mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-06 04:09:47 +00:00
c0d18ab0b1
to skin (from list comp demos) and added another error check to zip.
216 lines
8.8 KiB
OpenSCAD
216 lines
8.8 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: skin.scad
|
|
// Functions to skin arbitrary 2D profiles/paths in 3-space.
|
|
// To use, add the following line to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/skin.scad>
|
|
// ```
|
|
// Derived from list-comprehension-demos skin():
|
|
// - https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
include <vnf.scad>
|
|
|
|
|
|
// Section: Skinning
|
|
|
|
|
|
// Function&Module: skin()
|
|
// Usage: As Module
|
|
// skin(profiles, [closed], [matching]);
|
|
// Usage: As Function
|
|
// vnf = skin(profiles, [closed], [caps], [matching]);
|
|
// Description
|
|
// Given a list of two or more 2D path `profiles` that have been moved and/or rotated into 3D-space,
|
|
// produces faces to skin a surface between consecutive profiles. Optionally, the first and last
|
|
// profiles can have endcaps, or the last and first profiles can be skinned together.
|
|
// The user is responsible for making sure the orientation of the first vertex of each profile are relatively aligned.
|
|
// If called as a function, returns a VNF structure like `[VERTICES, FACES]`. See [VNF](vnf.scad).
|
|
// If called as a module, creates a polyhedron of the skinned profiles.
|
|
// The vertex matching algorithms are as follows:
|
|
// - `"distance"`: Vertices between profiles are matched based on closest next position, relative to the center of each profile.
|
|
// - `"angle"`: Vertices between profiles are matched based on closest next polar angle, relative to the center of each profile.
|
|
// - `"evenly"`: Vertices are evenly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count.
|
|
// Arguments:
|
|
// profiles = A list of 2D paths that have been moved and/or rotated into 3D-space.
|
|
// closed = If true, the last profile is skinned to the first profile, to allow for making a closed loop. Assumes `caps=false`. Default: false
|
|
// caps = If true, endcap faces are created. Assumes `closed=false`. Default: true
|
|
// matching = Specifies the algorithm used to match up vertices between profiles, to create faces. Given as a string, one of `"distance"`, `"angle"`, or `"evenly"`. If given as a list of strings, equal in number to the number of profile transitions, lets you specify the algorithm used for each transition. Default: "distance"
|
|
// Example(FlatSpin):
|
|
// skin([
|
|
// scale([2,1,1], p=path3d(circle(d=100,$fn=48))),
|
|
// path3d(circle(d=100,$fn=4),100),
|
|
// path3d(circle(d=100,$fn=12),200),
|
|
// ]);
|
|
// Example(FlatSpin):
|
|
// skin([
|
|
// for (ang = [0:10:90])
|
|
// rot([0,ang,0], cp=[200,0,0], p=path3d(circle(d=100,$fn=3+(ang/10))))
|
|
// ]);
|
|
// Example(FlatSpin): Möbius Strip
|
|
// skin([
|
|
// for (ang = [0:10:360])
|
|
