mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
1137 lines
39 KiB
OpenSCAD
1137 lines
39 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: math.scad
|
|
// Math helper functions.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Math Constants
|
|
|
|
PHI = (1+sqrt(5))/2; // The golden ratio phi.
|
|
|
|
EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
|
|
|
|
INF = 1/0; // The value `inf`, useful for comparisons.
|
|
|
|
NAN = acos(2); // The value `nan`, useful for comparisons.
|
|
|
|
|
|
|
|
// Section: Simple math
|
|
|
|
// Function: sqr()
|
|
// Usage:
|
|
// sqr(x);
|
|
// Description:
|
|
// Returns the square of the given number or entries in list
|
|
// Examples:
|
|
// sqr(3); // Returns: 9
|
|
// sqr(-4); // Returns: 16
|
|
// sqr([3,4]); // Returns: [9,16]
|
|
// sqr([[1,2],[3,4]]); // Returns [[1,4],[9,16]]
|
|
// sqr([[1,2],3]); // Returns [[1,4],9]
|
|
function sqr(x) = is_list(x) ? [for(val=x) sqr(val)] : x*x;
|
|
|
|
|
|
// Function: log2()
|
|
// Usage:
|
|
// foo = log2(x);
|
|
// Description:
|
|
// Returns the logarithm base 2 of the value given.
|
|
// Examples:
|
|
// log2(0.125); // Returns: -3
|
|
// log2(16); // Returns: 4
|
|
// log2(256); // Returns: 8
|
|
function log2(x) = ln(x)/ln(2);
|
|
|
|
|
|
// Function: hypot()
|
|
// Usage:
|
|
// l = hypot(x,y,[z]);
|
|
// Description:
|
|
// Calculate hypotenuse length of a 2D or 3D triangle.
|
|
// Arguments:
|
|
// x = Length on the X axis.
|
|
// y = Length on the Y axis.
|
|
// z = Length on the Z axis. Optional.
|
|
// Example:
|
|
// l = hypot(3,4); // Returns: 5
|
|
// l = hypot(3,4,5); // Returns: ~7.0710678119
|
|
function hypot(x,y,z=0) = norm([x,y,z]);
|
|
|
|
|
|
// Function: factorial()
|
|
// Usage:
|
|
// x = factorial(n,[d]);
|
|
// Description:
|
|
// Returns the factorial of the given integer value.
|
|
// Arguments:
|
|
// n = The integer number to get the factorial of. (n!)
|
|
// d = If given, the returned value will be (n! / d!)
|
|
// Example:
|
|
// x = factorial(4); // Returns: 24
|
|
// y = factorial(6); // Returns: 720
|
|
// z = factorial(9); // Returns: 362880
|
|
function factorial(n,d=1) = product([for (i=[n:-1:d]) i]);
|
|
|
|
|
|
// Function: lerp()
|
|
// Usage:
|
|
// x = lerp(a, b, u);
|
|
// l = lerp(a, b, LIST);
|
|
// Description:
|
|
// Interpolate between two values or vectors.
|
|
// If `u` is given as a number, returns the single interpolated value.
|
|
// If `u` is 0.0, then the value of `a` is returned.
|
|
// If `u` is 1.0, then the value of `b` is returned.
|
|
// If `u` is a range, or list of numbers, returns a list of interpolated values.
|
|
// It is valid to use a `u` value outside the range 0 to 1. The result will be a predicted
|
|
// value along the slope formed by `a` and `b`, but not between those two values.
|
|
// Arguments:
|
|
// a = First value or vector.
|
|
// b = Second value or vector.
|
|
// u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
|
|
// Example:
|
|
// x = lerp(0,20,0.3); // Returns: 6
|
|
// x = lerp(0,20,0.8); // Returns: 16
|
|
// x = lerp(0,20,-0.1); // Returns: -2
|
|
// x = lerp(0,20,1.1); // Returns: 22
|
|
// p = lerp([0,0],[20,10],0.25); // Returns [5,2.5]
|
|
// l = lerp(0,20,[0.4,0.6]); // Returns: [8,12]
|
|
// l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15]
|
|
// Example(2D):
|
|
// p1 = [-50,-20]; p2 = [50,30];
|
|
// stroke([p1,p2]);
|
|
// pts = lerp(p1, p2, [0:1/8:1]);
|
|
// // Points colored in ROYGBIV order.
|
|
// rainbow(pts) translate($item) circle(d=3,$fn=8);
|
|
function lerp(a,b,u) =
|
|
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
|
|
is_num(u)? (1-u)*a + u*b :
|
|
assert(!is_undef(u)&&!is_bool(u)&&!is_string(u), "Input u to lerp must be a number, vector, or range.")
