
|
for (a = interp_ang) let (
|
|
hsc = dir*a<higang1 ? taperfunc(dir*a/higang1)
|
|
: dir*(twist-a)<higang2 ? taperfunc(dir*(twist-a)/higang2)
|
|
: 1,
|
|
u = a/twist,
|
|
r = lerp(r1,r2,u),
|
|
mat = affine3d_zrot(a)
|
|
* affine3d_translate([polygon_r(sides,a)*r, 0, h * (u-0.5)])
|
|
* affine3d_xrot(90)
|
|
* skewmat
|
|
* scale([hsc,lerp(hsc,1,0.25),1], cp=[internal ? xmax : xmin, yctr, 0]),
|
|
pts = apply(mat, poly)
|
|
) pts
|
|
];
|
|
|
|
vnf = vnf_vertex_array(
|
|
points, col_wrap=true, caps=true, reverse=dir>0?true:false,
|
|
style=higbee1>0 || higbee2>0 ? "quincunx" : "alt"
|
|
);
|
|
|
|
attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) {
|
|
vnf_polyhedron(vnf, convexity=ceil(2*dir*twist/360));
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: path_extrude()
|
|
// Description:
|
|
// Extrudes 2D children along a 3D path. This may be slow.
|
|
// Arguments:
|
|
// path = array of points for the bezier path to extrude along.
|
|
// convexity = maximum number of walls a ran can pass through.
|
|
// clipsize = increase if artifacts are left. Default: 1000
|
|
// Example(FlatSpin,VPD=600,VPT=[75,16,20]):
|
|
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
|
|
// path_extrude(path) circle(r=10, $fn=6);
|
|
module path_extrude(path, convexity=10, clipsize=100) {
|
|
function polyquats(path, q=q_ident(), v=[0,0,1], i=0) = let(
|
|
v2 = path[i+1] - path[i],
|
|
ang = vector_angle(v,v2),
|
|
axis = ang>0.001? unit(cross(v,v2)) : [0,0,1],
|
|
newq = q_mul(quat(axis, ang), q),
|
|
dist = norm(v2)
|
|
) i < (len(path)-2)?
|
|
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
|
|
[[dist, newq, ang]];
|
|
|
|
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
|
|
ptcount = len(path);
|
|
pquats = polyquats(path);
|
|
for (i = [0:1:ptcount-2]) {
|
|
pt1 = path[i];
|
|
pt2 = path[i+1];
|
|
dist = pquats[i][0];
|
|
q = pquats[i][1];
|
|
difference() {
|
|
translate(pt1) {
|
|
q_rot(q) {
|
|
down(clipsize/2/2) {
|
|
if ((dist+clipsize/2) > 0) {
|
|
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
translate(pt1) {
|
|
hq = (i > 0)? q_slerp(q, pquats[i-1][1], 0.5) : q;
|
|
q_rot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
|
|
}
|
|
translate(pt2) {
|
|
hq = (i < ptcount-2)? q_slerp(q, pquats[i+1][1], 0.5) : q;
|
|
q_rot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Offset Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: minkowski_difference()
|
|
// Usage:
|
|
// minkowski_difference() { base_shape(); diff_shape(); ... }
|
|
// Description:
|
|
// Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the
|
|
// surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the
|
|
// surface of its base shape.
|
|
// Arguments:
|
|
// planar = If true, performs minkowski difference in 2D. Default: false (3D)
|
|
// Example:
|
|
// minkowski_difference() {
|
|
// union() {
|
|
// cube([120,70,70], center=true);
|
|
// cube([70,120,70], center=true);
|
|
// cube([70,70,120], center=true);
|
|
// }
|
|
// sphere(r=10);
|
|
// }
|
|
module minkowski_difference(planar=false) {
|
|
difference() {
|
|
bounding_box(excess=0, planar=planar) children(0);
|
|
render(convexity=20) {
|
|
minkowski() {
|
|
difference() {
|
|
bounding_box(excess=1, planar=planar) children(0);
|
|
children(0);
|
|
}
|
|
for (i=[1:1:$children-1]) children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: round2d()
|
|
// Usage:
|
|
// round2d(r) ...
|
|
// round2d(or) ...
|
|
// round2d(ir) ...
|
|
// round2d(or, ir) ...
|
|
// Description:
|
|
// Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 2D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
// Examples(2D):
|
|
// round2d(r=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(or=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);}
|
|
module round2d(r, or, ir)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset(or) offset(-ir-or) offset(delta=ir,chamfer=true) children();
|
|
}
|
|
|
|
|
|
// Module: shell2d()
|
|
// Usage:
|
|
// shell2d(thickness, [or], [ir], [fill], [round])
|
|
// Description:
|
|
// Creates a hollow shell from 2D children, with optional rounding.
|
|
// Arguments:
|
|
// thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both.
|
|
// or = Radius to round corners on the outside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no outside rounding)
|
|
// ir = Radius to round corners on the inside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no inside rounding)
|
|
// Examples(2D):
|
|
// shell2d(10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(-10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=[10,0]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=[0,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=[10,0]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=[0,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(8,or=[16,8],ir=[16,8]) {square([40,100], center=true); square([100,40], center=true);}
|
|
module shell2d(thickness, or=0, ir=0)
|
|
{
|
|
thickness = is_num(thickness)? (
|
|
thickness<0? [thickness,0] : [0,thickness]
|
|
) : (thickness[0]>thickness[1])? (
|
|
[thickness[1],thickness[0]]
|
|
) : thickness;
|
|
orad = is_finite(or)? [or,or] : or;
|
|
irad = is_finite(ir)? [ir,ir] : ir;
|
|
difference() {
|
|
round2d(or=orad[0],ir=orad[1])
|
|
offset(delta=thickness[1])
|
|
children();
|
|
round2d(or=irad[1],ir=irad[0])
|
|
offset(delta=thickness[0])
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: offset3d()
|
|
// Usage:
|
|
// offset3d(r, [size], [convexity]);
|
|
// Description:
|
|
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
|
|
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
|
|
// This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to expand object by. Negative numbers contract the object.
