mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
1620 lines
68 KiB
OpenSCAD
1620 lines
68 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vnf.scad
|
|
// The Vertices'N'Faces structure (VNF) holds the data used by polyhedron() to construct objects: a vertex
|
|
// list and a list of faces. This library makes it easier to construct polyhedra by providing
|
|
// functions to construct, merge, and modify VNF data, while avoiding common pitfalls such as
|
|
// reversed faces.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Creating Polyhedrons with VNF Structures
|
|
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
|
|
// first item is a list of vertex points, and the second is a list of face indices into the vertex
|
|
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
|
|
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
|
|
// merge the various VNFs to get the completed polyhedron vertex list and faces.
|
|
|
|
/// Constant: EMPTY_VNF
|
|
/// Description:
|
|
/// The empty VNF data structure. Equal to `[[],[]]`.
|
|
EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces.
|
|
|
|
|
|
// Function: vnf_vertex_array()
|
|
// Usage:
|
|
// vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [style], [reverse], [col_wrap], [row_wrap]);
|
|
// Description:
|
|
// Creates a VNF structure from a rectangular vertex list, by dividing the vertices into columns and rows,
|
|
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
|
|
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
|
|
// the first and/or last rows. The style parameter determines how the quadrilaterals are divided into
|
|
// triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style
|
|
// is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to
|
|
// subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style
|
|
// adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles
|
|
// chooses the locally convex/concave subdivision. Degenerate faces
|
|
// are not included in the output, but if this results in unused vertices they will still appear in the output.
|
|
// Arguments:
|
|
// points = A list of vertices to divide into columns and rows.
|
|
// ---
|
|
// caps = If true, add endcap faces to the first AND last rows.
|
|
// cap1 = If true, add an endcap face to the first row.
|
|
// cap2 = If true, add an endcap face to the last row.
|
|
// col_wrap = If true, add faces to connect the last column to the first.
|
|
// row_wrap = If true, add faces to connect the last row to the first.
|
|
// reverse = If true, reverse all face normals.
|
|
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave".
|
|
// Example(3D):
|
|
// vnf = vnf_vertex_array(
|
|
// points=[
|
|
// for (h = [0:5:180-EPSILON]) [
|
|
// for (t = [0:5:360-EPSILON])
|
|
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
|
|
// ]
|
|
// ],
|
|
// col_wrap=true, caps=true, reverse=true, style="alt"
|
|
// );
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
|
|
// vnf = vnf_vertex_array(
|
|
// points=[
|
|
// for (a=[0:5:360-EPSILON])
|
|
// apply(
|
|
// zrot(a) * right(30) * xrot(90),
|
|
// path3d(circle(d=20))
|
|
// )
|
|
// ],
|
|
// col_wrap=true, row_wrap=true, reverse=true
|
|
// );
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
|
|
// vnf = vnf_vertex_array(
|
|
// points=[
|
|
// for (a=[0:5:360]) apply(
|
|
// zrot(a) * right(30) * xrot(90) * zrot(a/2+60),
|
|
// path3d(square([1,10], center=true))
|
|
// )
|
|
// ],
|
|
// col_wrap=true, reverse=true
|
|
// );
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Assembling a Polyhedron from Multiple Parts
|
|
// wall_points = [
|
|
// for (a = [-90:2:90]) apply(
|
|
// up(a) * scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1]),
|
|
// path3d(circle(d=100))
|
|
// )
|
|
// ];
|
|
// cap = [
|
|
// for (a = [0:0.01:1+EPSILON]) apply(
|
|
// up(90-5*sin(a*360*2)) * scale([a,a,1]),
|
|
// wall_points[0]
|
|
// )
|
|
// ];
|
|
// cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))];
|
|
// cap2 = [for (p=cap) up(90, p=p)];
|
|
// vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true);
|
|
// vnf2 = vnf_vertex_array(points=cap1, col_wrap=true);
|
|
// vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true);
|
|
// vnf_polyhedron([vnf1, vnf2, vnf3]);
|
|
function vnf_vertex_array(
|
|
points,
|
|
caps, cap1, cap2,
|
|
col_wrap=false,
|
|
row_wrap=false,
|
|
reverse=false,
|
|
style="default"
|
|
) =
|
|
assert(!(any([caps,cap1,cap2]) && !col_wrap), "col_wrap must be true if caps are requested")
|
|
assert(!(any([caps,cap1,cap2]) && row_wrap), "Cannot combine caps with row_wrap")
|
|
assert(in_list(style,["default","alt","quincunx", "convex","concave", "min_edge"]))
|
|
assert(is_matrix(points[0], n=3),"Point array has the wrong shape or points are not 3d")
|
|
assert(is_consistent(points), "Non-rectangular or invalid point array")
|
|
let(
|
|
pts = flatten(points),
|
|
pcnt = len(pts),
|
|
rows = len(points),
|
|
cols = len(points[0])
|
|
)
|
|
rows<=1 || cols<=1 ? EMPTY_VNF :
|
|
let(
|
|
cap1 = first_defined([cap1,caps,false]),
|
|
cap2 = first_defined([cap2,caps,false]),
|
|
colcnt = cols - (col_wrap?0:1),
|
|
rowcnt = rows - (row_wrap?0:1),
|
|
verts = [
|
|
each pts,
|
|
if (style=="quincunx")
|
|
for (r = [0:1:rowcnt-1], c = [0:1:colcnt-1])
|
|
let(
|
|
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
|
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
|
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
|
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
|
|
)
|
|
mean([pts[i1], pts[i2], pts[i3], pts[i4]])
|
|
],
|
|
allfaces = [
|
|
if (cap1) count(cols,reverse=!reverse),
|
|
if (cap2) count(cols,(rows-1)*cols, reverse=reverse),
|
|
for (r = [0:1:rowcnt-1], c=[0:1:colcnt-1])
|
|
each
|
|
let(
|
|
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
|
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
|
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
|
i4 = ((r+0)%rows)*cols + ((c+1)%cols),
|
|
faces =
|
|
style=="quincunx"?
|
|
let(i5 = pcnt + r*colcnt + c)
|
|
[[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
|
|
: style=="alt"?
|
|
[[i1,i4,i2],[i2,i4,i3]]
|
|
: style=="min_edge"?
|
|
let(
|
|
d42=norm(pts[i4]-pts[i2]),
|
|
d13=norm(pts[i1]-pts[i3]),
|
|
shortedge = d42<=d13 ? [[i1,i4,i2],[i2,i4,i3]]
|
|
: [[i1,i3,i2],[i1,i4,i3]]
|
|
)
|
|
shortedge
|
|
: style=="convex"?
|
|
let( // Find normal for 3 of the points. Is the other point above or below?
|
|
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
|
convexfaces = n==0 ? [[i1,i4,i3]]
|
|
: n*pts[i4] > n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
|
: [[i1,i3,i2],[i1,i4,i3]]
|
|
)
|
|
convexfaces
|
|
: style=="concave"?
|
|
let( // Find normal for 3 of the points. Is the other point above or below?
|
|
n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]),
|
|
concavefaces = n==0 ? [[i1,i4,i3]]
|
|
: n*pts[i4] <= n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]]
|
|
: [[i1,i3,i2],[i1,i4,i3]]
|
|
)
|
|
concavefaces
|
|
: [[i1,i3,i2],[i1,i4,i3]],
|
|
// remove degenerate faces
|
|
culled_faces= [for(face=faces)
|
|
if (norm(verts[face[0]]-verts[face[1]])>EPSILON &&
|
|
norm(verts[face[1]]-verts[face[2]])>EPSILON &&
|
|
norm(verts[face[2]]-verts[face[0]])>EPSILON)
|
|
face
|
|
],
|
|
rfaces = reverse? [for (face=culled_faces) reverse(face)] : culled_faces
|
|
)
|
|
rfaces,
|
|
]
|
|
)
|
|
[verts,allfaces];
|
|
|
|
|
|
// Function: vnf_tri_array()
|
|
// Usage:
|
|
// vnf = vnf_tri_array(points, [row_wrap], [reverse])
|
|
// Description:
|
|
// Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables
|
|
// the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true.
|
|
// You cannot wrap columns: if you need to do that you'll need to merge two VNF arrays that share edges. Degenerate faces
|
|
// are not included in the output, but if this results in unused vertices they will still appear in the output.
|
|
// Arguments:
|
|
// points = List of point lists for each row
|
|
// row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length.
|
|
// reverse = Set this to reverse the direction of the faces
|
|
// Example(3D,NoAxes): Each row has one more point than the preceeding one.
|
|
// pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]];
|
|
// vnf = vnf_tri_array(pts);
|
|
// vnf_wireframe(vnf,width=0.1);
|
|
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
|
|
// Example(3D,NoAxes): Each row has two more points than the preceeding one.
|
|
// pts = [for(y=[0:2:10]) [for(x=[-y/2:y/2]) [x,y,y]]];
|
|
// vnf = vnf_tri_array(pts);
|
|
// vnf_wireframe(vnf,width=0.1);
|
|
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
|
|
// Example(3D): Merging two VNFs to construct a cone with one point length change between rows.
