mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
1175 lines
36 KiB
OpenSCAD
1175 lines
36 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// Compound Shapes.
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
BSD 2-Clause License
|
|
|
|
Copyright (c) 2017, Revar Desmera
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
include <transforms.scad>
|
|
include <math.scad>
|
|
|
|
|
|
// For when you MUST pass a child to a module, but you want it to be nothing.
|
|
module nil() union() {}
|
|
|
|
|
|
// Makes a cube that is offset along the given vector by half the cube's size.
|
|
// For example, if v=[-1,1,0], the cube's front right edge will be centered at the origin.
|
|
// size = size of cube.
|
|
// v = vector to offset along.
|
|
// Example:
|
|
// offsetcube([3,4,5], [-1,1,0]);
|
|
module offsetcube(size=[1,1,1], v=[0,0,0]) {
|
|
lx=len(size)==undef? size : size[0];
|
|
ly=len(size)==undef? size : size[1];
|
|
lz=len(size)==undef? size : size[2];
|
|
ax=len(v)==undef? v : v[0];
|
|
ay=len(v)==undef? v : v[1];
|
|
az=len(v)==undef? v : v[2];
|
|
translate([lx*ax/2, ly*ay/2, lz*az/2]) {
|
|
cube(size, center=true);
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a cube that has its right face centered at the origin.
|
|
module leftcube(size=[1,1,1]) {l=len(size)==undef? size : size[0]; left(l/2) cube(size, center=true);}
|
|
|
|
|
|
// Makes a cube that has its left face centered at the origin.
|
|
module rightcube(size=[1,1,1]) {l=len(size)==undef? size : size[0]; right(l/2) cube(size, center=true);}
|
|
|
|
|
|
// Makes a cube that has its front face centered at the origin.
|
|
module backcube(size=[1,1,1]) {l=len(size)==undef? size : size[1]; back(l/2) cube(size, center=true);}
|
|
|
|
|
|
// Makes a cube that has its back face centered at the origin.
|
|
module fwdcube(size=[1,1,1]) {l=len(size)==undef? size : size[1]; fwd(l/2) cube(size, center=true);}
|
|
|
|
|
|
// Makes a cube that has its bottom face centered at the origin.
|
|
module upcube(size=[1,1,1]) {l=len(size)==undef? size : size[2]; up(l/2) cube(size, center=true);}
|
|
|
|
|
|
// Makes a cube that has its top face centered at the origin.
|
|
module downcube(size=[1,1,1]) {l=len(size)==undef? size : size[2]; down(l/2) cube(size, center=true);}
|
|
|
|
|
|
// Makes a cube with chamfered edges.
|
|
// size = size of cube [X,Y,Z]. (Default: [1,1,1])
|
|
// chamfer = chamfer inset along axis. (Default: 0.25)
|
|
// chamfaxes = Array [X, Y, Z] of boolean values to specify which axis edges should be chamfered.
|
|
// chamfcorners = boolean to specify if corners should be flat chamferred.
|
|
// Example:
|
|
// chamfcube(size=[10,30,50], chamfer=1, chamfaxes=[1,1,1], chamfcorners=true);
|
|
module chamfcube(
|
|
size=[1,1,1],
|
|
chamfer=0.25,
|
|
chamfaxes=[1,1,1],
|
|
chamfcorners=false
|
|
) {
|
|
ch_width = sqrt(2)*chamfer;
|
|
ch_offset = 1;
|
|
difference() {
|
|
cube(size=size, center=true);
|
|
for (xs = [-1,1]) {
|
|
for (ys = [-1,1]) {
|
|
if (chamfaxes[0] == 1) {
|
|
translate([0,xs*size[1]/2,ys*size[2]/2]) {
|
|
rotate(a=[45,0,0]) cube(size=[size[0]+0.1,ch_width,ch_width], center=true);
|
|
}
|
|
}
|
|
if (chamfaxes[1] == 1) {
|
|
translate([xs*size[0]/2,0,ys*size[2]/2]) {
|
|
rotate(a=[0,45,0]) cube(size=[ch_width,size[1]+0.1,ch_width], center=true);
|
|
}
|
|
}
|
|
if (chamfaxes[2] == 1) {
|
|
translate([xs*size[0]/2,ys*size[1]/2],0) {
|
|
rotate(a=[0,0,45]) cube(size=[ch_width,ch_width,size[2]+0.1], center=true);
|
|
}
|
|
}
|
|
if (chamfcorners) {
|
|
for (zs = [-1,1]) {
|
|
translate([xs*size[0]/2,ys*size[1]/2,zs*size[2]/2]) {
|
|
scale([chamfer,chamfer,chamfer]) {
|
|
polyhedron(
|
|
points=[
|
|
[0,-1,-1], [0,-1,1], [0,1,1], [0,1,-1],
|
|
[-1,0,-1], [-1,0,1], [1,0,1], [1,0,-1],
|
|
[-1,-1,0], [-1,1,0], [1,1,0], [1,-1,0]
|
|
],
|
|
faces=[
|
|
[ 8, 4, 9],
|
|
[ 8, 9, 5],
|
|
[ 9, 3, 10],
|
|
[ 9, 10, 2],
|
|
[10, 7, 11],
|
|
[10, 11, 6],
|
|
[11, 0, 8],
|
|
[11, 8, 1],
|
|
[ 0, 7, 3],
|
|
[ 0, 3, 4],
|
|
[ 1, 5, 2],
|
|
[ 1, 2, 6],
|
|
|
|
[ 1, 8, 5],
|
|
[ 5, 9, 2],
|
|
[ 2, 10, 6],
|
|
[ 6, 11, 1],
|
|
|
|
[ 0, 4, 8],
|
|
[ 4, 3, 9],
|
|
[ 3, 7, 10],
|
|
[ 7, 0, 11],
|
|
]
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a cube with rounded (filletted) vertical edges. The r size will be
|
|
// limited to a maximum of half the length of the shortest XY side.
|
|
// size = size of cube [X,Y,Z]. (Default: [1,1,1])
|
|
// r = radius of edge/corner rounding. (Default: 0.25)
|
|
// center = if true, object will be centered. If false, sits on top of XY plane.