|
|
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
|
|
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
|
|
module offset3d(r=1, size=100, convexity=10) {
|
|
n = quant(max(8,segs(abs(r))),4);
|
|
if (r==0) {
|
|
children();
|
|
} else if (r>0) {
|
|
render(convexity=convexity)
|
|
minkowski() {
|
|
children();
|
|
sphere(r, $fn=n);
|
|
}
|
|
} else {
|
|
size2 = size * [1,1,1];
|
|
size1 = size2 * 1.02;
|
|
render(convexity=convexity)
|
|
difference() {
|
|
cube(size2, center=true);
|
|
minkowski() {
|
|
difference() {
|
|
cube(size1, center=true);
|
|
children();
|
|
}
|
|
sphere(-r, $fn=n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: round3d()
|
|
// Usage:
|
|
// round3d(r) ...
|
|
// round3d(or) ...
|
|
// round3d(ir) ...
|
|
// round3d(or, ir) ...
|
|
// Description:
|
|
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 3D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
|
|
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
|
|
// Use this as a last resort. This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
module round3d(r, or, ir, size=100)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset3d(or, size=size)
|
|
offset3d(-ir-or, size=size)
|
|
offset3d(ir, size=size)
|
|
children();
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Colors
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Function&Module: HSL()
|
|
// Usage:
|
|
// HSL(h,[s],[l],[a]) ...
|
|
// rgb = HSL(h,[s],[l]);
|
|
// Description:
|
|
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
|
|
// When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
|
|
// Arguments:
|
|
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
|
|
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
|
|
// l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5
|
|
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
|
|
// Example:
|
|
// HSL(h=120,s=1,l=0.5) sphere(d=60);
|
|
// Example:
|
|
// rgb = HSL(h=270,s=0.75,l=0.6);
|
|
// color(rgb) cube(60, center=true);
|
|
function HSL(h,s=1,l=0.5) =
|
|
let(
|
|
h=posmod(h,360)
|
|
) [
|
|
for (n=[0,8,4]) let(
|
|
k=(n+h/30)%12
|
|
) l - s*min(l,1-l)*max(min(k-3,9-k,1),-1)
|
|
];
|
|
|
|
module HSL(h,s=1,l=0.5,a=1) color(HSL(h,s,l),a) children();
|
|
|
|
|
|
// Function&Module: HSV()
|
|
// Usage:
|
|
// HSV(h,[s],[v],[a]) ...
|
|
// rgb = HSV(h,[s],[v]);
|
|
// Description:
|
|
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
|
|
// When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
|
|
// Arguments:
|
|
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
|
|
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
|
|
// v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1
|
|
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
|
|
// Example:
|
|
// HSV(h=120,s=1,v=1) sphere(d=60);
|
|
// Example:
|
|
// rgb = HSV(h=270,s=0.75,v=0.9);
|
|
// color(rgb) cube(60, center=true);
|
|
function HSV(h,s=1,v=1) =
|
|
assert(s>=0 && s<=1)
|
|
assert(v>=0 && v<=1)
|
|
let(
|
|
h = posmod(h,360),
|
|
c = v * s,
|
|
hprime = h/60,
|
|
x = c * (1- abs(hprime % 2 - 1)),
|
|
rgbprime = hprime <=1 ? [c,x,0]
|
|
: hprime <=2 ? [x,c,0]
|
|
: hprime <=3 ? [0,c,x]
|
|
: hprime <=4 ? [0,x,c]
|
|
: hprime <=5 ? [x,0,c]
|
|
: hprime <=6 ? [c,0,x]
|
|
: [0,0,0],
|
|
m=v-c
|
|
)
|
|
rgbprime+[m,m,m];
|
|
|
|
module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
|
|
|
|
|
// Module: rainbow()
|
|
// Usage:
|
|
// rainbow(list) ...
|
|
// Description:
|
|
// Iterates the list, displaying children in different colors for each list item.
|
|
// This is useful for debugging lists of paths and such.
|
|
// Arguments:
|
|
// list = The list of items to iterate through.
|
|
// stride = Consecutive colors stride around the color wheel divided into this many parts.
|
|
// maxhues = max number of hues to use (to prevent lots of indistinguishable hues)
|
|
// shuffle = if true then shuffle the hues in a random order. Default: false
|
|
// seed = seed to use for shuffle
|
|
// Side Effects:
|
|
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
|
|
// Sets `$idx` to the index of the current item in `list` that we want to show.
|
|
// Sets `$item` to the current item in `list` that we want to show.
|
|
// Example(2D):
|
|
// rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center");
|
|
// Example(2D):
|
|
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
|
|
// rainbow(rgn) stroke($item, closed=true);
|
|
module rainbow(list, stride=1, maxhues, shuffle=false, seed)
|
|
{
|
|
ll = len(list);
|
|
maxhues = first_defined([maxhues,ll]);
|
|
huestep = 360 / maxhues;
|
|
huelist = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)];
|
|
hues = shuffle ? shuffle(huelist, seed=seed) : huelist;
|
|
for($idx=idx(list)) {
|
|
$item = list[$idx];
|
|
HSV(h=hues[$idx]) children();
|
|
}
|
|
}
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|