|
|
[for (v = u) lerp(a,b,v)];
|
|
|
|
|
|
|
|
// Section: Hyperbolic Trigonometry
|
|
|
|
// Function: sinh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
|
|
function sinh(x) =
|
|
(exp(x)-exp(-x))/2;
|
|
|
|
|
|
// Function: cosh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
|
|
function cosh(x) =
|
|
(exp(x)+exp(-x))/2;
|
|
|
|
|
|
// Function: tanh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
|
|
function tanh(x) =
|
|
sinh(x)/cosh(x);
|
|
|
|
|
|
// Function: asinh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
|
|
function asinh(x) =
|
|
ln(x+sqrt(x*x+1));
|
|
|
|
|
|
// Function: acosh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
|
|
function acosh(x) =
|
|
ln(x+sqrt(x*x-1));
|
|
|
|
|
|
// Function: atanh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
|
|
function atanh(x) =
|
|
ln((1+x)/(1-x))/2;
|
|
|
|
|
|
|
|
// Section: Quantization
|
|
|
|
// Function: quant()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
|
|
// If `x` is a list, then every item in that list will be recursively quantized.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
// Example:
|
|
// quant(12,4); // Returns: 12
|
|
// quant(13,4); // Returns: 12
|
|
// quant(13.1,4); // Returns: 12
|
|
// quant(14,4); // Returns: 16
|
|
// quant(14.1,4); // Returns: 16
|
|
// quant(15,4); // Returns: 16
|
|
// quant(16,4); // Returns: 16
|
|
// quant(9,3); // Returns: 9
|
|
// quant(10,3); // Returns: 9
|
|
// quant(10.4,3); // Returns: 9
|
|
// quant(10.5,3); // Returns: 12
|
|
// quant(11,3); // Returns: 12
|
|
// quant(12,3); // Returns: 12
|
|
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
|
|
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
|
|
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
|
|
function quant(x,y) =
|
|
is_list(x)? [for (v=x) quant(v,y)] :
|
|
floor(x/y+0.5)*y;
|
|
|
|
|
|
// Function: quantdn()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
|
|
// If `x` is a list, then every item in that list will be recursively quantized down.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
// Examples:
|
|
// quantdn(12,4); // Returns: 12
|
|
// quantdn(13,4); // Returns: 12
|
|
// quantdn(13.1,4); // Returns: 12
|
|
// quantdn(14,4); // Returns: 12
|
|
// quantdn(14.1,4); // Returns: 12
|
|
// quantdn(15,4); // Returns: 12
|
|
// quantdn(16,4); // Returns: 16
|
|
// quantdn(9,3); // Returns: 9
|
|
// quantdn(10,3); // Returns: 9
|
|
// quantdn(10.4,3); // Returns: 9
|
|
// quantdn(10.5,3); // Returns: 9
|
|
// quantdn(11,3); // Returns: 9
|
|
// quantdn(12,3); // Returns: 12
|
|
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
|
|
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
|
|
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
|
|
function quantdn(x,y) =
|
|
is_list(x)? [for (v=x) quantdn(v,y)] :
|
|
floor(x/y)*y;
|
|
|
|
|
|
// Function: quantup()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
|
|
// If `x` is a list, then every item in that list will be recursively quantized up.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
// Examples:
|
|
// quantup(12,4); // Returns: 12
|
|
// quantup(13,4); // Returns: 16
|
|
// quantup(13.1,4); // Returns: 16
|
|
// quantup(14,4); // Returns: 16
|
|
// quantup(14.1,4); // Returns: 16
|
|
// quantup(15,4); // Returns: 16
|
|
// quantup(16,4); // Returns: 16
|
|
// quantup(9,3); // Returns: 9
|
|
// quantup(10,3); // Returns: 12
|
|
// quantup(10.4,3); // Returns: 12
|
|
// quantup(10.5,3); // Returns: 12
|
|
// quantup(11,3); // Returns: 12
|
|
// quantup(12,3); // Returns: 12
|
|
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
|
|
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
|
|
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
|
|
function quantup(x,y) =
|
|
is_list(x)? [for (v=x) quantup(v,y)] :
|
|
ceil(x/y)*y;
|
|
|
|
|
|
// Section: Constraints and Modulos
|
|
|
|
// Function: constrain()
|
|
// Usage:
|
|
// constrain(v, minval, maxval);
|
|
// Description:
|
|
// Constrains value to a range of values between minval and maxval, inclusive.
|
|
// Arguments:
|
|
// v = value to constrain.
|
|
// minval = minimum value to return, if out of range.
|
|
// maxval = maximum value to return, if out of range.
|
|
// Example:
|
|
// constrain(-5, -1, 1); // Returns: -1
|
|
// constrain(5, -1, 1); // Returns: 1
|
|
// constrain(0.3, -1, 1); // Returns: 0.3
|
|
// constrain(9.1, 0, 9); // Returns: 9
|
|
// constrain(-0.1, 0, 9); // Returns: 0
|
|
function constrain(v, minval, maxval) = min(maxval, max(minval, v));
|
|
|
|
|
|
// Function: posmod()
|
|
// Usage:
|
|
// posmod(x,m)
|
|
// Description:
|
|
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
|
|
// Arguments:
|
|
// x = The value to constrain.
|
|
// m = Modulo value.
|
|
// Example:
|
|
// posmod(-700,360); // Returns: 340
|
|
// posmod(-270,360); // Returns: 90
|
|
// posmod(-120,360); // Returns: 240
|
|
// posmod(120,360); // Returns: 120
|
|
// posmod(270,360); // Returns: 270
|
|
// posmod(700,360); // Returns: 340
|
|
// posmod(3,2.5); // Returns: 0.5
|
|
function posmod(x,m) = (x%m+m)%m;
|
|
|
|
|
|
// Function: modang(x)
|
|
// Usage:
|
|
// ang = modang(x)
|
|
// Description:
|
|
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
|
|
// Example:
|
|
// modang(-700,360); // Returns: 20
|
|
// modang(-270,360); // Returns: 90
|
|
// modang(-120,360); // Returns: -120
|
|
// modang(120,360); // Returns: 120
|
|
// modang(270,360); // Returns: -90
|
|
// modang(700,360); // Returns: -20
|
|
function modang(x) =
|
|
let(xx = posmod(x,360)) xx<180? xx : xx-360;
|
|
|
|
|
|
// Function: modrange()
|
|
// Usage:
|
|
// modrange(x, y, m, [step])
|
|
// Description:
|
|
// Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
|
|
// Arguments:
|
|
// x = The start value to constrain.