// rot([0,ang,0], cp=[100,0,0], p=rot(ang/2, p=path3d(square([1,30],center=true))))
|
|
// ], caps=false);
|
|
// Example(FlatSpin): Closed Loop
|
|
// skin([
|
|
// for (i = [0:5])
|
|
// rot([0,i*60,0], cp=[100,0,0], p=path3d(circle(d=30,$fn=3+i%3)))
|
|
// ], closed=true, caps=false);
|
|
// Example: Distance Matching
|
|
// skin([
|
|
// move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))),
|
|
// move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36))))
|
|
// ], matching="distance");
|
|
// Example: Angle Matching
|
|
// skin([
|
|
// move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))),
|
|
// move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36))))
|
|
// ], matching="angle");
|
|
// Example: Evenly Matching
|
|
// skin([
|
|
// move([0,0, 0], p=scale([1,2,1],p=path3d(circle(d=50,$fn=36)))),
|
|
// move([0,0,100], p=scale([2,1,1],p=path3d(circle(d=50,$fn=36))))
|
|
// ], matching="evenly");
|
|
// Example:
|
|
// fn=32;
|
|
// base = round_corners(square([2,4],center=true), measure="radius", size=0.5, $fn=fn);
|
|
// skin([
|
|
// path3d(base,0),
|
|
// path3d(base,2),
|
|
// path3d(circle($fn=fn,r=0.5),3),
|
|
// path3d(circle($fn=fn,r=0.5),4),
|
|
// path3d(circle($fn=fn,r=0.6),4),
|
|
// path3d(circle($fn=fn,r=0.5),5),
|
|
// path3d(circle($fn=fn,r=0.6),5),
|
|
// path3d(circle($fn=fn,r=0.5),6),
|
|
// path3d(circle($fn=fn,r=0.6),6),
|
|
// path3d(circle($fn=fn,r=0.5),7),
|
|
// ],matching="evenly");
|
|
// Example: Forma Candle Holder
|
|
// r = 50;
|
|
// height = 140;
|
|
// layers = 10;
|
|
// wallthickness = 5;
|
|
// holeradius = r - wallthickness;
|
|
// difference() {
|
|
// skin([for (i=[0:layers-1])
|
|
// zrot(-30*i,p=path3d(hexagon(ir=r),i*height/layers))]);
|
|
// up(height/layers) cylinder(r=holeradius, h=height);
|
|
// }
|
|
// Example: Beware Self-intersecting Creases!
|
|
// skin([
|
|
// for (a = [0:30:180]) let(
|
|
// pos = [-60*sin(a), 0, a ],
|
|
// pos2 = [-60*sin(a+0.1), 0, a+0.1]
|
|
// ) move(pos,
|
|
// p=rot(from=UP, to=pos2-pos,
|
|
// p=path3d(circle(d=150))
|
|
// )
|
|
// )
|
|
// ]);
|
|
// color("red") {
|
|
// zrot(25) fwd(130) xrot(75) {
|
|
// linear_extrude(height=0.1) {
|
|
// ydistribute(25) {
|
|
// text(text="BAD POLYHEDRONS!", size=20, halign="center", valign="center");
|
|
// text(text="CREASES MAKE", size=20, halign="center", valign="center");
|
|
// }
|
|
// }
|
|
// }
|
|
// up(160) zrot(25) fwd(130) xrot(75) {
|
|
// stroke(zrot(30, p=yscale(0.5, p=circle(d=120))),width=10,closed=true);
|
|
// }
|
|
// }
|
|
// Example: Beware Making Incomplete Polyhedrons!
|
|
// skin([
|
|
// move([0,0, 0], p=path3d(circle(d=100,$fn=36))),
|
|
// move([0,0,50], p=path3d(circle(d=100,$fn=6)))
|
|
// ], caps=false);
|
|
module skin(profiles, closed=false, caps=true, matching="distance") {
|
|
vnf_polyhedron(skin(profiles, caps=caps, closed=closed, matching=matching));
|
|
}
|
|
|
|
|
|
function skin(profiles, closed=false, caps=true, matching="distance") =
