mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
127 lines
4.7 KiB
OpenSCAD
127 lines
4.7 KiB
OpenSCAD
///////////////////////////////////////////
|
|
// Quaternions
|
|
///////////////////////////////////////////
|
|
|
|
/*
|
|
BSD 2-Clause License
|
|
|
|
Copyright (c) 2017, Revar Desmera
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
use <math.scad>
|
|
|
|
|
|
// Quaternions are stored internally as a 4-value vector:
|
|
// [X, Y, Z, W] = W + Xi + Yj + Zk
|
|
function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
|
|
function Quat(ax=[0,0,1], ang=0) = _Quat(ax/norm(ax), sin(ang/2), cos(ang/2));
|
|
|
|
function QuatX(a=0) = Quat([1,0,0],a);
|
|
function QuatY(a=0) = Quat([0,1,0],a);
|
|
function QuatZ(a=0) = Quat([0,0,1],a);
|
|
|
|
// Creates a quaternion from standard [X,Y,Z] euller rotation angles in degrees.
|
|
function QuatEuller(a=[0,0,0]) =
|
|
let(
|
|
qx = QuatX(a[0]),
|
|
qy = QuatY(a[1]),
|
|
qz = QuatZ(a[2])
|
|
)
|
|
Q_Mul(qz, Q_Mul(qy, qx));
|
|
|
|
function Q_Ident() = [0, 0, 0, 1];
|
|
|
|
function Q_Add_S(q, s) = [q[0], q[1], q[2], q[3]+s];
|
|
function Q_Sub_S(q, s) = [q[0], q[1], q[2], q[3]-s];
|
|
function Q_Mul_S(q, s) = [q[0]*s, q[1]*s, q[2]*s, q[3]*s];
|
|
function Q_Div_S(q, s) = [q[0]/s, q[1]/s, q[2]/s, q[3]/s];
|
|
|
|
function Q_Add(a, b) = [a[0]+b[0], a[1]+b[1], a[2]+b[2], a[3]+b[3]];
|
|
function Q_Sub(a, b) = [a[0]-b[0], a[1]-b[1], a[2]-b[2], a[3]-b[3]];
|
|
function Q_Mul(a, b) = [
|
|
a[3]*b[0] + a[0]*b[3] + a[1]*b[2] - a[2]*b[1],
|
|
a[3]*b[1] - a[0]*b[2] + a[1]*b[3] + a[2]*b[0],
|
|
a[3]*b[2] + a[0]*b[1] - a[1]*b[0] + a[2]*b[3],
|
|
a[3]*b[3] - a[0]*b[0] - a[1]*b[1] - a[2]*b[2],
|
|
];
|
|
function Q_Dot(a, b) = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
|
|
|
|
function Q_Neg(q) = [-q[0], -q[1], -q[2], -q[3]];
|
|
function Q_Conj(q) = [-q[0], -q[1], -q[2], q[3]];
|
|
function Q_Norm(q) = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
|
function Q_Normalize(q) = q/Q_Norm(q);
|
|
function Q_Dist(q1, q2) = Q_Norm(Q_Sub(q1-q2));
|
|
|
|
|
|
// Returns a spherical interpolation between two quaternions.
|
|
function Q_Slerp(q1, q2, t) = let(
|
|
dot = Q_Dot(q1, q2),
|
|
qq2 = dot<0? Q_Neg(q2) : q2,
|
|
dott = dot<0? -dot : dot,
|
|
theta = t * acos(constrain(dott,-1,1))
|
|
) (dott>0.9995)?
|
|
Q_Normalize(Q_Add(q1, Q_Mul_S(Q_Sub(qq2,q1), t))) :
|
|
Q_Add(Q_Mul_S(q1,cos(theta)), Q_Mul_S(Q_Normalize(Q_Sub(qq2, Q_Mul_S(q1, dott))), sin(theta)));
|
|
|
|
|
|
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
|
|
function Q_Matrix3(q) = [
|
|
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
|
|
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
|
|
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]]
|
|
];
|
|
|
|
|
|
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
|
|
function Q_Matrix4(q) = [
|
|
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
|
|
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
|
|
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Returns the quaternion's axis of rotation as a vector.
|
|
function Q_Axis(q) = let(d = sqrt(1-(q[3]*q[3]))) (d==0)? [0,0,1] : [q[0]/d, q[1]/d, q[2]/d];
|
|
|
|
|
|
// Returns the quaternion's angle of rotation in degrees.
|
|
function Q_Angle(q) = 2 * acos(q[3]);
|
|
|
|
|
|
// Returns the vector `v` after rotating it by the quaternion `q`.
|
|
function Q_Rot_Vector(v,q) = Q_Mul(Q_Mul(q,concat(v,0)),Q_Conj(q));
|
|
|
|
|
|
// Rotates all children by the given quaternion q.
|
|
module Qrot(q) {
|
|
multmatrix(Q_Matrix4(q)) {
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|