|
|
// y = The end value to constrain.
|
|
// m = Modulo value.
|
|
// step = Step by this amount.
|
|
// Examples:
|
|
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
|
|
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
|
|
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
|
|
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
|
|
function modrange(x, y, m, step=1) =
|
|
let(
|
|
a = posmod(x, m),
|
|
b = posmod(y, m),
|
|
c = step>0? (a>b? b+m : b) : (a<b? b-m : b)
|
|
) [for (i=[a:step:c]) (i%m+m)%m];
|
|
|
|
|
|
|
|
// Section: Random Number Generation
|
|
|
|
// Function: rand_int()
|
|
// Usage:
|
|
// rand_int(min,max,N,[seed]);
|
|
// Description:
|
|
// Return a list of random integers in the range of min to max, inclusive.
|
|
// Arguments:
|
|
// min = Minimum integer value to return.
|
|
// max = Maximum integer value to return.
|
|
// N = Number of random integers to return.
|
|
// seed = If given, sets the random number seed.
|
|
// Example:
|
|
// ints = rand_int(0,100,3);
|
|
// int = rand_int(-10,10,1)[0];
|
|
function rand_int(min, max, N, seed=undef) =
|
|
assert(max >= min, "Max value cannot be smaller than min")
|
|
let (rvect = is_def(seed) ? rands(min,max+1,N,seed) : rands(min,max+1,N))
|
|
[for(entry = rvect) floor(entry)];
|
|
|
|
|
|
// Function: gaussian_rands()
|
|
// Usage:
|
|
// gaussian_rands(mean, stddev, [N], [seed])
|
|
// Description:
|
|
// Returns a random number with a gaussian/normal distribution.
|
|
// Arguments:
|
|
// mean = The average random number returned.
|
|
// stddev = The standard deviation of the numbers to be returned.
|
|
// N = Number of random numbers to return. Default: 1
|
|
// seed = If given, sets the random number seed.
|
|
function gaussian_rands(mean, stddev, N=1, seed=undef) =
|
|
let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed))
|
|
[for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])];
|
|
|
|
|
|
// Function: log_rands()
|
|
// Usage:
|
|
// log_rands(minval, maxval, factor, [N], [seed]);
|
|
// Description:
|
|
// Returns a single random number, with a logarithmic distribution.
|
|
// Arguments:
|
|
// minval = Minimum value to return.
|
|
// maxval = Maximum value to return. `minval` <= X < `maxval`.
|
|
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
|
|
// N = Number of random numbers to return. Default: 1
|
|
// seed = If given, sets the random number seed.
|
|
function log_rands(minval, maxval, factor, N=1, seed=undef) =
|
|
assert(maxval >= minval, "maxval cannot be smaller than minval")
|
|
let(
|
|
minv = 1-1/pow(factor,minval),
|
|
maxv = 1-1/pow(factor,maxval),
|
|
nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed)
|
|
) [for (num=nums) -ln(1-num)/ln(factor)];
|
|
|
|
|
|
|
|
// Section: GCD/GCF, LCM
|
|
|
|
// Function: gcd()
|
|
// Usage:
|
|
// gcd(a,b)
|
|
// Description:
|
|
// Computes the Greatest Common Divisor/Factor of `a` and `b`.
|
|
function gcd(a,b) =
|
|
assert(is_int(a) && is_int(b),"Arguments to gcd must be integers")
|
|
b==0 ? abs(a) : gcd(b,a % b);
|
|
|
|
|
|
// Computes lcm for two scalars
|
|
function _lcm(a,b) =
|
|
assert(is_int(a), "Invalid non-integer parameters to lcm")
|
|
assert(is_int(b), "Invalid non-integer parameters to lcm")
|
|
assert(a!=0 && b!=0, "Arguments to lcm must be nonzero")
|
|
abs(a*b) / gcd(a,b);
|
|
|
|
|
|
// Computes lcm for a list of values
|
|
function _lcmlist(a) =
|
|
len(a)==1 ? a[0] :
|
|
_lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])]));
|
|
|
|
|
|
// Function: lcm()
|
|
// Usage:
|
|
// lcm(a,b)
|
|
// lcm(list)
|
|
// Description:
|
|
// Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should
|
|
// be non-zero integers. The output is always a positive integer. It is an error to pass zero
|
|
// as an argument.
|
|
function lcm(a,b=[]) =
|
|
!is_list(a) && !is_list(b) ? _lcm(a,b) :
|
|
let(
|
|
arglist = concat(force_list(a),force_list(b))
|
|
)
|
|
assert(len(arglist)>0,"invalid call to lcm with empty list(s)")
|
|
_lcmlist(arglist);
|
|
|
|
|
|
|
|
// Section: Sums, Products, Aggregate Functions.
|
|
|
|
// Function: sum()
|
|
// Description:
|
|
// Returns the sum of all entries in the given list.
|
|
// If passed an array of vectors, returns a vector of sums of each part.
|
|
// If passed an empty list, the value of `dflt` will be returned.
|
|
// Arguments:
|
|
// v = The list to get the sum of.
|
|
// dflt = The default value to return if `v` is an empty list. Default: 0
|
|
// Example:
|
|
// sum([1,2,3]); // returns 6.
