mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
119 lines
3.3 KiB
OpenSCAD
119 lines
3.3 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vectors.scad
|
|
// Vector math functions.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Vector Manipulation
|
|
|
|
// Function: vmul()
|
|
// Description:
|
|
// Element-wise vector multiplication. Multiplies each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the products.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
|
|
function vmul(v1, v2) = [for (i = [0:len(v1)-1]) v1[i]*v2[i]];
|
|
|
|
|
|
// Function: vdiv()
|
|
// Description:
|
|
// Element-wise vector division. Divides each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the quotients.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
|
|
function vdiv(v1, v2) = [for (i = [0:len(v1)-1]) v1[i]/v2[i]];
|
|
|
|
|
|
// Function: vabs()
|
|
// Description: Returns a vector of the absolute value of each element of vector `v`.
|
|
// Arguments:
|
|
// v = The vector to get the absolute values of.
|
|
function vabs(v) = [for (x=v) abs(x)];
|
|
|
|
|
|
// Function: normalize()
|
|
// Description:
|
|
// Returns unit length normalized version of vector v.
|
|
// Arguments:
|
|
// v = The vector to normalize.
|
|
function normalize(v) = v/norm(v);
|
|
|
|
|
|
// Function: vquant()
|
|
// Usage:
|
|
// vquant(v,m)
|
|
// Description:
|
|
// Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding to the nearest multiple.
|
|
// Arguments:
|
|
// v = The vector to quantize.
|
|
// m = The multiple to quantize to.
|
|
function vquant(v,m) = [for (x=v) quant(x,m)];
|
|
|
|
|
|
// Function: vquantdn()
|
|
// Usage:
|
|
// vquantdn(v,m)
|
|
// Description:
|
|
// Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding down to the nearest multiple.
|
|
// Arguments:
|
|
// v = The vector to quantize.
|
|
// m = The multiple to quantize to.
|
|
function vquantdn(v,m) = [for (x=v) quantdn(x,m)];
|
|
|
|
|
|
// Function: vquantup()
|
|
// Usage:
|
|
// vquantup(v,m)
|
|
// Description:
|
|
// Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding up to the nearest multiple.
|
|
// Arguments:
|
|
// v = The vector to quantize.
|
|
// m = The multiple to quantize to.
|
|
function vquantup(v,m) = [for (x=v) quantup(x,m)];
|
|
|
|
|
|
// Function: vector_angle()
|
|
// Usage:
|
|
// vector_angle(v1,v2);
|
|
// Description:
|
|
// Returns angle in degrees between two vectors of similar dimensions.
|
|
// Arguments:
|
|
// v1 = First vector.
|
|
// v2 = Second vector.
|
|
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
|
function vector_angle(v1,v2) =
|
|
assert(is_vector(v1))
|
|
assert(is_vector(v2))
|
|
acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1));
|
|
|
|
|
|
// Function: vector_axis()
|
|
// Usage:
|
|
// vector_xis(v1,v2);
|
|
// Description:
|
|
// Returns the vector perpendicular to both of the given vectors.
|
|
// Arguments:
|
|
// v1 = First vector.
|
|
// v2 = Second vector.
|
|
function vector_axis(v1,v2) =
|
|
let(
|
|
eps = 1e-6,
|
|
v1 = point3d(v1/norm(v1)),
|
|
v2 = point3d(v2/norm(v2)),
|
|
v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 :
|
|
(norm(vabs(v2)-UP) > eps)? UP :
|
|
RIGHT
|
|
) normalize(cross(v1,v3));
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|