|
|
// pts1 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[0,180]),10-z)];
|
|
// pts2 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[180,360]),10-z)];
|
|
// vnf = vnf_merge([vnf_tri_array(pts1),
|
|
// vnf_tri_array(pts2)]);
|
|
// color("green")vnf_wireframe(vnf,width=0.1);
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Cone with length change two between rows
|
|
// pts1 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[0,180]),10-z)];
|
|
// pts2 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[180,360]),10-z)];
|
|
// vnf = vnf_merge([vnf_tri_array(pts1),
|
|
// vnf_tri_array(pts2)]);
|
|
// color("green")vnf_wireframe(vnf,width=0.1);
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D,NoAxes): Point count can change irregularly
|
|
// lens = [10,9,7,5,6,8,8,10];
|
|
// pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])];
|
|
// vnf = vnf_tri_array(pts);
|
|
// vnf_wireframe(vnf,width=0.1);
|
|
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
|
|
function vnf_tri_array(points, row_wrap=false, reverse=false) =
|
|
let(
|
|
lens = [for(row=points) len(row)],
|
|
rowstarts = [0,each cumsum(lens)],
|
|
faces =
|
|
[for(i=[0:1:len(points) - 1 - (row_wrap ? 0 : 1)]) each
|
|
let(
|
|
rowstart = rowstarts[i],
|
|
nextrow = select(rowstarts,i+1),
|
|
delta = select(lens,i+1)-lens[i]
|
|
)
|
|
delta == 0 ?
|
|
[for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow],
|
|
for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1] : [j+rowstart+1, j+nextrow+1, j+nextrow]] :
|
|
delta == 1 ?
|
|
[for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1],
|
|
for(j=[0:1:lens[i]-1]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow]] :
|
|
delta == -1 ?
|
|
[for(j=[0:1:lens[i]-3]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1]: [j+rowstart+1, j+nextrow+1, j+nextrow],
|
|
for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow]] :
|
|
let(count = floor((lens[i]-1)/2))
|
|
delta == 2 ?
|
|
[
|
|
for(j=[0:1:count-1]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], // top triangles left
|
|
for(j=[count:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+2] : [j+rowstart, j+rowstart+1, j+nextrow+2], // top triangles right
|
|
for(j=[0:1:count]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow], // bot triangles left
|
|
for(j=[count+1:1:select(lens,i+1)-2]) reverse ? [j+rowstart-1, j+nextrow, j+nextrow+1] : [j+rowstart-1, j+nextrow+1, j+nextrow], // bot triangles right
|
|
] :
|
|
delta == -2 ?
|
|
[
|
|
for(j=[0:1:count-2]) reverse ? [j+nextrow, j+nextrow+1, j+rowstart+1] : [j+nextrow, j+rowstart+1, j+nextrow+1],
|
|
for(j=[count-1:1:lens[i]-4]) reverse ? [j+nextrow,j+nextrow+1,j+rowstart+2] : [j+nextrow,j+rowstart+2, j+nextrow+1],
|
|
for(j=[0:1:count-1]) reverse ? [j+nextrow, j+rowstart+1, j+rowstart] : [j+nextrow, j+rowstart, j+rowstart+1],
|
|
for(j=[count:1:select(lens,i+1)]) reverse ? [ j+nextrow-1, j+rowstart+1, j+rowstart]: [ j+nextrow-1, j+rowstart, j+rowstart+1],
|
|
] :
|
|
assert(false,str("Unsupported row length difference of ",delta, " between row ",i," and ",(i+1)%len(points)))
|
|
],
|
|
verts = flatten(points),
|
|
culled_faces=
|
|
[for(face=faces)
|
|
if (norm(verts[face[0]]-verts[face[1]])>EPSILON &&
|
|
norm(verts[face[1]]-verts[face[2]])>EPSILON &&
|
|
norm(verts[face[2]]-verts[face[0]])>EPSILON)
|
|
face
|
|
]
|
|
)
|
|
[flatten(points), culled_faces];
|
|
|
|
|
|
|
|
// Function: vnf_merge()
|
|
// Usage:
|
|
// vnf = vnf_merge([VNF, VNF, VNF, ...], [cleanup],[eps]);
|
|
// Description:
|
|
// Given a list of VNF structures, merges them all into a single VNF structure.
|
|
// When cleanup=true, it consolidates all duplicate vertices with a tolerance `eps`,
|
|
// and eliminates any faces with fewer than 3 vertices.
|
|
// (Unreferenced vertices of the input VNFs are not dropped.)
|
|
// Arguments:
|
|
// vnfs = a list of the VNFs to merge in one VNF.
|
|
// cleanup = when true, consolidates the duplicate vertices of the merge. Default: false
|
|
// eps = the tolerance in finding duplicates when cleanup=true. Default: EPSILON
|
|
function vnf_merge(vnfs, cleanup=false, eps=EPSILON) =
|
|
is_vnf(vnfs) ? vnf_merge([vnfs], cleanup, eps) :
|
|
assert( is_vnf_list(vnfs) , "Improper vnf or vnf list")
|
|
len(vnfs)==1 ? (cleanup ? _vnf_cleanup(vnfs[0][0],vnfs[0][1],eps) : vnfs[0])
|
|
:
|
|
let (
|
|
offs = cumsum([ 0, for (vnf = vnfs) len(vnf[0]) ]),
|
|
verts = [for (vnf=vnfs) each vnf[0]],
|
|
faces =
|
|
[ for (i = idx(vnfs))
|
|
let( faces = vnfs[i][1] )
|
|
for (face = faces)
|
|
if ( len(face) >= 3 )
|
|
[ for (j = face)
|
|
assert( j>=0 && j<len(vnfs[i][0]),
|
|
str("VNF number ", i, " has a face indexing an nonexistent vertex") )
|
|
offs[i] + j ]
|
|
]
|
|
)
|
|
cleanup? _vnf_cleanup(verts,faces,eps) : [verts,faces];
|
|
|
|
|
|
function _vnf_cleanup(verts,faces,eps) =
|
|
let(
|
|
dedup = vector_search(verts,eps,verts), // collect vertex duplicates
|
|
map = [for(i=idx(verts)) min(dedup[i]) ], // remap duplic vertices
|
|
offset = cumsum([for(i=idx(verts)) map[i]==i ? 0 : 1 ]), // remaping face vertex offsets
|
|
map2 = list(idx(verts))-offset, // map old vertex indices to new indices
|
|
nverts = [for(i=idx(verts)) if(map[i]==i) verts[i] ], // this doesn't eliminate unreferenced vertices
|
|
nfaces =
|
|
[ for(face=faces)
|
|
let(
|
|
nface = [ for(vi=face) map2[map[vi]] ],
|
|
dface = [for (i=idx(nface))
|
|
if( nface[i]!=nface[(i+1)%len(nface)])
|
|
nface[i] ]
|
|
)
|
|
if(len(dface) >= 3) dface
|
|
]
|
|
)
|
|
[nverts, nfaces];
|
|
|
|
|
|
// Function: vnf_from_polygons()
|
|
// Usage:
|
|
// vnf = vnf_from_polygons(polygons);
|
|
// Description:
|
|
// Given a list of 3d polygons, produces a VNF containing those polygons.
|
|
// It is up to the caller to make sure that the points are in the correct order to make the face
|
|
// normals point outwards. No checking for duplicate vertices is done. If you want to
|
|
// remove duplicate vertices use vnf_merge with the cleanup option.
|
|
// Arguments:
|
|
// polygons = The list of 3d polygons to turn into a VNF
|
|
function vnf_from_polygons(polygons) =
|
|
assert(is_list(polygons) && is_path(polygons[0]),"Input should be a list of polygons")
|
|
let(
|
|
offs = cumsum([0, for(p=polygons) len(p)]),
|
|
faces = [for(i=idx(polygons))
|
|
[for (j=idx(polygons[i])) offs[i]+j]
|
|
]
|
|
)
|
|
[flatten(polygons), faces];
|
|
|
|
|
|
|
|
|
|
function _path_path_closest_vertices(path1,path2) =
|
|
let(
|
|
dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]],
|
|
i1 = min_index(column(dists,1)),
|
|
i2 = dists[i1][0]
|
|
) [dists[i1][1], i1, i2];
|
|
|
|
|
|
function _join_paths_at_vertices(path1,path2,v1,v2) =
|
|
let(
|
|
repeat_start = !approx(path1[v1],path2[v2]),
|
|
path1 = clockwise_polygon(polygon_shift(path1,v1)),
|
|
path2 = ccw_polygon(polygon_shift(path2,v2))
|
|
)
|
|
[
|
|
each path1,
|
|
if (repeat_start) path1[0],
|
|
each path2,
|
|
if (repeat_start) path2[0],
|
|
];
|
|
|
|
|
|
// Given a region that is connected and has its outer border in region[0],
|
|
// produces a polygon with the same points that has overlapping connected paths
|
|
// to join internal holes to the outer border. Output is a single path.
|
|
function _old_cleave_connected_region(region) =
|
|
len(region)==0? [] :
|
|
len(region)<=1? clockwise_polygon(region[0]) :
|
|
let(
|
|
dists = [
|
|
for (i=[1:1:len(region)-1])
|
|
_path_path_closest_vertices(region[0],region[i])
|
|
],
|
|
idxi = min_index(column(dists,0)),
|
|
newoline = _join_paths_at_vertices(
|
|
region[0], region[idxi+1],
|
|
dists[idxi][1], dists[idxi][2]
|
|
)
|
|
) len(region)==2? clockwise_polygon(newoline) :
|
|
let(
|
|
orgn = [
|
|
newoline,
|
|
for (i=idx(region))
|
|
if (i>0 && i!=idxi+1)
|
|
region[i]
|
|
]
|
|
)
|
|
assert(len(orgn)<len(region))
|
|
_old_cleave_connected_region(orgn);
|
|
|
|
/// Internal Function: _cleave_connected_region(region, eps)
|
|
/// Description:
|
|
/// Given a region that is connected and has its outer border in region[0],
|
|
/// produces a overlapping connected path to join internal holes to
|
|
/// the outer border without adding points. Output is a single non-simple polygon.
|
|
/// Requirements:
|
|
/// It expects that all region paths be simple closed paths, with region[0] CW and
|
|
/// the other paths CCW and encircled by region[0]. The input region paths are also
|
|
/// supposed to be disjoint except for common vertices and common edges but with
|
|
/// no crossings. It may return `undef` if these conditions are not met.
|
|
/// This function implements an extension of the algorithm discussed in:
|
|
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
|
|
function _cleave_connected_region(region, eps=EPSILON) =
|
|
len(region)==1 ? region[0] :
|
|
let(
|
|
outer = deduplicate(region[0]), //
|
|
holes = [for(i=[1:1:len(region)-1]) // deduplication possibly unneeded
|
|
deduplicate( region[i] ) ], //
|
|
extridx = [for(li=holes) max_index(column(li,0)) ],
|
|
// the right extreme vertex for each hole sorted by decreasing x values
|
|
extremes = sort( [for(i=idx(holes)) [ i, extridx[i], -holes[i][extridx[i]].x] ], idx=2 )
|
|
)
|
|
_polyHoles(outer, holes, extremes, eps, 0);
|
|
|
|
|
|
// connect the hole paths one at a time to the outer path.
|
|
// 'extremes' is the list of the right extreme vertex of each hole sorted by decreasing abscissas
|
|
// see: _cleave_connected_region(region, eps)
|
|
function _polyHoles(outer, holes, extremes, eps=EPSILON, n=0) =
|
|
let(
|
|
extr = extremes[n], //
|
|
hole = holes[extr[0]], // hole path to bridge to the outer path
|
|
ipt = extr[1], // index of the hole point with maximum abscissa
|
|
brdg = _bridge(hole[ipt], outer, eps) // the index of a point in outer to bridge hole[ipt] to
|
|
)
|
|
brdg == undef ? undef :
|
|
let(
|
|
l = len(outer),
|
|
lh = len(hole),
|
|
// the new outer polygon bridging the hole to the old outer
|
|
npoly =
|
|
approx(outer[brdg], hole[ipt], eps)
|
|
? [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
|
for(i=[ipt+1: 1: ipt+lh-1]) hole[i%lh] ]
|
|
: [ for(i=[brdg: 1: brdg+l]) outer[i%l] ,
|
|
for(i=[ipt: 1: ipt+lh]) hole[i%lh] ]
|
|
)
|
|
n==len(holes)-1 ? npoly :
|
|
_polyHoles(npoly, holes, extremes, eps, n+1);
|
|
|
|
// find a point in outer to be connected to pt in the interior of outer
|
|
// by a segment that not cross or touch any non adjacente edge of outer.
|
|
// return the index of a vertex in the outer path where the bridge should end
|
|
// see _polyHoles(outer, holes, extremes, eps)
|
|
function _bridge(pt, outer,eps) =
|
|
// find the intersection of a ray from pt to the right
|
|
// with the boundary of the outer cycle
|
|
let(
|
|
l = len(outer),
|
|
crxs =
|
|
let( edges = pair(outer,wrap=true) )
|
|
[for( i = idx(edges) )
|
|
let( edge = edges[i] )
|
|
// consider just descending outer edges at right of pt crossing ordinate pt.y
|
|
if( (edge[0].y > pt.y+eps)
|
|
&& (edge[1].y <= pt.y)
|
|
&& _is_at_left(pt, [edge[1], edge[0]], eps) )
|
|
[ i,
|
|
// the point of edge with ordinate pt.y
|
|
abs(pt.y-edge[1].y)<eps ? edge[1] :
|
|
let( u = (pt-edge[1]).y / (edge[0]-edge[1]).y )
|
|
(1-u)*edge[1] + u*edge[0]
|
|
]
|
|
]
|
|
)
|
|
crxs == [] ? undef :
|
|
let(
|
|
// the intersection point of the nearest edge to pt with minimum slope
|
|
minX = min([for(p=crxs) p[1].x]),
|
|
crxcand = [for(crx=crxs) if(crx[1].x < minX+eps) crx ], // nearest edges
|
|
nearest = min_index([for(crx=crxcand)
|
|
(outer[crx[0]].x - pt.x) / (outer[crx[0]].y - pt.y) ]), // minimum slope
|
|
proj = crxcand[nearest],
|
|
vert0 = outer[proj[0]], // the two vertices of the nearest crossing edge
|
|
vert1 = outer[(proj[0]+1)%l],
|
|
isect = proj[1] // the intersection point
|
|
)
|
|
norm(pt-vert1) < eps ? (proj[0]+1)%l : // if pt touches an outer vertex, return its index
|
|
// as vert0.y > pt.y then pt!=vert0
|
|
norm(pt-isect) < eps ? undef : // if pt touches the middle of an outer edge -> error
|
|
let(
|
|
// the edge [vert0, vert1] necessarily satisfies vert0.y > vert1.y
|
|
// indices of candidates to an outer bridge point
|
|
cand =
|
|
(vert0.x > pt.x)
|
|
? [ proj[0],
|
|
// select reflex vertices inside of the triangle [pt, vert0, isect]
|
|
for(i=idx(outer))
|
|
if( _tri_class(select(outer,i-1,i+1),eps) <= 0
|
|
&& _pt_in_tri(outer[i], [pt, vert0, isect], eps)>=0 )
|
|
i
|
|
]
|
|
: [ (proj[0]+1)%l,
|
|
// select reflex vertices inside of the triangle [pt, isect, vert1]
|
|
for(i=idx(outer))
|
|
if( _tri_class(select(outer,i-1,i+1),eps) <= 0
|
|
&& _pt_in_tri(outer[i], [pt, isect, vert1], eps)>=0 )
|
|
i
|
|
],
|
|
// choose the candidate outer[i] such that the line [pt, outer[i]] has minimum slope
|
|
// among those with minimum slope choose the nearest to pt
|
|
slopes = [for(i=cand) 1-abs(outer[i].x-pt.x)/norm(outer[i]-pt) ],
|
|
min_slp = min(slopes),
|
|
cand2 = [for(i=idx(cand)) if(slopes[i]<=min_slp+eps) cand[i] ],
|
|
nearest = min_index([for(i=cand2) norm(pt-outer[i]) ])
|
|
)
|
|
cand2[nearest];
|
|
|
|
|
|
// Function: vnf_from_region()
|
|
// Usage:
|
|
// vnf = vnf_from_region(region, [transform], [reverse]);
|
|
// Description:
|
|
// Given a (two-dimensional) region, applies the given transformation matrix to it and makes a (three-dimensional) triangulated VNF of
|
|
// faces for that region, reversed if desired.
|
|
// Arguments:
|
|
// region = The region to conver to a vnf.
|
|
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
|
|
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false
|
|
// Example(3D):
|
|
// region = [square([20,10],center=true),
|
|
// right(5,square(4,center=true)),
|
|
// left(5,square(6,center=true))];
|
|
// vnf = vnf_from_region(region);
|
|
// color("gray")down(.125)
|
|
// linear_extrude(height=.125)region(region);
|
|
// vnf_wireframe(vnf,width=.25);
|
|
function vnf_from_region(region, transform, reverse=false) =
|
|
let (
|
|
regions = region_parts(force_region(region)),
|
|
vnfs =
|
|
[ for (rgn = regions)
|
|
let( cleaved = path3d(_cleave_connected_region(rgn)) )
|
|
assert( cleaved, "The region is invalid")
|
|
let(
|
|
face = is_undef(transform)? cleaved : apply(transform,cleaved),
|
|
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
|
|
) [face, [faceidxs]]
|
|
],
|
|
outvnf = vnf_merge(vnfs)
|
|
)
|
|
vnf_triangulate(outvnf);
|
|
|
|
|
|
|
|
// Section: VNF Testing and Access
|
|
|
|
|
|
// Function: is_vnf()
|
|
// Usage:
|
|
// bool = is_vnf(x);
|
|
// Description:
|
|
// Returns true if the given value looks like a VNF structure.
|
|
function is_vnf(x) =
|
|
is_list(x) &&
|
|
len(x)==2 &&
|
|
is_list(x[0]) &&
|
|
is_list(x[1]) &&
|
|
(x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0],3))) &&
|
|
(x[1]==[] || is_vector(x[1][0]));
|
|
|
|
|
|
// Function: is_vnf_list()
|
|
// Description: Returns true if the given value looks passingly like a list of VNF structures.
|
|
function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]);
|
|
|
|
|
|
// Function: vnf_vertices()
|
|
// Description: Given a VNF structure, returns the list of vertex points.
|
|
function vnf_vertices(vnf) = vnf[0];
|
|
|
|
|
|
// Function: vnf_faces()
|
|
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
|
|
function vnf_faces(vnf) = vnf[1];
|
|
|
|
|
|
|
|
// Section: Altering the VNF Internals
|
|
|
|
|
|
// Function: vnf_reverse_faces()
|
|
// Usage:
|
|
// rvnf = vnf_reverse_faces(vnf);
|
|
// Description:
|
|
// Reverses the orientation of all the faces in the given VNF.
|
|
function vnf_reverse_faces(vnf) =
|
|
[vnf[0], [for (face=vnf[1]) reverse(face)]];
|
|
|
|
|
|
// Function: vnf_quantize()
|
|
// Usage:
|
|
// vnf2 = vnf_quantize(vnf,[q]);
|
|
// Description:
|
|
// Quantizes the vertex coordinates of the VNF to the given quanta `q`.