|
|
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
|
|
function sum(v, dflt=0) =
|
|
is_vector(v) ? [for(i=v) 1]*v :
|
|
assert(is_consistent(v), "Input to sum is non-numeric or inconsistent")
|
|
is_vector(v[0]) ? [for(i=v) 1]*v :
|
|
len(v) == 0 ? dflt :
|
|
_sum(v,v[0]*0);
|
|
|
|
function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
|
|
|
|
|
|
// Function: cumsum()
|
|
// Description:
|
|
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
|
|
// If passed an array of vectors, returns a list of cumulative vectors sums.
|
|
// Arguments:
|
|
// v = The list to get the sum of.
|
|
// Example:
|
|
// cumsum([1,1,1]); // returns [1,2,3]
|
|
// cumsum([2,2,2]); // returns [2,4,6]
|
|
// cumsum([1,2,3]); // returns [1,3,6]
|
|
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
|
|
function cumsum(v,_i=0,_acc=[]) =
|
|
_i==len(v) ? _acc :
|
|
cumsum(
|
|
v, _i+1,
|
|
concat(
|
|
_acc,
|
|
[_i==0 ? v[_i] : select(_acc,-1)+v[_i]]
|
|
)
|
|
);
|
|
|
|
|
|
// Function: sum_of_squares()
|
|
// Description:
|
|
// Returns the sum of the square of each element of a vector.
|
|
// Arguments:
|
|
// v = The vector to get the sum of.
|
|
// Example:
|
|
// sum_of_squares([1,2,3]); // Returns: 14.
|
|
// sum_of_squares([1,2,4]); // Returns: 21
|
|
// sum_of_squares([-3,-2,-1]); // Returns: 14
|
|
function sum_of_squares(v, i=0, tot=0) = sum(vmul(v,v));
|
|
|
|
|
|
// Function: sum_of_sines()
|
|
// Usage:
|
|
// sum_of_sines(a,sines)
|
|
// Description:
|
|
// Gives the sum of a series of sines, at a given angle.
|
|
// Arguments:
|
|
// a = Angle to get the value for.
|
|
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
|
|
// Examples:
|
|
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
|
|
function sum_of_sines(a, sines) =
|
|
sum([
|
|
for (s = sines) let(
|
|
ss=point3d(s),
|
|
v=ss.x*sin(a*ss.y+ss.z)
|
|
) v
|
|
]);
|
|
|
|
|
|
// Function: deltas()
|
|
// Description:
|
|
// Returns a list with the deltas of adjacent entries in the given list.
|
|
// Given [a,b,c,d], returns [b-a,c-b,d-c].
|
|
// Arguments:
|
|
// v = The list to get the deltas of.
|
|
// Example:
|
|
// deltas([2,5,9,17]); // returns [3,4,8].
|
|
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
|
|
function deltas(v) = [for (p=pair(v)) p.y-p.x];
|
|
|
|
|
|
// Function: product()
|
|
// Description:
|
|
// Returns the product of all entries in the given list.
|
|
// If passed an array of vectors, returns a vector of products of each part.
|
|
// If passed an array of matrices, returns a the resulting product matrix.
|
|
// Arguments:
|
|
// v = The list to get the product of.
|
|
// Example:
|
|
// product([2,3,4]); // returns 24.
|
|
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
|
function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i]));
|
|
|
|
|
|
// Function: mean()
|
|
// Description:
|
|
// Returns the arithmatic mean/average of all entries in the given array.
|
|
// If passed a list of vectors, returns a vector of the mean of each part.
|
|
// Arguments:
|
|
// v = The list of values to get the mean of.
|
|
// Example:
|
|
// mean([2,3,4]); // returns 3.
|
|
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
|
|
function mean(v) = sum(v)/len(v);
|
|
|
|
|
|
// Function: median()
|
|
// Usage:
|
|
// x = median(v);
|
|
// Description:
|
|
// Given a list of numbers or vectors, finds the median value or midpoint.
|
|
// If passed a list of vectors, returns the vector of the median of each part.
|
|
function median(v) =
|
|
assert(is_list(v))
|
|
assert(len(v)>0)
|
|
is_vector(v[0])? (
|
|
assert(is_consistent(v))
|
|
[
|
|
for (i=idx(v[0]))
|
|
let(vals = subindex(v,i))
|
|
(min(vals)+max(vals))/2
|
|
]
|
|
) : (min(v)+max(v))/2;
|
|
|
|
|
|
// Section: Matrix math
|
|
|
|
// Function: linear_solve()
|
|
// Usage: linear_solve(A,b)
|
|
// Description:
|
|
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
|
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
|
// If A is rank deficient or singular then linear_solve returns `undef`. If b is a matrix that is compatible with A
|
|
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
|
|
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then
|
|
// transpose the returned value.
|
|
function linear_solve(A,b) =
|
|
assert(is_matrix(A))
|
|
let(
|
|
m = len(A),
|
|
n = len(A[0])
|
|
)
|
|
assert(is_vector(b,m) || is_matrix(b,m),"Incompatible matrix and right hand side")
|
|
let (
|
|
qr = m<n? qr_factor(transpose(A)) : qr_factor(A),
|
|
maxdim = max(n,m),
|
|
mindim = min(n,m),
|
|
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
|
|
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
|
|
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
|
)
|
|
zeros != [] ? undef :
|
|
m<n ? Q*back_substitute(R,b,transpose=true) :
|
|
back_substitute(R, transpose(Q)*b);
|
|
|
|
|
|
// Function: matrix_inverse()
|
|
// Usage:
|
|
// matrix_inverse(A)
|
|
// Description:
|
|
// Compute the matrix inverse of the square matrix A. If A is singular, returns undef.
|
|
// Note that if you just want to solve a linear system of equations you should NOT
|
|
// use this function. Instead use linear_solve, or use qr_factor. The computation
|
|
// will be faster and more accurate.
|
|
function matrix_inverse(A) =
|
|
assert(is_matrix(A,square=true),"Input to matrix_inverse() must be a square matrix")
|
|
linear_solve(A,ident(len(A)));
|
|
|
|
|
|
// Function: submatrix()
|
|
// Usage: submatrix(M, ind1, ind2)
|
|
// Description:
|
|
// Returns a submatrix with the specified index ranges or index sets.
|
|
function submatrix(M,ind1,ind2) = [for(i=ind1) [for(j=ind2) M[i][j] ] ];
|
|
|
|
|
|
// Function: qr_factor()
|
|
// Usage: qr = qr_factor(A)
|
|
// Description:
|
|
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
|
|
// used to solve linear systems of equations.
|
|
function qr_factor(A) =
|
|
assert(is_matrix(A))
|
|
let(
|
|
m = len(A),
|
|
n = len(A[0])
|
|
)
|
|
let(
|
|
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)),
|
|
Rzero = [
|
|
for(i=[0:m-1]) [
|
|
for(j=[0:n-1])
|
|
i>j ? 0 : qr[1][i][j]
|
|
]
|
|
]
|
|
) [qr[0],Rzero];
|
|
|
|
function _qr_factor(A,Q, column, m, n) =
|
|
column >= min(m-1,n) ? [Q,A] :
|
|
let(
|
|
x = [for(i=[column:1:m-1]) A[i][column]],
|
|
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
|
|
u = x - concat([alpha],repeat(0,m-1)),
|
|
v = u / norm(u),
|
|
Qc = ident(len(x)) - 2*transpose([v])*[v],
|
|
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
|
|
)
|
|
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
|
|
|
|
|
// Function: back_substitute()
|
|
// Usage: back_substitute(R, b, [transpose])
|
|
// Description:
|
|
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
|
|
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
|
|
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
|
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result.
|
|
function back_substitute(R, b, x=[],transpose = false) =
|
|
assert(is_matrix(R, square=true))
|
|
let(n=len(R))
|
|
assert(is_vector(b,n) || is_matrix(b,n),"R and b are not compatible in back_substitute")
|
|
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
|
|
transpose?
|
|
reverse(back_substitute(
|
|
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
|
reverse(b), x, false
|
|
)) :
|
|
len(x) == n ? x :
|
|
let(
|
|
ind = n - len(x) - 1,
|
|
newvalue =
|
|
len(x)==0? b[ind]/R[ind][ind] :
|
|
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
|
) back_substitute(R, b, concat([newvalue],x));
|
|
|
|
|
|
// Function: det2()
|
|
// Description:
|
|
// Optimized function that returns the determinant for the given 2x2 square matrix.
|
|
// Arguments:
|
|
// M = The 2x2 square matrix to get the determinant of.
|
|
// Example:
|
|
// M = [ [6,-2], [1,8] ];
|
|
// det = det2(M); // Returns: 50
|
|
function det2(M) = M[0][0] * M[1][1] - M[0][1]*M[1][0];
|
|
|
|
|
|
// Function: det3()
|
|
// Description:
|
|
// Optimized function that returns the determinant for the given 3x3 square matrix.
|
|
// Arguments:
|
|
// M = The 3x3 square matrix to get the determinant of.
|
|
// Example:
|
|
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
|
|
// det = det3(M); // Returns: -334
|
|
function det3(M) =
|
|
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
|
|
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
|
|
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
|
|
|
|
|
|
// Function: determinant()
|
|
// Description:
|
|
// Returns the determinant for the given square matrix.
|
|
// Arguments:
|
|
// M = The NxN square matrix to get the determinant of.
|
|
// Example:
|
|
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
|
|
// det = determinant(M); // Returns: 2267
|
|
function determinant(M) =
|
|
assert(len(M)==len(M[0]))
|
|
len(M)==1? M[0][0] :
|
|
len(M)==2? det2(M) :
|
|
len(M)==3? det3(M) :
|
|
sum(
|
|
[for (col=[0:1:len(M)-1])
|
|
((col%2==0)? 1 : -1) *
|
|
M[col][0] *
|
|
determinant(
|
|
[for (r=[1:1:len(M)-1])
|
|
[for (c=[0:1:len(M)-1])
|
|
if (c!=col) M[c][r]
|
|
]
|
|
]
|
|
)
|
|
]
|
|
);
|
|
|
|
|
|
// Function: is_matrix()
|
|
// Usage:
|
|
// is_matrix(A,[m],[n],[square])
|
|
// Description:
|
|
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
|
// are omitted or set to undef then true is returned for any positive dimension.
|
|
// If `square` is true then the matrix is required to be square. Note if you
|
|
// specify m != n and require a square matrix then the result will always be false.
|
|
// Arguments:
|
|
// A = matrix to test
|
|
// m = optional height of matrix
|
|
// n = optional width of matrix
|
|
// square = set to true to require a square matrix. Default: false
|
|
function is_matrix(A,m,n, square=false) =
|
|
is_list(A) && len(A)>0 &&
|
|
(is_undef(m) || len(A)==m) &&
|
|
is_vector(A[0]) &&
|
|
(is_undef(n) || len(A[0])==n) &&
|
|
(!square || n==m) &&
|
|
is_consistent(A);
|
|
|
|
|
|
|
|
// Section: Comparisons and Logic
|
|
|
|
// Function: approx()
|
|
// Usage:
|
|
// approx(a,b,[eps])
|
|
// Description:
|
|
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
|
|
// Arguments:
|
|
// a = First value.