|
|
// Examples:
|
|
// rrect(size=[9,4,1], r=1, center=true);
|
|
// rrect(size=[5,7,3], r=1, $fn=24);
|
|
module rrect(size=[1,1,1], r=0.25, center=false)
|
|
{
|
|
w = size[0];
|
|
l = size[1];
|
|
h = size[2];
|
|
rr = min(r, min(w/2-0.01, l/2-0.01));
|
|
up(center? 0 : h/2) {
|
|
linear_extrude(height=h, convexity=2, center=true) {
|
|
offset(r=rr) {
|
|
square([w-2*rr, l-2*rr], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a cube with rounded (filletted) edges and corners. The r size will be
|
|
// limited to a maximum of half the length of the shortest side.
|
|
// size = size of cube [X,Y,Z]. (Default: [1,1,1])
|
|
// r = radius of edge/corner rounding. (Default: 0.25)
|
|
// center = if true, object will be centered. If false, sits on top of XY plane.
|
|
// Examples:
|
|
// rcube(size=[9,4,1], r=0.333, center=true, $fn=24);
|
|
// rcube(size=[5,7,3], r=1);
|
|
module rcube(size=[1,1,1], r=0.25, center=false)
|
|
{
|
|
dd = min(2*r, min(size));
|
|
$fn=quantup(segs(dd/2), 4);
|
|
translate(center? [0,0,0] : size/2) {
|
|
minkowski() {
|
|
cube([max(0.01,size[0]-dd), max(0.01,size[1]-dd), max(0.01,size[2]-dd)], center=true);
|
|
|
|
// Synthesize a sphere with vertices at the axis extremes.
|
|
// This makes the result of the minkowski have the proper dimensions.
|
|
rotate_extrude() {
|
|
difference() {
|
|
circle(dd/2);
|
|
left(dd/2) square(dd, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Creates a cylinder with its top face centered at the origin.
|
|
// h = height of cylinder. (Default: 1.0)
|
|
// r = radius of cylinder. (Default: 1.0)
|
|
// r1 = optional bottom radius of cylinder.
|
|
// r2 = optional top radius of cylinder.
|
|
// d = optional diameter of cylinder. (use instead of r)
|
|
// d1 = optional bottom diameter of cylinder.
|
|
// d2 = optional top diameter of cylinder.
|
|
// Example:
|
|
// downcyl(r=10, h=50);
|
|
// downcyl(r1=15, r2=5, h=45);
|
|
// downcyl(d=15, h=40);
|
|
module downcyl(r=undef, h=1, d=undef, d1=undef, d2=undef, r1=undef, r2=undef)
|
|
{
|
|
down(h/2) {
|
|
cylinder(r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, h=h, center=true);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Creates a cylinder oriented along the X axis.
|
|
// Use like the built-in cylinder(), except use `l` instead of `h`.
|
|
// l = length of cylinder. (Default: 1.0)
|
|
// r = radius of cylinder.
|
|
// r1 = optional radius of left (X-) end of cylinder.
|
|
// r2 = optional radius of right (X+) end of cylinder.
|
|
// d = optional diameter of cylinder. (use instead of r)
|
|
// d1 = optional diameter of left (X-) end of cylinder.
|
|
// d2 = optional diameter of right (X+) end of cylinder.
|
|
// align = 0 for centered, +1 for left, -1 for right.
|
|
// Examples:
|
|
// xcyl(d1=5, d2=15, l=20, align=-1);
|
|
// xcyl(d=10, l=25);
|
|
module xcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, align=0)
|
|
{
|
|
right(align*l/2) {
|
|
yrot(90) cylinder(h=l, r=r, d=d, r1=r1, r2=r2, d1=d1, d2=d2, center=true);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Creates a cylinder oriented along the Y axis.
|
|
// Use like the built-in cylinder(), except use `l` instead of `h`.
|
|
// l = length of cylinder. (Default: 1.0)
|
|
// r = radius of cylinder.
|
|
// r1 = optional radius of front (Y-) end of cylinder.
|
|
// r2 = optional radius of back (Y+) end of cylinder.
|
|
// d = optional diameter of cylinder. (use instead of r)
|
|
// d1 = optional diameter of front (Y-) end of cylinder.
|
|
// d2 = optional diameter of back (Y+) end of cylinder.
|
|
// align = 0 for centered, +1 for back, -1 for forward.
|
|
// Examples:
|
|
// ycyl(d1=5, d2=15, l=20, align=-1);
|
|
// ycyl(d=10, l=25);
|
|
module ycyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, align=0)
|
|
{
|
|
back(align*l/2) {
|
|
xrot(-90) cylinder(h=l, r=r, d=d, r1=r1, r2=r2, d1=d1, d2=d2, center=true);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Creates a cylinder oriented along the Z axis. Use like the built-in
|
|
// cylinder(), except use `l` instead of `h`. This module exists
|
|
// mostly for symmetry with xcyl() and ycyl().
|
|
// l = length of cylinder. (Default: 1.0)
|
|
// r = radius of cylinder.
|
|
// r1 = optional radius of bottom (Z-) end of cylinder.
|
|
// r2 = optional radius of top (Z+) end of cylinder.
|
|
// d = optional diameter of cylinder. (use instead of r)
|
|
// d1 = optional diameter of bottom (Z-) end of cylinder.
|
|
// d2 = optional diameter of top (Z+) end of cylinder.
|
|
// align = 0 for centered, +1 for top, -1 for bottom.
|
|
// Examples:
|
|
// zcyl(d1=5, d2=15, l=20, align=-1);
|
|
// zcyl(d=10, l=25);
|
|
module zcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, align=0)
|
|
{
|
|
up(align*l/2) {
|
|
cylinder(h=l, r=r, d=d, r1=r1, r2=r2, d1=d1, d2=d2, center=true);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Creates a cylinder with chamferred (bevelled) edges.