|
|
// Arguments:
|
|
// vnf = The VNF to quantize.
|
|
// q = The quanta to quantize the VNF coordinates to.
|
|
function vnf_quantize(vnf,q=pow(2,-12)) =
|
|
[[for (pt = vnf[0]) quant(pt,q)], vnf[1]];
|
|
|
|
|
|
// Function: vnf_drop_unused_points()
|
|
// Usage:
|
|
// clean_vnf=vnf_drop_unused_points(vnf);
|
|
// Description:
|
|
// Remove all unreferenced vertices from a VNF. Note that in most
|
|
// cases unreferenced vertices cause no harm, and this function may
|
|
// be slow on large VNFs.
|
|
function vnf_drop_unused_points(vnf) =
|
|
let(
|
|
flat = flatten(vnf[1]),
|
|
ind = _link_indicator(flat,0,len(vnf[0])-1),
|
|
verts = [for(i=idx(vnf[0])) if(ind[i]==1) vnf[0][i] ],
|
|
map = cumsum(ind)
|
|
)
|
|
[ verts, [for(face=vnf[1]) [for(v=face) map[v]-1 ] ] ];
|
|
|
|
function _link_indicator(l,imin,imax) =
|
|
len(l) == 0 ? repeat(imax-imin+1,0) :
|
|
imax-imin<100 || len(l)<400 ? [for(si=search(list([imin:1:imax]),l,1)) si!=[] ? 1: 0 ] :
|
|
let(
|
|
pivot = floor((imax+imin)/2),
|
|
lesser = [ for(li=l) if( li< pivot) li ],
|
|
greater = [ for(li=l) if( li> pivot) li ]
|
|
)
|
|
concat( _link_indicator(lesser ,imin,pivot-1),
|
|
search(pivot,l,1) ? 1 : 0 ,
|
|
_link_indicator(greater,pivot+1,imax) ) ;
|
|
|
|
// Function: vnf_triangulate()
|
|
// Usage:
|
|
// vnf2 = vnf_triangulate(vnf);
|
|
// Description:
|
|
// Triangulates faces in the VNF that have more than 3 vertices.
|
|
// Arguments:
|
|
// vnf = vnf to triangulate
|
|
// Example(3D):
|
|
// include <BOSL2/polyhedra.scad>
|
|
// vnf = zrot(33,regular_polyhedron_info("vnf", "dodecahedron", side=12));
|
|
// vnf_polyhedron(vnf);
|
|
// triangulated = vnf_triangulate(vnf);
|
|
// color("red")vnf_wireframe(triangulated,width=.3);
|
|
function vnf_triangulate(vnf) =
|
|
let(
|
|
verts = vnf[0],
|
|
faces = [for (face=vnf[1])
|
|
each (len(face)==3 ? [face] :
|
|
let( tris = polygon_triangulate(verts, face) )
|
|
assert( tris!=undef, "Some `vnf` face cannot be triangulated.")
|
|
tris ) ]
|
|
)
|
|
[verts, faces];
|
|
|
|
|
|
|
|
// Function: vnf_slice()
|
|
// Usage:
|
|
// sliced = vnf_slice(vnf, dir, cuts);
|
|
// Description:
|
|
// Slice the faces of a VNF along a specified axis direction at a given list
|
|
// of cut points. The cut points can appear in any order. You can use this to refine the faces of a VNF before applying
|
|
// a nonlinear transformation to its vertex set.
|
|
// Arguments:
|
|
// vnf = vnf to slice
|
|
// dir = normal direction to the slices, either "X", "Y" or "Z"
|
|
// cuts = X, Y or Z values where cuts occur
|
|
// Example(3D):
|
|
// include <BOSL2/polyhedra.scad>
|
|
// vnf = regular_polyhedron_info("vnf", "dodecahedron", side=12);
|
|
// vnf_polyhedron(vnf);
|
|
// sliced = vnf_slice(vnf, "X", [-6,-1,10]);
|
|
// color("red")vnf_wireframe(sliced,width=.3);
|
|
function vnf_slice(vnf,dir,cuts) =
|
|
let(
|
|
vert = vnf[0],
|
|
faces = [for(face=vnf[1]) select(vert,face)],
|
|
poly_list = _slice_3dpolygons(faces, dir, cuts)
|
|
)
|
|
vnf_merge([vnf_from_polygons(poly_list)], cleanup=true);
|
|
|
|
|
|
function _split_polygon_at_x(poly, x) =
|
|
let(
|
|
xs = column(poly,0)
|
|
) (min(xs) >= x || max(xs) <= x)? [poly] :
|
|
let(
|
|
poly2 = [
|
|
for (p = pair(poly,true)) each [
|
|
p[0],
|
|
if(
|
|
(p[0].x < x && p[1].x > x) ||
|
|
(p[1].x < x && p[0].x > x)
|
|
) let(
|
|
u = (x - p[0].x) / (p[1].x - p[0].x)
|
|
) [
|
|
x, // Important for later exact match tests
|
|
u*(p[1].y-p[0].y)+p[0].y
|
|
]
|
|
]
|
|
],
|
|
out1 = [for (p = poly2) if(p.x <= x) p],
|
|
out2 = [for (p = poly2) if(p.x >= x) p],
|
|
out3 = [
|
|
if (len(out1)>=3) each split_path_at_self_crossings(out1),
|
|
if (len(out2)>=3) each split_path_at_self_crossings(out2),
|
|
],
|
|
out = [for (p=out3) if (len(p) > 2) cleanup_path(p)]
|
|
) out;
|
|
|
|
|
|
function _split_2dpolygons_at_each_x(polys, xs, _i=0) =
|
|
_i>=len(xs)? polys :
|
|
_split_2dpolygons_at_each_x(
|
|
[
|
|
for (poly = polys)
|
|
each _split_polygon_at_x(poly, xs[_i])
|
|
], xs, _i=_i+1
|
|
);
|
|
|
|
/// Internal Function: _slice_3dpolygons()
|
|
/// Usage:
|
|
/// splitpolys = _slice_3dpolygons(polys, dir, cuts);
|
|
/// Topics: Geometry, Polygons, Intersections
|
|
/// Description:
|
|
/// Given a list of 3D polygons, a choice of X, Y, or Z, and a cut list, `cuts`, splits all of the polygons where they cross
|
|
/// X/Y/Z at any value given in cuts.
|
|
/// Arguments:
|
|
/// polys = A list of 3D polygons to split.
|
|
/// dir_ind = slice direction, 0=X, 1=Y, or 2=Z
|
|
/// cuts = A list of scalar values for locating the cuts
|
|
function _slice_3dpolygons(polys, dir, cuts) =
|
|
assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.")
|
|
assert( is_vector(cuts), "The split list must be a vector.")
|
|
assert( in_list(dir, ["X", "Y", "Z"]))
|
|
let(
|
|
I = ident(3),
|
|
dir_ind = ord(dir)-ord("X")
|
|
)
|
|
flatten([for (poly = polys)
|
|
let(
|
|
plane = plane_from_polygon(poly),
|
|
normal = point3d(plane),
|
|
pnormal = normal - (normal*I[dir_ind])*I[dir_ind]
|
|
)
|
|
approx(pnormal,[0,0,0]) ? [poly] :
|
|
let (
|
|
pind = max_index(v_abs(pnormal)), // project along this direction
|
|
otherind = 3-pind-dir_ind, // keep dir_ind and this direction
|
|
keep = [I[dir_ind], I[otherind]], // dir ind becomes the x dir
|
|
poly2d = poly*transpose(keep), // project to 2d, putting selected direction in the X position
|
|
poly_list = [for(p=_split_2dpolygons_at_each_x([poly2d], cuts))
|
|
let(
|
|
a = p*keep, // unproject, but pind dimension data is missing
|
|
ofs = outer_product((repeat(plane[3], len(a))-a*normal)/plane[pind],I[pind])
|
|
)
|
|
a+ofs] // ofs computes the missing pind dimension data and adds it back in
|
|
)
|
|
poly_list
|
|
]);
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Turning a VNF into geometry
|
|
|
|
|
|
// Module: vnf_polyhedron()
|
|
// Usage:
|
|
// vnf_polyhedron(vnf);
|
|
// vnf_polyhedron([VNF, VNF, VNF, ...]);
|
|
// Description:
|
|
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
|
|
// Arguments:
|
|
// vnf = A VNF structure, or list of VNF structures.
|
|
// convexity = Max number of times a line could intersect a wall of the shape.
|
|
// extent = If true, calculate anchors by extents, rather than intersection. Default: true.
|
|
// cp = Centerpoint of VNF to use for anchoring when `extent` is false. Default: `[0, 0, 0]`
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) {
|
|
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf;
|
|
cp = is_def(cp) ? cp : centroid(vnf);
|
|
attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) {
|
|
polyhedron(vnf[0], vnf[1], convexity=convexity);
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: vnf_wireframe()
|
|
// Usage:
|
|
// vnf_wireframe(vnf, [width]);
|
|
// Description:
|
|
// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for
|
|
// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks
|
|
// that form the wire frame and the diameter of the balls.
|
|
// Arguments:
|
|
// vnf = A vnf structure
|
|
// width = width of the cylinders forming the wire frame. Default: 1
|
|
// Example:
|
|
// $fn=32;
|
|
// ball = sphere(r=20, $fn=6);
|
|
// vnf_wireframe(ball,width=1);
|
|
// Example:
|
|
// include <BOSL2/polyhedra.scad>
|
|
// $fn=32;
|
|
// cube_oct = regular_polyhedron_info("vnf",
|
|
// name="cuboctahedron", or=20);
|
|
// vnf_wireframe(cube_oct);
|
|
// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal.
|
|
// include <BOSL2/polyhedra.scad>
|
|
// $fn=8;
|
|
// octahedron = regular_polyhedron_info("vnf",
|
|
// name="octahedron", or=20);
|
|
// vnf_wireframe(octahedron,width=5);
|
|
module vnf_wireframe(vnf, width=1)
|
|
{
|
|
vertex = vnf[0];
|
|
edges = unique([for (face=vnf[1], i=idx(face))
|
|
sort([face[i], select(face,i+1)])
|
|
]);
|
|
for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(d=width);
|
|
// Identify vertices actually used and draw them
|
|
vertused = search(count(len(vertex)), flatten(edges), 1);
|
|
for(i=idx(vertex)) if(vertused[i]!=[]) move(vertex[i]) sphere(d=width);
|
|
}
|
|
|
|
|
|
// Section: Operations on VNFs
|
|
|
|
// Function: vnf_volume()
|
|
// Usage:
|
|
// vol = vnf_volume(vnf);
|
|
// Description:
|
|
// Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
|
// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume
|
|
// if face direction is counter-clockwise.
|
|
|
|
// Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume.
|
|
function vnf_volume(vnf) =
|
|
let(verts = vnf[0])
|
|
sum([
|
|
for(face=vnf[1], j=[1:1:len(face)-2])
|
|
cross(verts[face[j+1]], verts[face[j]]) * verts[face[0]]
|
|
])/6;
|
|
|
|
|
|
// Function: vnf_area()
|
|
// Usage:
|
|
// area = vnf_area(vnf);
|
|
// Description:
|
|
// Returns the surface area in any VNF by adding up the area of all its faces. The VNF need not be a manifold.
|
|
function vnf_area(vnf) =
|
|
let(verts=vnf[0])
|
|
sum([for(face=vnf[1]) polygon_area(select(verts,face))]);
|
|
|
|
|
|
/// Internal Function: _vnf_centroid()
|
|
/// Usage:
|
|
/// vol = _vnf_centroid(vnf);
|
|
/// Description:
|
|
/// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
|
|
/// no holes; otherwise the results are undefined.
|
|
|
|
/// Divide the solid up into tetrahedra with the origin as one vertex.
|
|
/// The centroid of a tetrahedron is the average of its vertices.
|
|
/// The centroid of the total is the volume weighted average.
|
|
function _vnf_centroid(vnf,eps=EPSILON) =
|
|
assert(is_vnf(vnf) && len(vnf[0])!=0 )
|
|
let(
|
|
verts = vnf[0],
|
|
pos = sum([
|
|
for(face=vnf[1], j=[1:1:len(face)-2]) let(
|
|
v0 = verts[face[0]],
|
|
v1 = verts[face[j]],
|
|
v2 = verts[face[j+1]],
|
|
vol = cross(v2,v1)*v0
|
|
)
|
|
[ vol, (v0+v1+v2)*vol ]
|
|
])
|
|
)
|
|
assert(!approx(pos[0],0, eps), "The vnf has self-intersections.")
|
|
pos[1]/pos[0]/4;
|
|
|
|
|
|
// Function: vnf_halfspace()
|
|
// Usage:
|
|
// newvnf = vnf_halfspace(plane, vnf, [closed]);
|
|
// Description:
|
|
// Returns the intersection of the vnf with a half space. The half space is defined by
|
|
// plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+Cz≥D.
|
|
// If closed is set to false then the cut face is not included in the vnf. This could
|
|
// allow further extension of the vnf by merging with other vnfs.
|
|
// Arguments:
|
|
// plane = plane defining the boundary of the half space
|
|
// vnf = vnf to cut
|
|
// closed = if false do not return include cut face(s). Default: true
|
|
// Example(3D):
|
|
// vnf = cube(10,center=true);
|
|
// cutvnf = vnf_halfspace([-1,1,-1,0], vnf);
|
|
// vnf_polyhedron(cutvnf);
|
|
// Example(3D): Cut face has 2 components
|
|
// vnf = path_sweep(circle(r=4, $fn=16),
|
|
// circle(r=20, $fn=64),closed=true);
|
|
// cutvnf = vnf_halfspace([-1,1,-4,0], vnf);
|
|
// vnf_polyhedron(cutvnf);
|
|
// Example(3D): Cut face is not simply connected
|
|
// vnf = path_sweep(circle(r=4, $fn=16),
|
|
// circle(r=20, $fn=64),closed=true);
|
|
// cutvnf = vnf_halfspace([0,0.7,-4,0], vnf);
|
|
// vnf_polyhedron(cutvnf);
|
|
// Example(3D): Cut object has multiple components
|
|
// function knot(a,b,t) = // rolling knot
|
|
// [ a * cos (3 * t) / (1 - b* sin (2 *t)),
|
|
// a * sin( 3 * t) / (1 - b* sin (2 *t)),
|
|
// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))];
|
|
// a = 0.8; b = sqrt (1 - a * a);
|
|
// ksteps = 400;
|
|
// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)];
|
|
// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]];
|
|
// knot=path_sweep(ushape, knot_path, closed=true, method="incremental");
|
|
// cut_knot = vnf_halfspace([1,0,0,0], knot);
|
|
// vnf_polyhedron(cut_knot);
|
|
function vnf_halfspace(plane, vnf, closed=true) =
|
|
assert(_valid_plane(plane), "Invalid plane")
|
|
assert(is_vnf(vnf), "Invalid vnf")
|
|
let(
|
|
inside = [for(x=vnf[0]) plane*[each x,-1] >= 0 ? 1 : 0],
|
|
vertexmap = [0,each cumsum(inside)],
|
|
faces_edges_vertices = _vnfcut(plane, vnf[0],vertexmap,inside, vnf[1], last(vertexmap)),
|
|
newvert = concat(bselect(vnf[0],inside), faces_edges_vertices[2])
|
|
)
|
|
closed==false ? [newvert, faces_edges_vertices[0]] :
|
|
let(
|
|
allpaths = _assemble_paths(newvert, faces_edges_vertices[1]),
|
|
newpaths = [for(p=allpaths) if (len(p)>=3) p
|
|
else assert(approx(p[0],p[1]),"Orphan edge found when assembling cut edges.")
|
|
]
|
|
)
|
|
len(newpaths)<=1 ? [newvert, concat(faces_edges_vertices[0], newpaths)]
|
|
:
|
|
let(
|
|
M = project_plane(plane),
|
|
faceregion = [for(path=newpaths) path2d(apply(M,select(newvert,path)))],
|
|
facevnf = vnf_from_region(faceregion,transform=rot_inverse(M),reverse=true)
|
|
)
|
|
vnf_merge([[newvert, faces_edges_vertices[0]], facevnf]);
|
|
|
|
|
|
function _assemble_paths(vertices, edges, paths=[],i=0) =
|
|
i==len(edges) ? paths :
|
|
norm(vertices[edges[i][0]]-vertices[edges[i][1]])<EPSILON ? _assemble_paths(vertices,edges,paths,i+1) :
|
|
let( // Find paths that connects on left side and right side of the edges (if one exists)
|
|
left = [for(j=idx(paths)) if (approx(vertices[last(paths[j])],vertices[edges[i][0]])) j],
|
|
right = [for(j=idx(paths)) if (approx(vertices[edges[i][1]],vertices[paths[j][0]])) j]
|
|
)
|
|
assert(len(left)<=1 && len(right)<=1)
|
|
let(
|
|
keep_path = list_remove(paths,concat(left,right)),
|
|
update_path = left==[] && right==[] ? edges[i]
|
|
: left==[] ? concat([edges[i][0]],paths[right[0]])
|
|
: right==[] ? concat(paths[left[0]],[edges[i][1]])
|
|
: left != right ? concat(paths[left[0]], paths[right[0]])
|
|
: paths[left[0]]
|
|
)
|
|
_assemble_paths(vertices, edges, concat(keep_path, [update_path]), i+1);
|
|
|
|
|
|
function _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount, newfaces=[], newedges=[], newvertices=[], i=0) =
|
|
i==len(faces) ? [newfaces, newedges, newvertices] :
|
|
let(
|
|
pts_inside = select(inside,faces[i])
|
|
)
|
|
all(pts_inside) ? _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount,
|
|
concat(newfaces, [select(vertexmap,faces[i])]), newedges, newvertices, i+1):
|
|
!any(pts_inside) ? _vnfcut(plane, vertices, vertexmap,inside, faces, vertcount, newfaces, newedges, newvertices, i+1):
|
|
let(
|
|
first = search([[1,0]],pair(pts_inside,wrap=true),0)[0],
|
|
second = search([[0,1]],pair(pts_inside,wrap=true),0)[0]
|
|
)
|
|
assert(len(first)==1 && len(second)==1, "Found concave face in VNF. Run vnf_triangulate first to ensure convex faces.")