|
|
// b = Second value.
|
|
// eps = The maximum allowed difference between `a` and `b` that will return true.
|
|
// Example:
|
|
// approx(-0.3333333333,-1/3); // Returns: true
|
|
// approx(0.3333333333,1/3); // Returns: true
|
|
// approx(0.3333,1/3); // Returns: false
|
|
// approx(0.3333,1/3,eps=1e-3); // Returns: true
|
|
// approx(PI,3.1415926536); // Returns: true
|
|
function approx(a,b,eps=EPSILON) =
|
|
a==b? true :
|
|
a*0!=b*0? false :
|
|
is_list(a)? ([for (i=idx(a)) if(!approx(a[i],b[i],eps=eps)) 1] == []) :
|
|
(abs(a-b) <= eps);
|
|
|
|
|
|
function _type_num(x) =
|
|
is_undef(x)? 0 :
|
|
is_bool(x)? 1 :
|
|
is_num(x)? 2 :
|
|
is_nan(x)? 3 :
|
|
is_string(x)? 4 :
|
|
is_list(x)? 5 : 6;
|
|
|
|
|
|
// Function: compare_vals()
|
|
// Usage:
|
|
// compare_vals(a, b);
|
|
// Description:
|
|
// Compares two values. Lists are compared recursively.
|
|
// Returns <0 if a<b. Returns >0 if a>b. Returns 0 if a==b.
|
|
// If types are not the same, then undef < bool < num < str < list < range.
|
|
// Arguments:
|
|
// a = First value to compare.
|
|
// b = Second value to compare.
|
|
function compare_vals(a, b) =
|
|
(a==b)? 0 :
|
|
let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) :
|
|
is_list(a)? compare_lists(a,b) :
|
|
is_nan(a)? 0 :
|
|
(a<b)? -1 : (a>b)? 1 : 0;
|
|
|
|
|
|
// Function: compare_lists()
|
|
// Usage:
|
|
// compare_lists(a, b)
|
|
// Description:
|
|
// Compare contents of two lists using `compare_vals()`.
|
|
// Returns <0 if `a`<`b`.
|
|
// Returns 0 if `a`==`b`.
|
|
// Returns >0 if `a`>`b`.
|
|
// Arguments:
|
|
// a = First list to compare.
|
|
// b = Second list to compare.
|
|
function compare_lists(a, b) =
|
|
a==b? 0 : let(
|
|
cmps = [
|
|
for(i=[0:1:min(len(a),len(b))-1]) let(
|
|
cmp = compare_vals(a[i],b[i])
|
|
) if(cmp!=0) cmp
|
|
]
|
|
) cmps==[]? (len(a)-len(b)) : cmps[0];
|
|
|
|
|
|
// Function: any()
|
|
// Description:
|
|
// Returns true if any item in list `l` evaluates as true.
|
|
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// Example:
|
|
// any([0,false,undef]); // Returns false.
|
|
// any([1,false,undef]); // Returns true.
|
|
// any([1,5,true]); // Returns true.
|
|
// any([[0,0], [0,0]]); // Returns false.
|
|
// any([[0,0], [1,0]]); // Returns true.
|
|
function any(l, i=0, succ=false) =
|
|
(i>=len(l) || succ)? succ :
|
|
any(
|
|
l, i=i+1, succ=(
|
|
is_list(l[i])? any(l[i]) :
|
|
!(!l[i])
|
|
)
|
|
);
|
|
|
|
|
|
// Function: all()
|
|
// Description:
|
|
// Returns true if all items in list `l` evaluate as true.
|
|
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// Example:
|
|
// all([0,false,undef]); // Returns false.
|
|
// all([1,false,undef]); // Returns false.
|
|
// all([1,5,true]); // Returns true.
|
|
// all([[0,0], [0,0]]); // Returns false.
|
|
// all([[0,0], [1,0]]); // Returns false.
|
|
// all([[1,1], [1,1]]); // Returns true.
|
|
function all(l, i=0, fail=false) =
|
|
(i>=len(l) || fail)? (!fail) :
|
|
all(
|
|
l, i=i+1, fail=(
|
|
is_list(l[i])? !all(l[i]) :
|
|
!l[i]
|
|
)
|
|
);
|
|
|
|
|
|
// Function: count_true()
|
|
// Usage:
|
|
// count_true(l)
|
|
// Description:
|
|
// Returns the number of items in `l` that evaluate as true.
|
|
// If `l` is a lists of lists, this is applied recursively to each
|
|
// sublist. Returns the total count of items that evaluate as true
|
|
// in all recursive sublists.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// nmax = If given, stop counting if `nmax` items evaluate as true.
|
|
// Example:
|
|
// count_true([0,false,undef]); // Returns 0.
|
|
// count_true([1,false,undef]); // Returns 1.
|
|
// count_true([1,5,false]); // Returns 2.
|
|
// count_true([1,5,true]); // Returns 3.
|
|
// count_true([[0,0], [0,0]]); // Returns 0.
|
|
// count_true([[0,0], [1,0]]); // Returns 1.
|
|
// count_true([[1,1], [1,1]]); // Returns 4.
|
|
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
|
function count_true(l, nmax=undef, i=0, cnt=0) =
|
|
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
|
|
count_true(
|
|
l=l, nmax=nmax, i=i+1, cnt=cnt+(
|
|
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
|
|
(l[i]? 1 : 0)
|
|
)
|
|
);
|
|
|
|
|
|
|
|
// Section: Calculus
|
|
|
|
// Function: deriv()
|
|
// Usage: deriv(data, [h], [closed])
|
|
// Description:
|
|
// Computes a numerical derivative estimate of the data, which may be scalar or vector valued.
|
|
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
|
|
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
|
|
// data[len(data)-1]. This function uses a symetric derivative approximation
|
|
// for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm
|
|
// uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h.
|
|
//
|
|
// If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance
|
|
// between data[i+1] and data[i], and the data values will be linearly resampled at each corner
|
|
// to produce a uniform spacing for the derivative estimate. At the endpoints a single point method
|
|
// is used: f'(t) = (f(t+h)-f(t))/h.
|
|
function deriv(data, h=1, closed=false) =
|
|
is_vector(h) ? _deriv_nonuniform(data, h, closed=closed) :
|
|
let( L = len(data) )
|
|
closed? [
|
|
for(i=[0:1:L-1])
|
|
(data[(i+1)%L]-data[(L+i-1)%L])/2/h
|
|
] :
|
|
let(
|
|
first =
|
|
L<3? data[1]-data[0] :
|
|
3*(data[1]-data[0]) - (data[2]-data[1]),
|
|
last =
|
|
L<3? data[L-1]-data[L-2]:
|
|
(data[L-3]-data[L-2])-3*(data[L-2]-data[L-1])
|
|
) [
|
|
first/2/h,
|
|
for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h,
|
|
last/2/h
|
|
];
|
|
|
|
|
|
function _dnu_calc(f1,fc,f2,h1,h2) =
|
|
let(
|
|
f1 = h2<h1 ? lerp(fc,f1,h2/h1) : f1 ,
|
|
f2 = h1<h2 ? lerp(fc,f2,h1/h2) : f2
|
|
)
|
|
(f2-f1) / 2 / min([h1,h2]);
|
|
|
|
|
|
function _deriv_nonuniform(data, h, closed) =
|
|
assert(len(h) == len(data)-(closed?0:1),str("Vector valued h must be length ",len(data)-(closed?0:1)))
|
|
let(
|
|
L = len(data)
|
|
)
|
|
closed? [for(i=[0:1:L-1])
|
|
_dnu_calc(data[(L+i-1)%L], data[i], data[(i+1)%L], select(h,i-1), h[i]) ]
|
|
: [
|
|
(data[1]-data[0])/h[0],
|
|
for(i=[1:1:L-2]) _dnu_calc(data[i-1],data[i],data[i+1], h[i-1],h[i]),
|
|
(data[L-1]-data[L-2])/h[L-2]
|
|
];
|
|
|
|
|
|
// Function: deriv2()
|
|
// Usage: deriv2(data, [h], [closed])
|
|
// Description:
|
|
// Computes a numerical esimate of the second derivative of the data, which may be scalar or vector valued.
|
|
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
|
|
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
|
|
// data[len(data)-1]. For internal points this function uses the approximation
|
|
// f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false) the algorithm
|
|
// when sufficient points are available the method is either the four point expression
|
|
// f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or if five points are available
|
|
// f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2
|
|
function deriv2(data, h=1, closed=false) =
|
|
let( L = len(data) )
|
|
closed? [
|
|
for(i=[0:1:L-1])
|
|
(data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h
|
|
] :
|
|
let(
|
|
first = L<3? undef :
|
|
L==3? data[0] - 2*data[1] + data[2] :
|
|
L==4? 2*data[0] - 5*data[1] + 4*data[2] - data[3] :
|
|
(35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12,
|
|
last = L<3? undef :
|
|
L==3? data[L-1] - 2*data[L-2] + data[L-3] :
|
|
L==4? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] :
|
|
(35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12
|
|
) [
|
|
first/h/h,
|
|
for(i=[1:1:L-2]) (data[i+1]-2*data[i]+data[i-1])/h/h,
|
|
last/h/h
|
|
];
|
|
|
|
|
|
// Function: deriv3()
|
|
// Usage: deriv3(data, [h], [closed])
|
|
// Description:
|
|
// Computes a numerical third derivative estimate of the data, which may be scalar or vector valued.
|
|
// The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly.
|
|
// If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to
|
|
// data[len(data)-1]. This function uses a five point derivative estimate, so the input must include five points:
|
|
// f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end
|
|
// the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and
|
|
// f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3.
|
|
function deriv3(data, h=1, closed=false) =
|
|
let(
|
|
L = len(data),
|
|
h3 = h*h*h
|
|
)
|
|
assert(L>=5, "Need five points for 3rd derivative estimate")
|
|
closed? [
|
|
for(i=[0:1:L-1])
|
|
(-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3
|
|
] :
|
|
let(
|
|
first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2,
|
|
second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2,
|
|
last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2,
|
|
prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2
|
|
) [
|
|
first/h3,
|
|
second/h3,
|
|
for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3,
|
|
prelast/h3,
|
|
last/h3
|
|
];
|
|
|
|
|
|
// Section: Complex Numbers
|
|
|
|
// Function: C_times()
|
|
// Usage: C_times(z1,z2)
|
|
// Description:
|
|
// Multiplies two complex numbers.