|
|
// h = height of cylinder. (Default: 1.0)
|
|
// r = radius of cylinder. (Default: 1.0)
|
|
// d = diameter of cylinder. (use instead of r)
|
|
// chamfer = radial inset of the edge chamfer. (Default: 0.25)
|
|
// chamfedge = length of the chamfer edge. (Use instead of chamfer)
|
|
// center = boolean. If true, cylinder is centered. (Default: false)
|
|
// top = boolean. If true, chamfer the top edges. (Default: True)
|
|
// bottom = boolean. If true, chamfer the bottom edges. (Default: True)
|
|
// Example:
|
|
// chamferred_cylinder(h=50, r=20, chamfer=5, angle=45, bottom=false, center=true);
|
|
// chamferred_cylinder(h=50, r=20, chamfedge=10, angle=30, center=true);
|
|
module chamferred_cylinder(h=1, r=1, d=undef, chamfer=0.25, chamfedge=undef, angle=45, center=false, top=true, bottom=true)
|
|
{
|
|
chamf = (chamfedge == undef)? chamfer * sqrt(2) : chamfedge;
|
|
x = (chamfedge == undef)? chamfer : (chamfedge * sin(angle));
|
|
y = (chamfedge == undef)? chamfer*sin(90-angle)/sin(angle) : (chamfedge * sin(90-angle));
|
|
rad = (d == undef)? r : (d / 2.0);
|
|
up(center? 0 : h/2) {
|
|
rotate_extrude(angle=360, convexity=2) {
|
|
polygon(
|
|
points=[
|
|
[0, h/2],
|
|
[rad-x*(top?1:0), h/2],
|
|
[rad, h/2-y*(top?1:0)],
|
|
[rad, -h/2+y*(bottom?1:0)],
|
|
[rad-x*(bottom?1:0), -h/2],
|
|
[0, -h/2],
|
|
[0, h/2],
|
|
]
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
module chamf_cyl(h=1, r=1, d=undef, chamfer=0.25, chamfedge=undef, angle=45, center=false, top=true, bottom=true)
|
|
chamferred_cylinder(h=h, r=r, d=d, chamfer=chamfer, chamfedge=chamfedge, angle=angle, center=center, top=top, bottom=bottom);
|
|
//!chamf_cyl(h=20, d=20, chamfedge=10, angle=30, center=true, $fn=36);
|
|
|
|
|
|
// Creates a cylinder with filletted (rounded) ends.
|
|
// h = height of cylinder. (Default: 1.0)
|
|
// r = radius of cylinder. (Default: 1.0)
|
|
// d = diameter of cylinder. (Use instead of r)
|
|
// fillet = radius of the edge filleting. (Default: 0.25)
|
|
// center = boolean. If true, cylinder is centered. (Default: false)
|
|
// Example:
|
|
// rcylinder(h=50, r1=20, r2=30, fillet=5, center=true);
|
|
// rcylinder(h=50, r=20, fillet=5, center=true);
|
|
module rcylinder(h=1, r=1, r1=undef, r2=undef, d=undef, d1=undef, d2=undef, fillet=0.25, center=false)
|
|
{
|
|
r1 = d1!=undef? d1/2 : (r1!=undef? r1 : (d!=undef? d/2 : r));
|
|
r2 = d2!=undef? d2/2 : (r2!=undef? r2 : (d!=undef? d/2 : r));
|
|
u = fillet/h;
|
|
rr1 = (r1+(r2-r1)*u);
|
|
rr2 = (r1+(r2-r1)*(1-u));
|
|
yy = h/2 - fillet;
|
|
up(center? 0 : h/2) {
|
|
rotate_extrude(angle=360, convexity=2) {
|
|
difference() {
|
|
hull() {
|
|
right(rr1-fillet) {
|
|
difference() {
|
|
fwd(yy) circle(r=fillet, $fn=quantup(segs(fillet), 4));
|
|
back(fillet) square(2*fillet, center=true);
|
|
}
|
|
}
|
|
right(rr2-fillet) {
|
|
difference() {
|
|
back(yy) circle(r=fillet, $fn=quantup(segs(fillet), 4));
|
|
fwd(fillet) square(2*fillet, center=true);
|
|
}
|
|
}
|
|
right(0.01/2) square([0.01, h], center=true);
|
|
}
|
|
left(max(rr1,rr2)/2) square([max(rr1, rr2), h+1], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module filleted_cylinder(h=1, r=1, d=undef, fillet=0.25, center=false)
|
|
rcylinder(h=h, r=r, d=d, fillet=fillet, center=center);
|
|
|
|
|
|
|
|
// Creates a pyramidal prism with a given number of sides.
|
|
// n = number of pyramid sides.
|
|
// h = height of the pyramid.
|
|
// l = length of one side of the pyramid. (optional)
|
|
// r = radius of the base of the pyramid. (optional)
|
|
// d = diameter of the base of the pyramid. (optional)
|
|
// circum = base circumscribes the circle of the given radius or diam.
|
|
// Example:
|
|
// pyramid(h=3, d=4, n=6, circum=true);
|
|
module pyramid(n=4, h=1, l=1, r=undef, d=undef, circum=false)
|
|
{
|
|
cm = circum? 1/cos(180/n) : 1.0;
|
|
radius = (r!=undef)? r*cm : ((d!=undef)? d*cm/2 : (l/(2*sin(180/n))));
|
|
zrot(180/n) cylinder(r1=radius, r2=0, h=h, $fn=n, center=false);
|
|
}
|
|
|
|
|
|
// Creates a vertical prism with a given number of sides.
|
|
// n = number of sides.
|
|
// h = height of the prism.
|
|
// l = length of one side of the prism. (optional)
|
|
// r = radius of the prism. (optional)
|
|
// d = diameter of the prism. (optional)
|
|
// circum = prism circumscribes the circle of the given radius or diam.
|
|
// Example:
|
|
// prism(n=8, h=3, d=4, circum=true);
|
|
module prism(n=3, h=1, l=1, r=undef, d=undef, circum=false, center=false)
|
|
{
|
|
cm = circum? 1/cos(180/n) : 1.0;
|
|
radius = (r!=undef)? r*cm : ((d!=undef)? d*cm/2 : (l/(2*sin(180/n))));
|
|
zrot(180/n) cylinder(r=radius, h=h, center=center, $fn=n);
|
|
}
|
|
|
|
|
|
// Creates a right triangle, with the hypotenuse on the right (X+) side.
|
|
// size = [width, thickness, height]
|
|
// center = true if triangle will be centered.
|
|
// Examples:
|
|
// right_triangle([4, 1, 6], center=true);
|
|
// right_triangle([4, 1, 9]);
|
|
module right_triangle(size=[1, 1, 1], center=false)
|
|
{
|
|
w = size[0];
|
|
thick = size[1];
|
|
h = size[2];
|
|
translate(center? [-w/2, -thick/2, -h/2] : [0, 0, 0]) {
|
|
polyhedron(
|
|
points=[
|
|
[0, 0, 0],
|
|
[0, 0, h],
|
|
[w, 0, 0],
|
|
[0, thick, 0],
|
|
[0, thick, h],
|
|
[w, thick, 0]
|
|
],
|
|
faces=[
|
|
[0, 1, 2],
|
|
[0, 2, 5],
|
|
[0, 5, 3],
|
|
[0, 3, 4],
|
|
[0, 4, 1],
|
|
[1, 4, 5],
|
|
[1, 5, 2],
|
|
[3, 5, 4]
|
|
],
|
|
convexity=2
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Creates a trapezoidal prism.
|
|
// size1 = [width, length] of the bottom of the prism.
|
|
// size2 = [width, length] of the top of the prism.
|
|
// h = Height of the prism.
|
|
// center = vertically center the prism.
|
|
// Example:
|
|
// trapezoid(size1=[1,4], size2=[4,1], h=4, center=false);
|
|
// trapezoid(size1=[2,6], size2=[4,0], h=4, center=false);
|
|
module trapezoid(size1=[1,1], size2=[1,1], h=1, center=false)
|
|
{
|
|
s1 = [max(size1[0], 0.001), max(size1[1], 0.001)];
|
|
s2 = [max(size2[0], 0.001), max(size2[1], 0.001)];
|
|
up(center? 0 : h/2) {
|
|
polyhedron(
|
|
points=[
|
|
[+s2[0]/2, +s2[1]/2, +h/2],
|
|
[+s2[0]/2, -s2[1]/2, +h/2],
|
|
[-s2[0]/2, -s2[1]/2, +h/2],
|
|
[-s2[0]/2, +s2[1]/2, +h/2],
|
|
[+s1[0]/2, +s1[1]/2, -h/2],
|
|
[+s1[0]/2, -s1[1]/2, -h/2],
|
|
[-s1[0]/2, -s1[1]/2, -h/2],
|
|
[-s1[0]/2, +s1[1]/2, -h/2],
|
|
],
|
|
faces=[
|
|
[0, 1, 2],
|
|
[0, 2, 3],
|
|
[0, 4, 5],
|
|
[0, 5, 1],
|
|
[1, 5, 6],
|
|
[1, 6, 2],
|
|
[2, 6, 7],
|
|
[2, 7, 3],
|
|
[3, 7, 4],
|
|
[3, 4, 0],
|
|
[4, 7, 6],
|
|
[4, 6, 5],
|
|
],
|
|
convexity=2
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Creates a trapezoidal prism with rounded vertical edges.
|
|
// size1 = [width, length] of the bottom of the prism.
|
|
// size2 = [width, length] of the top of the prism.
|
|
// h = Height of the prism.
|
|
// r = radius of vertical edge fillets.
|
|
// r1 = radius of vertical edge fillets at bottom.
|
|
// r2 = radius of vertical edge fillets at top.
|
|
// center = vertically center the prism.
|
|
// Example:
|
|
// rtrapezoid(size1=[40,40], size2=[0,0], h=40, r=5, center=false);
|
|
// rtrapezoid(size1=[20,60], size2=[40,30], h=40, r1=5, r2=10, center=false);
|
|
// rtrapezoid(size1=[40,60], size2=[35,55], h=40, r1=0, r2=10, center=true);
|
|
module rtrapezoid(size1, size2, h, r=undef, r1=undef, r2=undef, center=true)
|
|
{
|
|
eps = 0.001;
|
|
maxrad1 = min(size1[0]/2, size1[1]/2);
|
|
maxrad2 = min(size2[0]/2, size2[1]/2);
|
|
rr1 = min(maxrad1, (r1!=undef)? r1 : r);
|
|
rr2 = min(maxrad2, (r2!=undef)? r2 : r);
|
|
down(center? h/2 : 0) {
|
|
hull() {
|
|
linear_extrude(height=eps, center=false, convexity=2) {
|
|
offset(r=rr1) {
|
|
square([max(eps, size1[0]-2*rr1), max(eps, size1[1]-2*rr1)], center=true);
|
|
}
|
|
}
|
|
up(h-0.01) {
|
|
linear_extrude(height=eps, center=false, convexity=2) {
|
|
offset(r=rr2) {
|
|
square([max(eps, size2[0]-2*rr2), max(eps, size2[1]-2*rr2)], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// Makes a 2D teardrop shape. Useful for extruding into 3D printable holes.
|
|
// r = radius of circular part of teardrop. (Default: 1)
|
|
// d = diameter of spherical portion of bottom. (Use instead of r)
|
|
// ang = angle of hat walls from the Y axis. (Default: 45 degrees)
|
|
// cap_h = if given, height above center where the shape will be truncated.
|
|
// Examples:
|
|
// teardrop2d(r=30, ang=30);
|
|
// teardrop2d(r=35, ang=45, cap_h=40);
|
|
module teardrop2d(r=1, d=undef, ang=45, cap_h=undef)
|
|
{
|
|
r = (d!=undef)? (d/2.0) : r;
|
|
difference() {
|
|
hull() {
|
|
back(r*sin(ang)) {
|
|
yscale(1/tan(ang)) {
|
|
difference() {
|
|
zrot(45) square([2*r*cos(ang)/sqrt(2), 2*r*cos(ang)/sqrt(2)], center=true);
|
|
fwd(r/2) square([2*r, r], center=true);
|
|
}
|
|
}
|
|
}
|
|
zrot(90) circle(r=r, center=true);
|
|
}
|
|
if (cap_h != undef) {
|
|
back(r*3/2+cap_h) square([r*3, r*3], center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a teardrop shape in the XZ plane. Useful for 3D printable holes.
|
|
// r = radius of circular part of teardrop. (Default: 1)
|
|
// d = diameter of spherical portion of bottom. (Use instead of r)
|
|
// h = thickness of teardrop. (Default: 1)
|
|
// ang = angle of hat walls from the Z axis. (Default: 45 degrees)
|
|
// cap_h = if given, height above center where the shape will be truncated.