|
|
let(
|
|
newface = [each select(vertexmap,select(faces[i],second[0]+1,first[0])),vertcount, vertcount+1],
|
|
newvert = [plane_line_intersection(plane, select(vertices,select(faces[i],first[0],first[0]+1)),eps=0),
|
|
plane_line_intersection(plane, select(vertices,select(faces[i],second[0],second[0]+1)),eps=0)]
|
|
)
|
|
true //!approx(newvert[0],newvert[1])
|
|
? _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount+2,
|
|
concat(newfaces, [newface]), concat(newedges,[[vertcount+1,vertcount]]),concat(newvertices,newvert),i+1)
|
|
:len(newface)>3
|
|
? _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount+1,
|
|
concat(newfaces, [list_head(newface)]), newedges,concat(newvertices,[newvert[0]]),i+1)
|
|
:
|
|
_vnfcut(plane, vertices, vertexmap, inside, faces, vertcount,newfaces, newedges, newvert, i+1);
|
|
|
|
|
|
|
|
|
|
function _triangulate_planar_convex_polygons(polys) =
|
|
polys==[]? [] :
|
|
let(
|
|
tris = [for (poly=polys) if (len(poly)==3) poly],
|
|
bigs = [for (poly=polys) if (len(poly)>3) poly],
|
|
newtris = [for (poly=bigs) select(poly,-2,0)],
|
|
newbigs = [for (poly=bigs) select(poly,0,-2)],
|
|
newtris2 = _triangulate_planar_convex_polygons(newbigs),
|
|
outtris = concat(tris, newtris, newtris2)
|
|
) outtris;
|
|
|
|
//**
|
|
// this function may produce degenerate triangles:
|
|
// _triangulate_planar_convex_polygons([ [for(i=[0:1]) [i,i],
|
|
// [1,-1], [-1,-1],
|
|
// for(i=[-1:0]) [i,i] ] ] )
|
|
// == [[[-1, -1], [ 0, 0], [0, 0]]
|
|
// [[-1, -1], [-1, -1], [0, 0]]
|
|
// [[ 1, -1], [-1, -1], [0, 0]]
|
|
// [[ 0, 0], [ 1, 1], [1, -1]] ]
|
|
//
|
|
|
|
// Function: vnf_bend()
|
|
// Usage:
|
|
// bentvnf = vnf_bend(vnf,r,d,[axis]);
|
|
// Description:
|
|
// Bend a VNF around the X, Y or Z axis, splitting up faces as necessary. Returns the bent
|
|
// VNF. For bending around the Z axis the input VNF must not cross the Y=0 plane. For bending
|
|
// around the X or Y axes the VNF must not cross the Z=0 plane. Note that if you wrap a VNF all the way around
|
|
// it may intersect itself, which produces an invalid polyhedron. It is your responsibility to
|
|
// avoid this situation. The 1:1
|
|
// radius is where the curved length of the bent VNF matches the length of the original VNF. If the
|
|
// `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are
|
|
// not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the
|
|
// original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard
|
|
// `$fa`, `$fs`, and `$fn` variables.
|
|
// Arguments:
|
|
// vnf = The original VNF to bend.
|
|
// r = If given, the radius where the size of the original shape is the same as in the original.
|
|
// ---
|
|
// d = If given, the diameter where the size of the original shape is the same as in the original.
|
|
// axis = The axis to wrap around. "X", "Y", or "Z". Default: "Z"
|
|
// Example(3D):
|
|
// vnf0 = cube([100,40,10], center=true);
|
|
// vnf1 = up(50, p=vnf0);
|
|
// vnf2 = down(50, p=vnf0);
|
|
// bent1 = vnf_bend(vnf1, axis="Y");
|
|
// bent2 = vnf_bend(vnf2, axis="Y");
|
|
// vnf_polyhedron([bent1,bent2]);
|
|
// Example(3D):
|
|
// vnf0 = linear_sweep(star(n=5,step=2,d=100), height=10);
|
|
// vnf1 = up(50, p=vnf0);
|
|
// vnf2 = down(50, p=vnf0);
|
|
// bent1 = vnf_bend(vnf1, axis="Y");
|
|
// bent2 = vnf_bend(vnf2, axis="Y");
|
|
// vnf_polyhedron([bent1,bent2]);
|
|
// Example(3D):
|
|
// rgn = union(rect([100,20],center=true),
|
|
// rect([20,100],center=true));
|
|
// vnf0 = linear_sweep(zrot(45,p=rgn), height=10);
|
|
// vnf1 = up(50, p=vnf0);
|
|
// vnf2 = down(50, p=vnf0);
|
|
// bent1 = vnf_bend(vnf1, axis="Y");
|
|
// bent2 = vnf_bend(vnf2, axis="Y");
|
|
// vnf_polyhedron([bent1,bent2]);
|
|
// Example(3D): Bending Around X Axis.
|
|
// rgnr = union(
|
|
// rect([20,100],center=true),
|
|
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
|
|
// );
|
|
// vnf0 = xrot(00,p=linear_sweep(rgnr, height=10));
|
|
// vnf1 = up(50, p=vnf0);
|
|
// #vnf_polyhedron(vnf1);
|
|
// bent1 = vnf_bend(vnf1, axis="X");
|
|
// vnf_polyhedron([bent1]);
|
|
// Example(3D): Bending Around Y Axis.
|
|
// rgn = union(
|
|
// rect([20,100],center=true),
|
|
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
|
|
// );
|
|
// rgnr = zrot(-90, p=rgn);
|
|
// vnf0 = xrot(00,p=linear_sweep(rgnr, height=10));
|
|
// vnf1 = up(50, p=vnf0);
|
|
// #vnf_polyhedron(vnf1);
|
|
// bent1 = vnf_bend(vnf1, axis="Y");
|
|
// vnf_polyhedron([bent1]);
|
|
// Example(3D): Bending Around Z Axis.
|
|
// rgn = union(
|
|
// rect([20,100],center=true),
|
|
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
|
|
// );
|
|
// rgnr = zrot(90, p=rgn);
|
|
// vnf0 = xrot(90,p=linear_sweep(rgnr, height=10));
|
|
// vnf1 = fwd(50, p=vnf0);
|
|
// #vnf_polyhedron(vnf1);
|
|
// bent1 = vnf_bend(vnf1, axis="Z");
|
|
// vnf_polyhedron([bent1]);
|
|
// Example(3D): Bending more than once around the cylinder
|
|
// $fn=32;
|
|
// vnf = apply(fwd(5)*yrot(30),cube([100,2,5],center=true));
|
|
// bent = vnf_bend(vnf, axis="Z");
|
|
// vnf_polyhedron(bent);
|
|
function vnf_bend(vnf,r,d,axis="Z") =
|
|
let(
|
|
chk_axis = assert(in_list(axis,["X","Y","Z"])),
|
|
verts = vnf[0],
|
|
bounds = pointlist_bounds(verts),
|
|
bmin = bounds[0],
|
|
bmax = bounds[1],
|
|
dflt = axis=="Z"?
|
|
max(abs(bmax.y), abs(bmin.y)) :
|
|
max(abs(bmax.z), abs(bmin.z)),
|
|
r = get_radius(r=r,d=d,dflt=dflt),
|
|
extent = axis=="X" ? [bmin.y, bmax.y] : [bmin.x, bmax.x]
|
|
)
|
|
let(
|
|
span_chk = axis=="Z"?
|
|
assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") :
|
|
assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."),
|
|
steps = ceil(segs(r) * (extent[1]-extent[0])/(2*PI*r)),
|
|
step = (extent[1]-extent[0]) / steps,
|
|
bend_at = [for(i = [1:1:steps-1]) i*step+extent[0]],
|
|
slicedir = axis=="X"? "Y" : "X", // slice in y dir for X axis case, and x dir otherwise
|
|
sliced = vnf_slice(vnf, slicedir, bend_at),
|
|
coord = axis=="X" ? [0,sign(bmax.z),0] : axis=="Y" ? [sign(bmax.z),0,0] : [sign(bmax.y),0,0],
|
|
new_vert = [for(p=sliced[0])
|
|
let(a=coord*p*180/(PI*r))
|
|
axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] :
|
|
axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] :
|
|
[p.y*sin(a), p.y*cos(a), p.z]]
|
|
|
|
) [new_vert,sliced[1]];
|
|
|
|
|
|
// Section: Debugging Polyhedrons
|
|
|
|
/// Internal Module: _show_vertices()
|
|
/// Usage:
|
|
/// _show_vertices(vertices, [size])
|
|
/// Description:
|
|
/// Draws all the vertices in an array, at their 3D position, numbered by their
|
|
/// position in the vertex array. Also draws any children of this module with
|
|
/// transparency.
|
|
/// Arguments:
|
|
/// vertices = Array of point vertices.
|
|
/// size = The size of the text used to label the vertices. Default: 1
|
|
/// Example:
|
|
/// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
|
|
/// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
|
|
/// _show_vertices(vertices=verts, size=2) {
|
|
/// polyhedron(points=verts, faces=faces);
|
|
/// }
|
|
module _show_vertices(vertices, size=1) {
|
|
color("blue") {
|
|
dups = vector_search(vertices, EPSILON, vertices);
|
|
for (ind = dups){
|
|
numstr = str_join([for(i=ind) str(i)],",");
|
|
v = vertices[ind[0]];
|
|
translate(v) {
|
|
rot($vpr) back(size/8){
|
|
linear_extrude(height=size/10, center=true, convexity=10) {
|
|
text(text=numstr, size=size, halign="center");
|
|
}
|
|
}
|
|
sphere(size/10);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Internal Module: _show_faces()
|
|
/// Usage:
|
|
/// _show_faces(vertices, faces, [size=]);
|
|
/// Description:
|
|
/// Draws all the vertices at their 3D position, numbered in blue by their
|
|
/// position in the vertex array. Each face will have their face number drawn
|
|
/// in red, aligned with the center of face. All children of this module are drawn
|
|
/// with transparency.
|
|
/// Arguments:
|
|
/// vertices = Array of point vertices.
|
|
/// faces = Array of faces by vertex numbers.
|
|
/// size = The size of the text used to label the faces and vertices. Default: 1
|
|
/// Example(EdgesMed):
|
|
/// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
|
|
/// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
|
|
/// _show_faces(vertices=verts, faces=faces, size=2) {
|
|
/// polyhedron(points=verts, faces=faces);
|
|
/// }
|
|
module _show_faces(vertices, faces, size=1) {
|
|
vlen = len(vertices);
|
|
color("red") {
|
|
for (i = [0:1:len(faces)-1]) {
|
|
face = faces[i];
|
|
if (face[0] < 0 || face[1] < 0 || face[2] < 0 || face[0] >= vlen || face[1] >= vlen || face[2] >= vlen) {
|
|
echo("BAD FACE: ", vlen=vlen, face=face);
|
|
} else {
|
|
verts = select(vertices,face);
|
|
c = mean(verts);
|
|
v0 = verts[0];
|
|
v1 = verts[1];
|
|
v2 = verts[2];
|
|
dv0 = unit(v1 - v0);
|
|
dv1 = unit(v2 - v0);
|
|
nrm0 = cross(dv0, dv1);
|
|
nrm1 = UP;
|
|
axis = vector_axis(nrm0, nrm1);
|
|
ang = vector_angle(nrm0, nrm1);
|
|
theta = atan2(nrm0[1], nrm0[0]);
|
|
translate(c) {
|
|
rotate(a=180-ang, v=axis) {
|
|
zrot(theta-90)
|
|
linear_extrude(height=size/10, center=true, convexity=10) {
|
|
union() {
|
|
text(text=str(i), size=size, halign="center");
|
|
text(text=str("_"), size=size, halign="center");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: vnf_debug()
|
|
// Usage:
|
|
// vnf_debug(vnfs, [faces], [vertices], [opacity], [size], [convexity]);
|
|
// Description:
|
|
// A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces.
|
|
// Draws all the vertices at their 3D position, numbered in blue by their
|
|
// position in the vertex array. Each face will have its face number drawn
|
|
// in red, aligned with the center of face. All given faces are drawn with
|
|
// transparency. All children of this module are drawn with transparency.
|
|
// Works best with Thrown-Together preview mode, to see reversed faces.
|
|
// You can set opacity to 0 if you want to supress the display of the polyhedron faces.
|
|
// .
|
|
// The vertex numbers are shown rotated to face you. As you rotate your polyhedron you
|
|
// can rerun the preview to display them oriented for viewing from a different viewpoint.
|
|
// Topics: Polyhedra, Debugging
|
|
// Arguments:
|
|
// vnf = vnf to display
|
|
// ---
|
|
// faces = if true display face numbers. Default: true
|
|
// vertices = if true display vertex numbers. Default: true
|
|
// opacity = Opacity of the polyhedron faces. Default: 0.5
|
|
// convexity = The max number of walls a ray can pass through the given polygon paths.
|
|
// size = The size of the text used to label the faces and vertices. Default: 1
|
|
// Example(EdgesMed):
|
|
// verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]];
|
|
// faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]];
|
|
// vnf_debug([verts,faces], size=2);
|
|
module vnf_debug(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=6 ) {
|
|
no_children($children);
|
|
if (faces)
|
|
_show_faces(vertices=vnf[0], faces=vnf[1], size=size);
|
|
if (vertices)
|
|
_show_vertices(vertices=vnf[0], size=size);
|
|
color([0.2, 1.0, 0, opacity])
|
|
vnf_polyhedron(vnf,convexity=convexity);
|
|
}
|
|
|
|
|
|
// Function&Module: vnf_validate()
|
|
// Usage: As Function
|
|
// fails = vnf_validate(vnf);
|
|
// Usage: As Module
|
|
// vnf_validate(vnf, [size]);
|
|
// Description:
|
|
// When called as a function, returns a list of non-manifold errors with the given VNF.
|
|
// Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`.
|
|
// When called as a module, echoes the non-manifold errors to the console, and color hilites the
|
|
// bad edges and vertices, overlaid on a transparent gray polyhedron of the VNF.
|
|
// .
|
|
// Currently checks for these problems:
|
|
// .
|
|
// Type | Color | Code | Message
|
|
// ------- | -------- | ------------ | ---------------------------------
|
|
// WARNING | Yellow | BIG_FACE | Face has more than 3 vertices, and may confuse CGAL.
|
|
// WARNING | Brown | NULL_FACE | Face has zero area.
|
|
// ERROR | Cyan | NONPLANAR | Face vertices are not coplanar.
|
|
// ERROR | Brown | DUP_FACE | Multiple instances of the same face.
|
|
// ERROR | Orange | MULTCONN | Multiply Connected Geometry. Too many faces attached at Edge.
|
|
// ERROR | Violet | REVERSAL | Faces reverse across edge.
|
|
// ERROR | Red | T_JUNCTION | Vertex is mid-edge on another Face.
|
|
// ERROR | Blue | FACE_ISECT | Faces intersect.
|
|
// ERROR | Magenta | HOLE_EDGE | Edge bounds Hole.
|
|
// .
|
|
// Still to implement:
|
|
// - Overlapping coplanar faces.
|
|
// Arguments:
|
|
// vnf = The VNF to validate.
|
|
// size = The width of the lines and diameter of points used to highlight edges and vertices. Module only. Default: 1
|
|
// check_isects = If true, performs slow checks for intersecting faces. Default: false
|
|
// Example: BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices.
|
|
// vnf = skin([
|
|
// path3d(regular_ngon(n=3, d=100),0),
|
|
// path3d(regular_ngon(n=5, d=100),100)
|
|
// ], slices=0, caps=true, method="tangent");
|
|
// vnf_validate(vnf);
|
|
// Example: NONPLANAR Errors; Face Vertices are Not Coplanar
|
|
// a = [ 0, 0,-50];
|
|
// b = [-50,-50, 50];
|
|
// c = [-50, 50, 50];
|
|
// d = [ 50, 50, 60];
|
|
// e = [ 50,-50, 50];
|
|
// vnf = vnf_from_polygons([
|
|
// [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e]
|
|
// ]);
|
|
// vnf_validate(vnf);
|
|
// Example: MULTCONN Errors; More Than Two Faces Attached to the Same Edge. This confuses CGAL, and can lead to failed renders.
|
|
// vnf = vnf_triangulate(linear_sweep(union(square(50), square(50,anchor=BACK+RIGHT)), height=50));
|
|
// vnf_validate(vnf);
|
|
// Example: REVERSAL Errors; Faces Reversed Across Edge
|
|
// vnf1 = skin([
|
|
// path3d(square(100,center=true),0),
|
|
// path3d(square(100,center=true),100),
|
|
// ], slices=0, caps=false);
|
|
// vnf = vnf_merge([vnf1, vnf_from_polygons([
|
|
// [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]],
|
|
// [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]],
|
|
// [[-50,-50,100], [-50, 50,100], [ 50, 50,100]],
|
|
// [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]],
|
|
// ])]);
|
|
// vnf_validate(vnf);
|
|
// Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face.
|
|
// vnf1 = skin([
|
|
// path3d(square(100,center=true),0),
|
|
// path3d(square(100,center=true),100),
|
|
// ], slices=0, caps=false);
|
|
// vnf = vnf_merge([vnf1, vnf_from_polygons([
|
|
// [[-50,-50,0], [50,50,0], [-50,50,0]],
|
|
// [[-50,-50,0], [50,-50,0], [50,50,0]],
|
|
// [[-50,-50,100], [-50,50,100], [0,50,100]],
|
|
// [[-50,-50,100], [0,50,100], [0,-50,100]],
|
|
// [[0,-50,100], [0,50,100], [50,50,100]],
|
|
// [[0,-50,100], [50,50,100], [50,-50,100]],
|
|
// ])]);
|
|
// vnf_validate(vnf);
|
|
// Example: FACE_ISECT Errors; Faces Intersect
|
|
// vnf = vnf_merge([
|
|
// vnf_triangulate(linear_sweep(square(100,center=true), height=100)),
|
|
// move([75,35,30],p=vnf_triangulate(linear_sweep(square(100,center=true), height=100)))
|
|
// ]);
|
|
// vnf_validate(vnf,size=2,check_isects=true);
|
|
// Example: HOLE_EDGE Errors; Edges Adjacent to Holes.
|
|
// vnf = skin([
|
|
// path3d(regular_ngon(n=4, d=100),0),
|
|
// path3d(regular_ngon(n=5, d=100),100)
|
|
// ], slices=0, caps=false);
|
|
// vnf_validate(vnf,size=2);
|
|
function vnf_validate(vnf, show_warns=true, check_isects=false) =
|
|
assert(is_vnf(vnf), "Invalid VNF")
|
|
let(
|
|
vnf = vnf_merge(vnf, cleanup=true),
|
|
varr = vnf[0],
|
|
faces = vnf[1],
|
|
lvarr = len(varr),
|
|
edges = sort([
|
|
for (face=faces, edge=pair(face,true))
|
|
edge[0]<edge[1]? edge : [edge[1],edge[0]]
|
|
]),
|
|
dfaces = [
|
|
for (face=faces) let(
|
|
face=deduplicate_indexed(varr,face,closed=true)
|
|
) if(len(face)>=3)
|
|
face
|
|
],
|
|
face_areas = [
|
|
for (face = faces)
|
|
len(face) < 3? 0 :
|
|
polygon_area([for (k=face) varr[k]])
|
|
],
|
|
edgecnts = unique_count(edges),
|
|
uniq_edges = edgecnts[0],
|
|
issues = []
|
|
)
|
|
let(
|
|
big_faces = !show_warns? [] : [
|
|
for (face = faces)
|
|
if (len(face) > 3)
|
|
_vnf_validate_err("BIG_FACE", [for (i=face) varr[i]])
|
|
],
|
|
null_faces = !show_warns? [] : [
|
|
for (i = idx(faces)) let(
|
|
face = faces[i],
|
|
area = face_areas[i],
|
|
faceverts = [for (k=face) varr[k]]
|
|
)
|
|
if (is_num(area) && abs(area) < EPSILON)
|
|
_vnf_validate_err("NULL_FACE", faceverts)
|
|
],
|
|
issues = concat(big_faces, null_faces)
|
|
)
|
|
let(
|
|
bad_indices = [
|
|
for (face = faces, idx = face)
|
|
if (idx < 0 || idx >= lvarr)
|
|
_vnf_validate_err("BAD_INDEX", [idx])
|
|
],
|
|
issues = concat(issues, bad_indices)
|
|
) bad_indices? issues :
|
|
let(
|
|
repeated_faces = [
|
|
for (i=idx(dfaces), j=idx(dfaces))
|
|
if (i!=j) let(
|
|
face1 = dfaces[i],
|
|
face2 = dfaces[j]
|
|
) if (min(face1) == min(face2)) let(
|
|
min1 = min_index(face1),
|
|
min2 = min_index(face2)
|
|
) if (min1 == min2) let(
|
|
sface1 = list_rotate(face1,min1),
|
|
sface2 = list_rotate(face2,min2)
|
|
) if (sface1 == sface2)
|
|
_vnf_validate_err("DUP_FACE", [for (i=sface1) varr[i]])
|
|
],
|
|
issues = concat(issues, repeated_faces)
|
|
) repeated_faces? issues :
|
|
let(
|
|
multconn_edges = unique([
|
|
for (i = idx(uniq_edges))
|
|
if (edgecnts[1][i]>2)
|
|
_vnf_validate_err("MULTCONN", [for (i=uniq_edges[i]) varr[i]])
|
|
]),
|
|
issues = concat(issues, multconn_edges)
|
|
) multconn_edges? issues :
|
|
let(
|
|
reversals = unique([
|
|
for(i = idx(dfaces), j = idx(dfaces)) if(i != j)
|
|
for(edge1 = pair(faces[i],true))
|
|
for(edge2 = pair(faces[j],true))
|
|
if(edge1 == edge2) // Valid adjacent faces will never have the same vertex ordering.
|
|
if(_edge_not_reported(edge1, varr, multconn_edges))
|
|
_vnf_validate_err("REVERSAL", [for (i=edge1) varr[i]])
|
|
]),
|
|
issues = concat(issues, reversals)
|
|
) reversals? issues :
|
|
let(
|
|
t_juncts = unique([
|
|
for (v=idx(varr), edge=uniq_edges) let(
|
|
ia = edge[0],
|
|
ib = v,
|
|
ic = edge[1]
|
|
)
|
|
if (ia!=ib && ib!=ic && ia!=ic) let(
|
|
a = varr[ia],
|
|
b = varr[ib],
|
|
c = varr[ic]
|
|
)
|
|
if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let(
|
|
pt = line_closest_point([a,c],b,SEGMENT)
|
|
)
|
|
if (approx(pt,b))
|
|
_vnf_validate_err("T_JUNCTION", [b])
|
|
]),
|
|
issues = concat(issues, t_juncts)
|
|
) t_juncts? issues :
|
|
let(
|
|
isect_faces = !check_isects? [] : unique([
|
|
for (i = [0:1:len(faces)-2]) let(
|
|
f1 = faces[i],
|
|
poly1 = select(varr, faces[i]),
|
|
plane1 = plane3pt(poly1[0], poly1[1], poly1[2]),
|
|
normal1 = [plane1[0], plane1[1], plane1[2]]
|
|
)
|
|
for (j = [i+1:1:len(faces)-1]) let(
|
|
f2 = faces[j],
|
|
poly2 = select(varr, f2),
|
|
val = poly2 * normal1
|
|
)
|
|
if( min(val)<=plane1[3] && max(val)>=plane1[3] ) let(
|
|
plane2 = plane_from_polygon(poly2),
|
|
normal2 = [plane2[0], plane2[1], plane2[2]],
|
|
val = poly1 * normal2
|
|
)
|
|
if( min(val)<=plane2[3] && max(val)>=plane2[3] ) let(
|
|
shared_edges = [
|
|
for (edge1 = pair(f1, true), edge2 = pair(f2, true))
|
|
if (edge1 == [edge2[1], edge2[0]]) 1
|
|
]
|
|
)
|
|
if (!shared_edges) let(
|
|
line = plane_intersection(plane1, plane2)
|
|
)
|
|
if (!is_undef(line)) let(
|
|
isects = polygon_line_intersection(poly1, line)
|
|
)
|
|
if (!is_undef(isects))
|
|
for (isect = isects)
|
|
if (len(isect) > 1) let(
|
|
isects2 = polygon_line_intersection(poly2, isect, bounded=true)
|
|
)
|
|
if (!is_undef(isects2))
|
|
for (seg = isects2)
|
|
if (seg[0] != seg[1])
|
|
_vnf_validate_err("FACE_ISECT", seg)
|
|
]),
|
|
issues = concat(issues, isect_faces)
|
|
) isect_faces? issues :
|
|
let(
|
|
hole_edges = unique([
|
|
for (i=idx(uniq_edges))
|
|
if (edgecnts[1][i]<2)
|
|
if (_pts_not_reported(uniq_edges[i], varr, t_juncts))
|
|
if (_pts_not_reported(uniq_edges[i], varr, isect_faces))
|
|
_vnf_validate_err("HOLE_EDGE", [for (i=uniq_edges[i]) varr[i]])
|
|
]),
|
|
issues = concat(issues, hole_edges)
|
|
) hole_edges? issues :
|
|
let(
|
|
nonplanars = unique([
|
|
for (i = idx(faces)) let(
|
|
face = faces[i],
|
|
area = face_areas[i],
|
|
faceverts = [for (k=face) varr[k]]
|
|
)
|
|
if (is_num(area) && abs(area) > EPSILON)
|
|
if (!is_coplanar(faceverts))
|
|
_vnf_validate_err("NONPLANAR", faceverts)
|
|
]),
|
|
issues = concat(issues, nonplanars)
|
|
) issues;
|
|
|
|
|
|
_vnf_validate_errs = [
|
|
["BIG_FACE", "WARNING", "cyan", "Face has more than 3 vertices, and may confuse CGAL"],
|
|
["NULL_FACE", "WARNING", "blue", "Face has zero area."],
|
|
["BAD_INDEX", "ERROR", "cyan", "Invalid face vertex index."],
|
|
["NONPLANAR", "ERROR", "yellow", "Face vertices are not coplanar"],
|
|
["DUP_FACE", "ERROR", "brown", "Multiple instances of the same face."],
|
|
["MULTCONN", "ERROR", "orange", "Multiply Connected Geometry. Too many faces attached at Edge"],
|
|
["REVERSAL", "ERROR", "violet", "Faces Reverse Across Edge"],
|
|
["T_JUNCTION", "ERROR", "magenta", "Vertex is mid-edge on another Face"],
|
|
["FACE_ISECT", "ERROR", "brown", "Faces intersect"],
|
|
["HOLE_EDGE", "ERROR", "red", "Edge bounds Hole"]
|
|
];
|
|
|
|
|
|
function _vnf_validate_err(name, extra) =
|
|
let(
|
|
info = [for (x = _vnf_validate_errs) if (x[0] == name) x][0]
|
|
) concat(info, [extra]);
|
|
|
|
|
|
function _pts_not_reported(pts, varr, reports) =
|
|
[
|
|
for (i = pts, report = reports, pt = report[3])
|
|
if (varr[i] == pt) 1
|
|
] == [];
|
|
|
|
|
|
function _edge_not_reported(edge, varr, reports) =
|
|
let(
|
|
edge = sort([for (i=edge) varr[i]])
|
|
) [
|
|
for (report = reports) let(
|
|
pts = sort(report[3])
|
|
) if (len(pts)==2 && edge == pts) 1
|
|
] == [];
|
|
|
|
|
|
module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) {
|
|
faults = vnf_validate(
|
|
vnf, show_warns=show_warns,
|
|
check_isects=check_isects
|
|
);
|
|
for (fault = faults) {
|
|
err = fault[0];
|
|
typ = fault[1];
|
|
clr = fault[2];
|
|
msg = fault[3];
|
|
pts = fault[4];
|
|
echo(str(typ, " ", err, " (", clr ,"): ", msg, " at ", pts));
|
|
color(clr) {
|
|
if (is_vector(pts[0])) {
|
|
if (len(pts)==2) {
|
|
stroke(pts, width=size, closed=true, endcaps="butt", hull=false, $fn=8);
|
|
} else if (len(pts)>2) {
|
|
stroke(pts, width=size, closed=true, hull=false, $fn=8);
|
|
polyhedron(pts,[[for (i=idx(pts)) i]]);
|
|
} else {
|
|
move_copies(pts) sphere(d=size*3, $fn=18);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
color([0.5,0.5,0.5,0.67]) vnf_polyhedron(vnf);
|
|
}
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|