|
|
function C_times(z1,z2) = [z1.x*z2.x-z1.y*z2.y,z1.x*z2.y+z1.y*z2.x];
|
|
|
|
// Function: C_div()
|
|
// Usage: C_div(z1,z2)
|
|
// Description:
|
|
// Divides z1 by z2.
|
|
function C_div(z1,z2) = let(den = z2.x*z2.x + z2.y*z2.y)
|
|
[(z1.x*z2.x + z1.y*z2.y)/den, (z1.y*z2.x-z1.x*z2.y)/den];
|
|
|
|
|
|
// Section: Polynomials
|
|
|
|
// Function: polynomial()
|
|
// Usage:
|
|
// polynomial(p, z)
|
|
// Description:
|
|
// Evaluates specified real polynomial, p, at the complex or real input value, z.
|
|
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
|
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
|
function polynomial(p, z, k, zk, total) =
|
|
is_undef(k) ? polynomial(p, z, len(p)-1, is_num(z)? 1 : [1,0], is_num(z) ? 0 : [0,0]) :
|
|
k==-1 ? total :
|
|
polynomial(p, z, k-1, is_num(z) ? zk*z : C_times(zk,z), total+zk*p[k]);
|
|
|
|
|
|
// Function: poly_roots()
|
|
// Usage:
|
|
// poly_roots(p,[tol])
|
|
// Description:
|
|
// Returns all complex roots of the specified real polynomial p.
|
|
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
|
// where a_n is the z^n coefficient. The tol parameter gives
|
|
// the stopping tolerance for the iteration. The polynomial
|
|
// must have at least one non-zero coefficient. Convergence is poor
|
|
// if the polynomial has any repeated roots other than zero.
|
|
// Arguments:
|
|
// p = polynomial coefficients with higest power coefficient first
|
|
// tol = tolerance for iteration. Default: 1e-14
|
|
|
|
// Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method
|
|
//
|
|
// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
|
|
// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
|
|
|
|
function poly_roots(p,tol=1e-14) =
|
|
assert(p!=[], "Input polynomial must have a nonzero coefficient")
|
|
assert(is_vector(p), "Input must be a vector")
|
|
p[0] == 0 ? poly_roots(slice(p,1,-1)) : // Strip leading zero coefficients
|
|
p[len(p)-1] == 0 ? [[0,0], // Strip trailing zero coefficients
|
|
each poly_roots(select(p,0,-2))] :
|
|
len(p)==1 ? [] : // Nonzero constant case has no solutions
|
|
len(p)==2 ? [[-p[1]/p[0],0]] : // Linear case needs special handling
|
|
let(
|
|
n = len(p)-1, // polynomial degree
|
|
pderiv = [for(i=[0:n-1]) p[i]*(n-i)],
|
|
|
|
s = [for(i=[0:1:n]) abs(p[i])*(4*(n-i)+1)], // Error bound polynomial from Bini
|
|
|
|
// Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf
|
|
beta = -p[1]/p[0]/n,
|
|
r = 1+pow(abs(polynomial(p,beta)/p[0]),1/n),
|
|
init = [for(i=[0:1:n-1]) // Initial guess for roots
|
|
let(angle = 360*i/n+270/n/PI)
|
|
[beta,0]+r*[cos(angle),sin(angle)]
|
|
]
|
|
)
|
|
_poly_roots(p,pderiv,s,init,tol=tol);
|
|
|
|
// p = polynomial
|
|
// pderiv = derivative polynomial of p
|
|
// z = current guess for the roots
|
|
// tol = root tolerance
|
|
// i=iteration counter
|
|
function _poly_roots(p, pderiv, s, z, tol, i=0) =
|
|
assert(i<45, str("Polyroot exceeded iteration limit. Current solution:", z))
|
|
let(
|
|
n = len(z),
|
|
svals = [for(zk=z) tol*polynomial(s,norm(zk))],
|
|
p_of_z = [for(zk=z) polynomial(p,zk)],
|
|
done = [for(k=[0:n-1]) norm(p_of_z[k])<=svals[k]],
|
|
newton = [for(k=[0:n-1]) C_div(p_of_z[k], polynomial(pderiv,z[k]))],
|
|
zdiff = [for(k=[0:n-1]) sum([for(j=[0:n-1]) if (j!=k) C_div([1,0], z[k]-z[j])])],
|
|
w = [for(k=[0:n-1]) done[k] ? [0,0] : C_div( newton[k],
|
|
[1,0] - C_times(newton[k], zdiff[k]))]
|
|
)
|
|
all(done) ? z : _poly_roots(p,pderiv,s,z-w,tol,i+1);
|
|
|
|
|
|
// Function: real_roots()
|
|
// Usage:
|
|
// real_roots(p, [eps], [tol])
|
|
// Description:
|
|
// Returns the real roots of the specified real polynomial p.
|
|
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
|
// where a_n is the x^n coefficient. This function works by
|
|
// computing the complex roots and returning those roots where
|
|
// the imaginary part is closed to zero, specifically: z.y/(1+norm(z)) < eps. Because
|
|
// of poor convergence and higher error for repeated roots, such roots may
|
|
// be missed by the algorithm because their imaginary part is large.
|
|
// Arguments:
|
|
// p = polynomial to solve as coefficient list, highest power term first
|
|
// eps = used to determine whether imaginary parts of roots are zero
|
|
// tol = tolerance for the complex polynomial root finder
|
|
|
|
function real_roots(p,eps=EPSILON,tol=1e-14) =
|
|
let(
|
|
roots = poly_roots(p)
|
|
)
|
|
[for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x];
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|