BOSL2/matrices.scad
2019-05-12 12:32:03 -07:00

298 lines
7.9 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: matrices.scad
// Matrix math and affine transformation matrices.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Matrix Manipulation
// Function: ident()
// Description: Create an `n` by `n` identity matrix.
// Arguments:
// n = The size of the identity matrix square, `n` by `n`.
function ident(n) = [for (i = [0:n-1]) [for (j = [0:n-1]) (i==j)?1:0]];
// Function: mat3_to_mat4()
// Description: Takes a 3x3 matrix and returns its 4x4 affine equivalent.
function mat3_to_mat4(m) = concat(
[for (r = [0:2])
concat(
[for (c = [0:2]) m[r][c]],
[0]
)
],
[[0, 0, 0, 1]]
);
// Section: Affine Transformation 3x3 Matrices
// Function: matrix3_translate()
// Description:
// Returns the 3x3 matrix to perform a 2D translation.
// Arguments:
// v = 2D Offset to translate by. [X,Y]
function matrix3_translate(v) = [
[1, 0, v.x],
[0, 1, v.y],
[0 ,0, 1]
];
// Function: matrix3_scale()
// Description:
// Returns the 3x3 matrix to perform a 2D scaling transformation.
// Arguments:
// v = 2D vector of scaling factors. [X,Y]
function matrix3_scale(v) = [
[v.x, 0, 0],
[ 0, v.y, 0],
[ 0, 0, 1]
];
// Function: matrix3_zrot()
// Description:
// Returns the 3x3 matrix to perform a rotation of a 2D vector around the Z axis.
// Arguments:
// ang = Number of degrees to rotate.
function matrix3_zrot(ang) = [
[cos(ang), -sin(ang), 0],
[sin(ang), cos(ang), 0],
[ 0, 0, 1]
];
// Function: matrix3_skew()
// Usage:
// matrix3_skew(xa, ya)
// Description:
// Returns the 3x3 matrix to skew a 2D vector along the XY plane.
// Arguments:
// xa = Skew angle, in degrees, in the direction of the X axis.
// ya = Skew angle, in degrees, in the direction of the Y axis.
function matrix3_skew(xa, ya) = [
[1, tan(xa), 0],
[tan(ya), 1, 0],
[0, 0, 1]
];
// Function: matrix3_mult()
// Usage:
// matrix3_mult(matrices)
// Description:
// Returns a 3x3 transformation matrix which results from applying each matrix in `matrices` in order.
// Arguments:
// matrices = A list of 3x3 matrices.
function matrix3_mult(matrices, _m=undef, _i=0) =
(_i>=len(matrices))? (is_undef(_m)? ident(3) : _m) :
matrix3_mult(matrices, _m=(is_undef(_m)? matrices[_i] : matrices[_i] * _m), _i=_i+1);
// Function: matrix3_apply()
// Usage:
// matrix3_apply(pts, matrices)
// Description:
// Given a list of transformation matrices, applies them in order to the points in the point list.
// Arguments:
// pts = A list of 2D points to transform.
// matrices = A list of 3x3 matrices to apply, in order.
// Example:
// npts = matrix3_apply(
// pts = [for (x=[0:3]) [5*x,0]],
// matrices =[
// matrix3_scale([3,1]),
// matrix3_rot(90),
// matrix3_translate([5,5])
// ]
// ); // Returns [[5,5], [5,20], [5,35], [5,50]]
function matrix3_apply(pts, matrices) =
let(m = matrix3_mult(matrices))
[for (p = pts) point2d(m * concat(point2d(p),[1]))];
// Section: Affine Transformation 4x4 Matrices
// Function: matrix4_translate()
// Description:
// Returns the 4x4 matrix to perform a 3D translation.
// Arguments:
// v = 3D offset to translate by. [X,Y,Z]
function matrix4_translate(v) = [
[1, 0, 0, v.x],
[0, 1, 0, v.y],
[0, 0, 1, v.z],
[0 ,0, 0, 1]
];
// Function: matrix4_scale()
// Description:
// Returns the 4x4 matrix to perform a 3D scaling transformation.
// Arguments:
// v = 3D vector of scaling factors. [X,Y,Z]
function matrix4_scale(v) = [
[v.x, 0, 0, 0],
[ 0, v.y, 0, 0],
[ 0, 0, v.z, 0],
[ 0, 0, 0, 1]
];
// Function: matrix4_xrot()
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the X axis.