|
|
assert(is_list(profiles))
|
|
assert(is_bool(closed))
|
|
assert(is_bool(caps))
|
|
assert(!closed||!caps)
|
|
assert(is_string(matching)||is_list(matching))
|
|
let( matching = is_list(matching)? matching : [for (pidx=idx(profiles,end=closed?-1:-2)) matching] )
|
|
assert(len(matching) == len(profiles)-closed?0:1)
|
|
vnf_triangulate(
|
|
concat([
|
|
for(pidx=idx(profiles,end=closed? -1 : -2))
|
|
let(
|
|
prof1 = profiles[pidx%len(profiles)],
|
|
prof2 = profiles[(pidx+1)%len(profiles)],
|
|
cp1 = mean(prof1),
|
|
cp2 = mean(prof2),
|
|
midpt = (cp1+cp2)/2,
|
|
n1 = plane_normal(plane_from_pointslist(prof1)),
|
|
n2 = plane_normal(plane_from_pointslist(prof2)),
|
|
vang = vector_angle(n1,n2),
|
|
perp = vang>0.01 && vang<179.99? vector_axis(n1,n2) :
|
|
vector_angle(n1,UP)>44? vector_axis(n1,UP) :
|
|
vector_axis(n1,LEFT),
|
|
perp1 = vector_axis(n1,perp),
|
|
perp2 = vector_axis(n2,perp),
|
|
poly1 = ccw_polygon(project_plane(prof1, cp1, cp1+perp, cp1+perp1)),
|
|
poly2 = ccw_polygon(project_plane(prof2, cp2, cp2+perp, cp2+perp2)),
|
|
match = matching[pidx],
|
|
faces = [
|
|
for(
|
|
first = true,
|
|
finishing = false,
|
|
finished = false,
|
|
plen1 = len(poly1),
|
|
plen2 = len(poly2),
|
|
i=0, j=0, side=0;
|
|
|
|
!finished;
|
|
|
|
dang1 = abs(xy_to_polar(poly1[i%plen1]).y - xy_to_polar(poly2[(j+1)%plen2]).y),
|
|
dang2 = abs(xy_to_polar(poly2[j%plen2]).y - xy_to_polar(poly1[(i+1)%plen1]).y),
|
|
dist1 = norm(poly1[i%plen1] - poly2[(j+1)%plen2]),
|
|
dist2 = norm(poly2[j%plen2] - poly1[(i+1)%plen1]),
|
|
side = i>=plen1? 0 :
|
|
j>=plen2? 1 :
|
|
match=="angle"? (dang1>dang2? 1 : 0) :
|
|
match=="distance"? (dist1>dist2? 1 : 0) :
|
|
match=="evenly"? (i/plen1 > j/plen2? 0 : 1) :
|
|
assert(in_list(matching[i],["angle","distance","evenly"]),str("Got `",matching,"'")),
|
|
p1 = lift_plane(poly1[i%plen1], cp1, cp1+perp, cp1+perp1),
|
|
p2 = lift_plane(poly2[j%plen2], cp2, cp2+perp, cp2+perp2),
|
|
p3 = side?
|
|
lift_plane(poly1[(i+1)%plen1], cp1, cp1+perp, cp1+perp1) :
|
|
lift_plane(poly2[(j+1)%plen2], cp2, cp2+perp, cp2+perp2),
|
|
face = [p1, p3, p2],
|
|
i = i + (side? 1 : 0),
|
|
j = j + (side? 0 : 1),
|
|
first = false,
|
|
finished = finishing,
|
|
finishing = i>=plen1 && j>=plen2
|
|
) if (!first) face
|
|
]
|
|
) vnf_add_faces(faces=faces)
|
|
], closed||!caps? [] : let(
|
|
prof1 = profiles[0],
|
|
prof2 = select(profiles,-1),
|
|
ncl1 = sort(find_noncollinear_points(prof1)),
|
|
ncl2 = sort(find_noncollinear_points(prof2)),
|
|
pa1=prof1[ncl1.x], pa2=prof1[ncl1.y], pa3=prof1[ncl1.z],
|
|
pb1=prof2[ncl2.x], pb2=prof2[ncl2.y], pb3=prof2[ncl2.z],
|
|
poly1 = ccw_polygon(project_plane(prof1, pa1, pa2, pa3)),
|
|
poly2 = clockwise_polygon(project_plane(prof2, pb1, pb2, pb3))
|
|
) [
|
|
vnf_add_face(pts=lift_plane(poly1, pa1, pa2, pa3)),
|
|
vnf_add_face(pts=lift_plane(poly2, pb1, pb2, pb3))
|
|
])
|
|
);
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|