|
|
// Example:
|
|
// teardrop(r=30, h=10, ang=30);
|
|
module teardrop(r=1, d=undef, h=1, ang=45, cap_h=undef)
|
|
{
|
|
r = (d!=undef)? (d/2.0) : r;
|
|
xrot(90) {
|
|
linear_extrude(height=h, center=true, steps=2) {
|
|
teardrop2d(r=r, ang=ang, cap_h=cap_h);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Created a sphere with a conical hat, to make a 3D teardrop.
|
|
// r = radius of spherical portion of the bottom. (Default: 1)
|
|
// d = diameter of spherical portion of bottom. (Use instead of r)
|
|
// h = height above sphere center to truncate teardrop shape. (Default: 1)
|
|
// maxang = angle of cone on top from vertical.
|
|
// Example:
|
|
// onion(h=15, r=10, maxang=30);
|
|
module onion(h=1, r=1, d=undef, maxang=45)
|
|
{
|
|
r = (d!=undef)? (d/2.0) : r;
|
|
rotate_extrude(angle=360, convexity=2) {
|
|
difference() {
|
|
teardrop2d(r=r, ang=maxang, cap_h=h);
|
|
left(r+h/2) square(size=r*2+h, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a hollow tube with the given outer size and wall thickness.
|
|
// h = height of tube. (Default: 1)
|
|
// r = Outer radius of tube. (Default: 1)
|
|
// r1 = Outer radius of bottom of tube. (Default: value of r)
|
|
// r2 = Outer radius of top of tube. (Default: value of r)
|
|
// wall = horizontal thickness of tube wall. (Default 0.5)
|
|
// Example:
|
|
// tube(h=3, r=4, wall=1, center=true);
|
|
// tube(h=6, r=4, wall=2, $fn=6);
|
|
// tube(h=3, r1=5, r2=7, wall=2, center=true);
|
|
module tube(h=1, r=1, r1=undef, r2=undef, d=undef, d1=undef, d2=undef, wall=0.1, center=false)
|
|
{
|
|
r1 = (d1!=undef)? d1/2 : (d!=undef)? d/2 : (r1!=undef)? r1 : r;
|
|
r2 = (d2!=undef)? d2/2 : (d!=undef)? d/2 : (r2!=undef)? r2 : r;
|
|
up(center? 0 : h/2) {
|
|
difference() {
|
|
cylinder(h=h, r1=r1, r2=r2, center=true);
|
|
cylinder(h=h+0.05, r1=r1-wall, r2=r2-wall, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Creates a torus shape.
|
|
// r = major radius of torus ring. (use with of 'r2', or 'd2')
|
|
// r2 = minor radius of torus ring. (use with of 'r', or 'd')
|
|
// d = major diameter of torus ring. (use with of 'r2', or 'd2')
|
|
// d2 = minor diameter of torus ring. (use with of 'r', or 'd')
|
|
// or = outer radius of the torus. (use with 'ir', or 'id')
|
|
// ir = inside radius of the torus. (use with 'or', or 'od')
|
|
// od = outer diameter of the torus. (use with 'ir' or 'id')
|
|
// id = inside diameter of the torus. (use with 'or' or 'od')
|
|
// Example:
|
|
// torus(r=30, r2=5);
|
|
// torus(d=50, r2=5);
|
|
// torus(d=60, d2=15);
|
|
// torus(od=60, ir=15);
|
|
// torus(or=30, ir=20, $fa=1, $fs=1);
|
|
module torus(or=1, ir=0.5, od=undef, id=undef, r=undef, r2=undef, d=undef, d2=undef)
|
|
{
|
|
ir = id!=undef? id/2 : ir;
|
|
or = od!=undef? od/2 : or;
|
|
r = d!=undef? d/2 : r!=undef? r : (ir+or)/2;
|
|
r2 = d2!=undef? d2/2 : r2!=undef? r2 : (or-ir)/2;
|
|
rotate_extrude(convexity = 4) {
|
|
right(r) circle(r2);
|
|
}
|
|
}
|
|
|
|
|
|
// Creates a pie slice shape.
|
|
// ang = pie slice angle in degrees.
|
|
// h = height of pie slice.
|
|
// r = radius of pie slice.
|
|
// r1 = bottom radius of pie slice.
|
|
// r2 = top radius of pie slice.
|
|
// d = diameter of pie slice.
|
|
// d1 = bottom diameter of pie slice.
|
|
// d2 = top diameter of pie slice.
|
|
// center = if true, centers pie slice vertically. Default: false
|
|
// Example:
|
|
// pie_slice(ang=45, h=30, r1=100, r2=80);
|
|
module pie_slice(ang=30, h=1, r=10, r1=undef, r2=undef, d=undef, d1=undef, d2=undef, center=false)
|
|
{
|
|
r1 = r1!=undef? r1 : (d1!=undef? d1/2 : (d!=undef? d/2 : r));
|
|
r2 = r2!=undef? r2 : (d2!=undef? d2/2 : (d!=undef? d/2 : r));
|
|
steps = ceil(segs(max(r1,r2))*ang/360);
|
|
step = ang/steps;
|
|
pts = concat(
|
|
[[0,0]],
|
|
[for (i=[0:steps]) let(a = i*step) [r1*cos(a), r1*sin(a)]]
|
|
);
|
|
linear_extrude(height=h, scale=r2/r1, center=center, convexity=2) {
|
|
polygon(pts);
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a linear slot with rounded ends, appropriate for bolts to slide along.
|
|
// p1 = center of starting circle of slot. (Default: [0,0,0])
|
|
// p2 = center of ending circle of slot. (Default: [1,0,0])
|
|
// l = length of slot along the X axis. Use instead of p1 and p2.
|
|
// h = height of slot shape. (default: 1.0)
|
|
// r = radius of slot circle. (default: 0.5)
|
|
// r1 = bottom radius of slot cone. (use instead of r)
|
|
// r2 = top radius of slot cone. (use instead of r)
|
|
// d = diameter of slot circle. (default: 1.0)
|
|
// d1 = bottom diameter of slot cone. (use instead of d)
|
|
// d2 = top diameter of slot cone. (use instead of d)
|
|
// center = If true (default) centers vertically. Else, drops flush with XY plane.
|
|
// Examples:
|
|
// slot(l=50, h=5, d1=8, d2=10, center=false);
|
|
// slot([0,0,0], [50,50,0], h=5, d=10);
|
|
module slot(
|
|
p1=[0,0,0], p2=[1,0,0], h=1.0,
|
|
l=undef, center=true,
|
|
r=undef, r1=undef, r2=undef,
|
|
d=1.0, d1=undef, d2=undef
|
|
) {
|
|
r = (r != undef)? r : (d/2);
|
|
r1 = (r1 != undef)? r1 : ((d1 != undef)? (d1/2) : r);
|
|
r2 = (r2 != undef)? r2 : ((d2 != undef)? (d2/2) : r);
|
|
pt1 = l==undef? p1 : [-l/2, 0, 0];
|
|
pt2 = l==undef? p2 : [ l/2, 0, 0];
|
|
$fn = quantup(segs(max(r1,r2)),4);
|
|
down(center? 0 : h/2) {
|
|
hull() {
|
|
translate(pt1) cylinder(h=h, r1=r1, r2=r2, center=true);
|
|
translate(pt2) cylinder(h=h, r1=r1, r2=r2, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes an arced slot, appropriate for bolts to slide along.
|
|
// cp = centerpoint of slot arc. (default: [0, 0, 0])
|
|
// h = height of slot arc shape. (default: 1.0)
|
|
// r = radius of slot arc. (default: 0.5)
|
|
// d = diameter of slot arc. (default: 1.0)
|
|
// sr = radius of slot channel. (default: 0.5)
|
|
// sd = diameter of slot channel. (default: 0.5)
|
|
// sr1 = bottom radius of slot channel cone. (use instead of sr)
|
|
// sr2 = top radius of slot channel cone. (use instead of sr)
|
|
// sd1 = bottom diameter of slot channel cone. (use instead of sd)
|
|
// sd2 = top diameter of slot channel cone. (use instead of sd)
|
|
// sa = starting angle. (Default: 0.0)
|
|
// ea = ending angle. (Default: 90.0)
|
|
// Examples:
|
|
// arced_slot(d=100, h=15, sd=10, sa=60, ea=280);
|
|
// arced_slot(r=100, h=10, sd1=30, sd2=10, sa=45, ea=180, $fa=5, $fs=2);
|
|
module arced_slot(
|
|
cp=[0,0,0],
|
|
r=undef, d=1.0, h=1.0,
|
|
sr=undef, sr1=undef, sr2=undef,
|
|
sd=1.0, sd1=undef, sd2=undef,
|
|
sa=0, ea=90
|
|
) {
|
|
r = (r != undef)? r : (d/2);
|
|
sr = (sr != undef)? sr : (sd/2);
|
|
sr1 = (sr1 != undef)? sr1 : ((sd1 != undef)? (sd1/2) : sr);
|
|
sr2 = (sr2 != undef)? sr2 : ((sd2 != undef)? (sd2/2) : sr);
|
|
da = ea - sa;
|
|
steps = segs(r+max(sr1,sr2));
|
|
zrot(sa) {
|
|
right(r) cylinder(h=h, r1=sr1, r2=sr2, center=true);
|
|
difference() {
|
|
linear_extrude(height=h, scale=(r+sr2)/(r+sr1), center=true, convexity=4) {
|
|
polygon(
|
|
points=concat(
|
|
[[0,0]],
|
|
[
|
|
for (i = [0:steps]) [
|
|
(r+sr1)*cos(da*i/steps),
|
|
(r+sr1)*sin(da*i/steps)
|
|
]
|
|
]
|
|
)
|
|
);
|
|
}
|
|
cylinder(h=h+0.01, r1=(r-sr1), r2=(r-sr2), center=true);
|
|
}
|
|
zrot(da) right(r) cylinder(h=h, r1=sr1, r2=sr2, center=true);
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a rectangular strut with the top side narrowing in a triangle.
|
|
// The shape created may be likened to an extruded home plate from baseball.
|
|
// This is useful for constructing parts that minimize the need to support
|
|
// overhangs.
|
|
// w = Width (thickness) of the strut.
|
|
// l = Length of the strut.
|
|
// wall = height of rectangular portion of the strut.
|
|
// ang = angle that the trianglar side will converge at.
|
|
// Example:
|
|
// narrowing_strut(w=10, l=100, wall=5, ang=30);
|
|
module narrowing_strut(w=10, l=100, wall=5, ang=30)
|
|
{
|
|
tipy = wall + (w/2)*sin(90-ang)/sin(ang);
|
|
xrot(90) linear_extrude(height=l, center=true, steps=2) {
|
|
polygon(
|
|
points=[
|
|
[-w/2, 0],
|
|
[-w/2, wall],
|
|
[0, tipy],
|
|
[w/2, wall],
|
|
[w/2, 0]
|
|
]
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a rectangular wall which thins to a smaller width in the center,
|
|
// with angled supports to prevent critical overhangs.
|
|
// h = height of wall.
|
|
// l = length of wall.
|
|
// thick = thickness of wall.
|
|
// ang = maximum overhang angle of diagonal brace.
|
|
// strut = the width of the diagonal brace.
|
|
// wall = the thickness of the thinned portion of the wall.
|
|
// Example:
|
|
// thinning_wall(h=50, l=100, thick=4, ang=30, strut=5, wall=2);
|
|
module thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=2)
|
|
{
|
|
l1 = (l[0] == undef)? l : l[0];
|
|
l2 = (l[1] == undef)? l : l[1];
|
|
|
|
trap_ang = atan2((l2-l1)/2, h);
|
|
corr1 = 1 + sin(trap_ang);
|
|
corr2 = 1 - sin(trap_ang);
|
|
|
|
z1 = h/2;
|
|
z2 = max(0.1, z1 - strut);
|
|
z3 = max(0.05, z2 - (thick-wall)/2*sin(90-ang)/sin(ang));
|
|
|
|
x1 = l2/2;
|
|
x2 = max(0.1, x1 - strut*corr1);
|
|
x3 = max(0.05, x2 - (thick-wall)/2*sin(90-ang)/sin(ang)*corr1);
|
|
x4 = l1/2;
|
|
x5 = max(0.1, x4 - strut*corr2);
|
|
x6 = max(0.05, x5 - (thick-wall)/2*sin(90-ang)/sin(ang)*corr2);
|
|
|
|
y1 = thick/2;
|
|
y2 = y1 - min(z2-z3, x2-x3) * sin(ang);
|
|
|
|
zrot(90) {
|
|
polyhedron(
|
|
points=[
|
|
[-x4, -y1, -z1],
|
|
[ x4, -y1, -z1],
|
|
[ x1, -y1, z1],
|
|
[-x1, -y1, z1],
|
|
|
|
[-x5, -y1, -z2],
|
|
[ x5, -y1, -z2],
|
|
[ x2, -y1, z2],
|
|
[-x2, -y1, z2],
|
|
|
|
[-x6, -y2, -z3],
|
|
[ x6, -y2, -z3],
|
|
[ x3, -y2, z3],
|
|
[-x3, -y2, z3],
|
|
|
|
[-x4, y1, -z1],
|
|
[ x4, y1, -z1],
|
|
[ x1, y1, z1],
|
|
[-x1, y1, z1],
|
|
|
|
[-x5, y1, -z2],
|
|
[ x5, y1, -z2],
|
|
[ x2, y1, z2],
|
|
[-x2, y1, z2],
|
|
|
|
[-x6, y2, -z3],
|
|
[ x6, y2, -z3],
|
|
[ x3, y2, z3],
|
|
[-x3, y2, z3],
|
|
],
|
|
faces=[
|
|
[ 4, 5, 1],
|
|
[ 5, 6, 2],
|
|
[ 6, 7, 3],
|
|
[ 7, 4, 0],
|
|
|
|
[ 4, 1, 0],
|
|
[ 5, 2, 1],
|
|
[ 6, 3, 2],
|
|
[ 7, 0, 3],
|
|
|
|
[ 8, 9, 5],
|
|
[ 9, 10, 6],
|
|
[10, 11, 7],
|
|
[11, 8, 4],
|
|
|
|
[ 8, 5, 4],
|
|
[ 9, 6, 5],
|
|
[10, 7, 6],
|
|
[11, 4, 7],
|
|
|
|
[11, 10, 9],
|
|
[20, 21, 22],
|
|
|
|
[11, 9, 8],
|
|
[20, 22, 23],
|
|
|
|
[16, 17, 21],
|
|
[17, 18, 22],
|
|
[18, 19, 23],
|
|
[19, 16, 20],
|
|
|
|
[16, 21, 20],
|
|
[17, 22, 21],
|
|
[18, 23, 22],
|
|
[19, 20, 23],
|
|
|
|
[12, 13, 17],
|
|
[13, 14, 18],
|
|
[14, 15, 19],
|
|
[15, 12, 16],
|
|
|
|
[12, 17, 16],
|
|
[13, 18, 17],
|
|
[14, 19, 18],
|
|
[15, 16, 19],
|
|
|
|
[ 0, 1, 13],
|
|
[ 1, 2, 14],
|
|
[ 2, 3, 15],
|
|
[ 3, 0, 12],
|
|
|
|
[ 0, 13, 12],
|
|
[ 1, 14, 13],
|
|
[ 2, 15, 14],
|
|
[ 3, 12, 15],
|
|
],
|
|
convexity=6
|
|
);
|
|
}
|
|
}
|
|
//!thinning_wall(h=50, l=[100, 80], thick=4, ang=30, strut=5, wall=2);
|
|
|
|
|
|
module braced_thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=2)
|
|
{
|
|
dang = atan((h-2*strut)/(l-2*strut));
|
|
dlen = (h-2*strut)/sin(dang);
|
|
union() {
|
|
xrot_copies([0, 180]) {
|
|
down(h/2) narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
|
|
fwd(l/2) xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
|
|
intersection() {
|
|
cube(size=[thick, l, h], center=true);
|
|
xrot_copies([-dang,dang]) {
|
|
zspread(strut/2) {
|
|
scale([1,1,1.5]) yrot(45) {
|
|
cube(size=[thick/sqrt(2), dlen, thick/sqrt(2)], center=true);
|
|
}
|
|
}
|
|
cube(size=[thick, dlen, strut/2], center=true);
|
|
}
|
|
}
|
|
}
|
|
cube(size=[wall, l-0.1, h-0.1], center=true);
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a triangular wall with thick edges, which thins to a smaller width in
|
|
// the center, with angled supports to prevent critical overhangs.
|
|
// h = height of wall.
|
|
// l = length of wall.
|
|
// thick = thickness of wall.
|
|
// ang = maximum overhang angle of diagonal brace.
|
|
// strut = the width of the diagonal brace.
|
|
// wall = the thickness of the thinned portion of the wall.
|
|
// diagonly = boolean, which denotes only the diagonal side (hypotenuse) should be thick.
|
|
// center = if true (default) centers triangle at the origin.
|
|
// Example:
|
|
// thinning_triangle(h=50, l=100, thick=4, ang=30, strut=5, wall=2, diagonly=true);
|
|
module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly=false, center=true)
|
|
{
|
|
dang = atan(h/l);
|
|
dlen = h/sin(dang);
|
|
translate(center? [0, 0, 0] : [0, l/2, h/2]) {
|
|
difference() {
|
|
union() {
|
|
if (!diagonly) {
|
|
translate([0, 0, -h/2])
|
|
narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
|
|
translate([0, -l/2, 0])
|
|
xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
|
|
}
|
|
intersection() {
|
|
cube(size=[thick, l, h], center=true);
|
|
xrot(-dang) yrot(180) {
|
|
narrowing_strut(w=thick, l=dlen*1.2, wall=strut, ang=ang);
|
|
}
|
|
}
|
|
cube(size=[wall, l-0.1, h-0.1], center=true);
|
|
}
|
|
xrot(-dang) {
|
|
translate([0, 0, h/2]) {
|
|
cube(size=[thick+0.1, l*2, h], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a triangular wall which thins to a smaller width in the center,
|
|
// with angled supports to prevent critical overhangs. Basically an alias
|
|
// of thinning_triangle(), with diagonly=true.
|
|
// h = height of wall.
|
|
// l = length of wall.
|
|
// thick = thickness of wall.
|
|
// ang = maximum overhang angle of diagonal brace.
|
|
// strut = the width of the diagonal brace.
|
|
// wall = the thickness of the thinned portion of the wall.
|
|
// Example:
|
|
// thinning_brace(h=50, l=100, thick=4, ang=30, strut=5, wall=2);
|
|
module thinning_brace(h=50, l=100, thick=5, ang=30, strut=5, wall=3, center=true)
|
|
{
|
|
thinning_triangle(h=h, l=l, thick=thick, ang=ang, strut=strut, wall=wall, diagonly=true, center=center);
|
|
}
|
|
|
|
|
|
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the
|
|
// need for support material in 3D printing.
|
|
// h = Z size of strut.
|
|
// w = X size of strut.
|
|
// l = Y size of strut.
|
|
// thick = thickness of strut walls.
|
|
// maxang = maximum overhang angle of cross-braces.
|
|
// max_bridge = maximum bridging distance between cross-braces.
|
|
// strut = the width of the cross-braces.
|
|
// Example:
|
|
// sparse_strut3d(h=100, w=33, l=33, thick=3, strut=3, maxang=30, max_bridge=20);
|
|
// sparse_strut3d(h=40, w=40, l=120, thick=3, maxang=30, strut=3, max_bridge=20);
|
|
// sparse_strut3d(h=30, w=30, l=180, thick=2.5, strut=2.5, maxang=30, max_bridge=20);
|
|
module sparse_strut3d(h=50, l=100, w=50, thick=3, maxang=40, strut=3, max_bridge = 20)
|
|
{
|
|
|
|
xoff = w - thick;
|
|
yoff = l - thick;
|
|
zoff = h - thick;
|
|
|
|
xreps = ceil(xoff/yoff);
|
|
yreps = ceil(yoff/xoff);
|
|
zreps = ceil(zoff/min(xoff, yoff));
|
|
|
|
xstep = xoff / xreps;
|
|
ystep = yoff / yreps;
|
|
zstep = zoff / zreps;
|
|
|
|
cross_ang = atan2(xstep, ystep);
|
|
cross_len = hypot(xstep, ystep);
|
|
|
|
supp_ang = min(maxang, min(atan2(max_bridge, zstep), atan2(cross_len/2, zstep)));
|
|
supp_reps = floor(cross_len/2/(zstep*sin(supp_ang)));
|
|
supp_step = cross_len/2/supp_reps;
|
|
|
|
union() {
|
|
ybridge = (l - (yreps+1) * strut) / yreps;
|
|
xspread(xoff) sparse_strut(h=h, l=l, thick=thick, maxang=maxang, strut=strut, max_bridge=ybridge/ceil(ybridge/max_bridge));
|
|
yspread(yoff) zrot(90) sparse_strut(h=h, l=w, thick=thick, maxang=maxang, strut=strut, max_bridge=max_bridge);
|
|
for(zs = [0:zreps-1]) {
|
|
for(xs = [0:xreps-1]) {
|
|
for(ys = [0:yreps-1]) {
|
|
translate([(xs+0.5)*xstep-xoff/2, (ys+0.5)*ystep-yoff/2, (zs+0.5)*zstep-zoff/2]) {
|
|
zflip_copy(offset=-(zstep-strut)/2) {
|
|
xflip_copy() {
|
|
zrot(cross_ang) {
|
|
down(strut/2) {
|
|
cube([strut, cross_len, strut], center=true);
|
|
}
|
|
if (zreps>1) {
|
|
back(cross_len/2) {
|
|
zrot(-cross_ang) {
|
|
down(strut) upcube([strut, strut, zstep+strut], center=true);
|
|
}
|
|
}
|
|
}
|
|
for (soff = [0 : supp_reps-1] ) {
|
|
yflip_copy() {
|
|
back(soff*supp_step) {
|
|
skew_xy(ya=supp_ang) {
|
|
upcube([strut, strut, zstep]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
|
|
// the need for support material in 3D printing.
|
|
// h = height of strut wall.
|
|
// l = length of strut wall.
|
|
// thick = thickness of strut wall.
|
|
// maxang = maximum overhang angle of cross-braces.
|
|
// max_bridge = maximum bridging distance between cross-braces.
|
|
// strut = the width of the cross-braces.
|
|
// Example:
|
|
// sparse_strut(h=40, l=120, thick=4, maxang=30, strut=5, max_bridge=20);
|
|
module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge = 20)
|
|
{
|
|
|
|
zoff = h/2 - strut/2;
|
|
yoff = l/2 - strut/2;
|
|
|
|
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
|
|
maxz = 2 * maxhyp * cos(maxang);
|
|
|
|
zreps = ceil(2*zoff/maxz);
|
|
zstep = 2*zoff / zreps;
|
|
|
|
hyp = zstep/2 / cos(maxang);
|
|
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
|
|
|
|
yreps = ceil(2*yoff/maxy);
|
|
ystep = 2*yoff / yreps;
|
|
|
|
ang = atan(ystep/zstep);
|
|
len = zstep / cos(ang);
|
|
|
|
union() {
|
|
zspread(zoff*2)
|
|
cube(size=[thick, l, strut], center=true);
|
|
yspread(yoff*2)
|
|
cube(size=[thick, strut, h], center=true);
|
|
grid_of(ya=[-yoff+ystep/2:ystep:yoff], za=[-zoff+zstep/2:zstep:zoff]) {
|
|
xrot( ang) cube(size=[thick, strut, len], center=true);
|
|
xrot(-ang) cube(size=[thick, strut, len], center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Makes a corrugated wall which relieves contraction stress while still
|
|
// providing support strength. Designed with 3D printing in mind.
|
|
// h = height of strut wall.
|
|
// l = length of strut wall.
|
|
// thick = thickness of strut wall.
|
|
// strut = the width of the cross-braces.
|
|
// wall = thickness of corrugations.
|
|
// Example:
|
|
// corrugated_wall(h=50, l=100, thick=4, strut=5, wall=2, $fn=12);
|
|
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2)
|
|
{
|
|
amplitude = (thick - wall) / 2;
|
|
period = min(15, thick * 2);
|
|
steps = quantup(segs(thick/2),4);
|
|
step = period/steps;
|
|
il = l - 2*strut + 2*step;
|
|
linear_extrude(height=h-2*strut+0.1, steps=2, convexity=ceil(2*il/period), center=true) {
|
|
polygon(
|
|
points=concat(
|
|
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
|
|
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
|
|
)
|
|
);
|
|
}
|
|
|
|
difference() {
|
|
cube([thick, l, h], center=true);
|
|
cube([thick+0.5, l-2*strut, h-2*strut], center=true);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|