// Arguments:
// ang = number of degrees to rotate.
function matrix4_xrot(ang) = [
[1, 0, 0, 0],
[0, cos(ang), -sin(ang), 0],
[0, sin(ang), cos(ang), 0],
[0, 0, 0, 1]
];
// Function: matrix4_yrot()
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the Y axis.
// Arguments:
// ang = Number of degrees to rotate.
function matrix4_yrot(ang) = [
[ cos(ang), 0, sin(ang), 0],
[ 0, 1, 0, 0],
[-sin(ang), 0, cos(ang), 0],
[ 0, 0, 0, 1]
];
// Function: matrix4_zrot()
// Usage:
// matrix4_zrot(ang)
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the Z axis.
// Arguments:
// ang = number of degrees to rotate.
function matrix4_zrot(ang) = [
[cos(ang), -sin(ang), 0, 0],
[sin(ang), cos(ang), 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]
];
// Function: matrix4_rot_by_axis()
// Usage:
// matrix4_rot_by_axis(u, ang);
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around an axis.
// Arguments:
// u = 3D axis vector to rotate around.
// ang = number of degrees to rotate.
function matrix4_rot_by_axis(u, ang) = let(
u = normalize(u),
c = cos(ang),
c2 = 1-c,
s = sin(ang)
) [
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0],
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0],
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0],
[ 0, 0, 0, 1]
];
// Function: matrix4_skew_xy()
// Usage:
// matrix4_skew_xy(xa, ya)
// Description:
// Returns the 4x4 matrix to perform a skew transformation along the XY plane..
// Arguments:
// xa = Skew angle, in degrees, in the direction of the X axis.
// ya = Skew angle, in degrees, in the direction of the Y axis.
function matrix4_skew_xy(xa, ya) = [
[1, 0, tan(xa), 0],
[0, 1, tan(ya), 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
];
// Function: matrix4_skew_xz()
// Usage:
// matrix4_skew_xz(xa, za)
// Description:
// Returns the 4x4 matrix to perform a skew transformation along the XZ plane.
// Arguments:
// xa = Skew angle, in degrees, in the direction of the X axis.
// za = Skew angle, in degrees, in the direction of the Z axis.
function matrix4_skew_xz(xa, za) = [
[1, tan(xa), 0, 0],
[0, 1, 0, 0],
[0, tan(za), 1, 0],
[0, 0, 0, 1]
];
// Function: matrix4_skew_yz()
// Usage:
// matrix4_skew_yz(ya, za)
// Description:
// Returns the 4x4 matrix to perform a skew transformation along the YZ plane.
// Arguments:
// ya = Skew angle, in degrees, in the direction of the Y axis.
// za = Skew angle, in degrees, in the direction of the Z axis.
function matrix4_skew_yz(ya, za) = [
[ 1, 0, 0, 0],
[tan(ya), 1, 0, 0],
[tan(za), 0, 1, 0],
[ 0, 0, 0, 1]
];
// Function: matrix4_mult()
// Usage:
// matrix4_mult(matrices)
// Description:
// Returns a 4x4 transformation matrix which results from applying each matrix in `matrices` in order.
// Arguments:
// matrices = A list of 4x4 matrices.
function matrix4_mult(matrices, _m=undef, _i=0) =
(_i>=len(matrices))? (is_undef(_m)? ident(4) : _m) :
matrix4_mult(matrices, _m=(is_undef(_m)? matrices[_i] : matrices[_i] * _m), _i=_i+1);
// Function: matrix4_apply()
// Usage:
// matrix4_apply(pts, matrices)
// Description:
// Given a list of transformation matrices, applies them in order to the points in the point list.
// Arguments:
// pts = A list of 3D points to transform.
// matrices = A list of 4x4 matrices to apply, in order.
// Example:
// npts = matrix4_apply(
// pts = [for (x=[0:3]) [5*x,0,0]],
// matrices =[
// matrix4_scale([2,1,1]),
// matrix4_zrot(90),
// matrix4_translate([5,5,10])
// ]
// ); // Returns [[5,5,10], [5,15,10], [5,25,10], [5,35,10]]
function matrix4_apply(pts, matrices) =
let(m = matrix4_mult(matrices))
[for (p = pts) point3d(m * concat(point3d(p),[1]))];
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap