mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
c80c7c558a
supporting function, and regression tests for both.
514 lines
19 KiB
OpenSCAD
514 lines
19 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: affine.scad
|
|
// Matrix math and affine transformation matrices.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Matrix Manipulation
|
|
|
|
// Function: ident()
|
|
// Description: Create an `n` by `n` identity matrix.
|
|
// Arguments:
|
|
// n = The size of the identity matrix square, `n` by `n`.
|
|
function ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?1:0]];
|
|
|
|
|
|
// Function: affine2d_to_3d()
|
|
// Description: Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent.
|
|
function affine2d_to_3d(m) = concat(
|
|
[for (r = [0:2])
|
|
concat(
|
|
[for (c = [0:2]) m[r][c]],
|
|
[0]
|
|
)
|
|
],
|
|
[[0, 0, 0, 1]]
|
|
);
|
|
|
|
|
|
|
|
// Section: Affine2d 3x3 Transformation Matrices
|
|
|
|
|
|
// Function: affine2d_identity()
|
|
// Description: Create a 3x3 affine2d identity matrix.
|
|
function affine2d_identity() = ident(3);
|
|
|
|
|
|
// Function: affine2d_translate()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a 2D translation.
|
|
// Arguments:
|
|
// v = 2D Offset to translate by. [X,Y]
|
|
function affine2d_translate(v) = [
|
|
[1, 0, v.x],
|
|
[0, 1, v.y],
|
|
[0 ,0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_scale()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a 2D scaling transformation.
|
|
// Arguments:
|
|
// v = 2D vector of scaling factors. [X,Y]
|
|
function affine2d_scale(v) = [
|
|
[v.x, 0, 0],
|
|
[ 0, v.y, 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_zrot()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis.
|
|
// Arguments:
|
|
// ang = Number of degrees to rotate.
|
|
function affine2d_zrot(ang) = [
|
|
[cos(ang), -sin(ang), 0],
|
|
[sin(ang), cos(ang), 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_mirror()
|
|
// Usage:
|
|
// mat = affine2d_mirror(v);
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector.
|
|
// Arguments:
|
|
// v = The normal vector of the line to reflect across.
|
|
function affine2d_mirror(v) =
|
|
let(v=unit(point2d(v)), a=v.x, b=v.y)
|
|
[
|
|
[1-2*a*a, 0-2*a*b, 0],
|
|
[0-2*a*b, 1-2*b*b, 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_skew()
|
|
// Usage:
|
|
// affine2d_skew(xa, ya)
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane.
|
|
// Arguments:
|
|
// xa = Skew angle, in degrees, in the direction of the X axis.
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis.
|
|
function affine2d_skew(xa, ya) = [
|
|
[1, tan(xa), 0],
|
|
[tan(ya), 1, 0],
|
|
[0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_chain()
|
|
// Usage:
|
|
// affine2d_chain(affines)
|
|
// Description:
|
|
// Returns a 3x3 affine2d transformation matrix which results from applying each matrix in `affines` in order.
|
|
// Arguments:
|
|
// affines = A list of 3x3 affine2d matrices.
|
|
function affine2d_chain(affines, _m=undef, _i=0) =
|
|
(_i>=len(affines))? (is_undef(_m)? ident(3) : _m) :
|
|
affine2d_chain(affines, _m=(is_undef(_m)? affines[_i] : affines[_i] * _m), _i=_i+1);
|
|
|
|
|
|
|
|
// Section: Affine3d 4x4 Transformation Matrices
|
|
|
|
|
|
// Function: affine3d_identity()
|
|
// Description: Create a 4x4 affine3d identity matrix.
|
|
function affine3d_identity() = ident(4);
|
|
|
|
|
|
// Function: affine3d_translate()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a 3D translation.
|
|
// Arguments:
|
|
// v = 3D offset to translate by. [X,Y,Z]
|
|
function affine3d_translate(v) = [
|
|
[1, 0, 0, v.x],
|
|
[0, 1, 0, v.y],
|
|
[0, 0, 1, v.z],
|
|
[0 ,0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_scale()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a 3D scaling transformation.
|
|
// Arguments:
|
|
// v = 3D vector of scaling factors. [X,Y,Z]
|
|
function affine3d_scale(v) = [
|
|
[v.x, 0, 0, 0],
|
|
[ 0, v.y, 0, 0],
|
|
[ 0, 0, v.z, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_xrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis.
|
|
// Arguments:
|
|
// ang = number of degrees to rotate.
|
|
function affine3d_xrot(ang) = [
|
|
[1, 0, 0, 0],
|
|
[0, cos(ang), -sin(ang), 0],
|
|
[0, sin(ang), cos(ang), 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_yrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis.
|
|
// Arguments:
|
|
// ang = Number of degrees to rotate.
|
|
function affine3d_yrot(ang) = [
|
|
[ cos(ang), 0, sin(ang), 0],
|
|
[ 0, 1, 0, 0],
|
|
[-sin(ang), 0, cos(ang), 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_zrot()
|
|
// Usage:
|
|
// affine3d_zrot(ang)
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis.
|
|
// Arguments:
|
|
// ang = number of degrees to rotate.
|
|
function affine3d_zrot(ang) = [
|
|
[cos(ang), -sin(ang), 0, 0],
|
|
[sin(ang), cos(ang), 0, 0],
|
|
[ 0, 0, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_rot_by_axis()
|
|
// Usage:
|
|
// affine3d_rot_by_axis(u, ang);
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis.
|
|
// Arguments:
|
|
// u = 3D axis vector to rotate around.
|
|
// ang = number of degrees to rotate.
|
|
function affine3d_rot_by_axis(u, ang) =
|
|
approx(ang,0)? affine3d_identity() :
|
|
let(
|
|
u = unit(u),
|
|
c = cos(ang),
|
|
c2 = 1-c,
|
|
s = sin(ang)
|
|
) [
|
|
[u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
|
|
[u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
|
|
[u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_rot_from_to()
|
|
// Usage:
|
|
// affine3d_rot_from_to(from, to);
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another.
|
|
// Arguments:
|
|
// from = 3D axis vector to rotate from.
|
|
// to = 3D axis vector to rotate to.
|
|
function affine3d_rot_from_to(from, to) =
|
|
let(
|
|
from = unit(point3d(from)),
|
|
to = unit(point3d(to))
|
|
) approx(from,to)? affine3d_identity() :
|
|
let(
|
|
u = vector_axis(from,to),
|
|
ang = vector_angle(from,to),
|
|
c = cos(ang),
|
|
c2 = 1-c,
|
|
s = sin(ang)
|
|
) [
|
|
[u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
|
|
[u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
|
|
[u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine_frame_map()
|
|
// Usage:
|
|
// map = affine_frame_map(x=v1,y=v2);
|
|
// map = affine_frame_map(x=v1,z=v2);
|
|
// map = affine_frame_map(y=v1,y=v2);
|
|
// map = affine_frame_map(v1,v2,v3);
|
|
// Description:
|
|
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
|
|
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
|
|
// If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you
|
|
// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
|
|
// with non-orthogonal inputs.
|
|
// Arguments:
|
|
// x = Destination vector for x axis
|
|
// y = Destination vector for y axis
|
|
// z = Destination vector for z axis
|
|
// reverse = reverse direction of the map for orthogonal inputs. Default: false
|
|
// Examples:
|
|
// T = affine_frame_map(x=[1,1,0], y=[-1,1,0]); // This map is just a rotation around the z axis
|
|
// T = affine_frame_map(x=[1,0,0], y=[1,1,0]); // This map is not a rotation because x and y aren't orthogonal
|
|
// // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]
|
|
// T = affine_frame_map(x=[0,1,1], y=[0,-1,1]) * affine_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
|
|
function affine_frame_map(x,y,z, reverse=false) =
|
|
assert(num_defined([x,y,z])>=2, "Must define at least two inputs")
|
|
let(
|
|
xvalid = is_undef(x) || (is_vector(x) && len(x)==3),
|
|
yvalid = is_undef(y) || (is_vector(y) && len(y)==3),
|
|
zvalid = is_undef(z) || (is_vector(z) && len(z)==3)
|
|
)
|
|
assert(xvalid,"Input x must be a length 3 vector")
|
|
assert(yvalid,"Input y must be a length 3 vector")
|
|
assert(zvalid,"Input z must be a length 3 vector")
|
|
let(
|
|
x = is_undef(x)? undef : unit(x,RIGHT),
|
|
y = is_undef(y)? undef : unit(y,BACK),
|
|
z = is_undef(z)? undef : unit(z,UP),
|
|
map = is_undef(x)? [cross(y,z), y, z] :
|
|
is_undef(y)? [x, cross(z,x), z] :
|
|
is_undef(z)? [x, y, cross(x,y)] :
|
|
[x, y, z]
|
|
)
|
|
reverse? (
|
|
let(
|
|
ocheck = (
|
|
approx(map[0]*map[1],0) &&
|
|
approx(map[0]*map[2],0) &&
|
|
approx(map[1]*map[2],0)
|
|
)
|
|
)
|
|
assert(ocheck, "Inputs must be orthogonal when reverse==true")
|
|
affine2d_to_3d(map)
|
|
) : affine2d_to_3d(transpose(map));
|
|
|
|
|
|
|
|
// Function: affine3d_mirror()
|
|
// Usage:
|
|
// mat = affine3d_mirror(v);
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector.
|
|
// Arguments:
|
|
// v = The normal vector of the plane to reflect across.
|
|
function affine3d_mirror(v) =
|
|
let(
|
|
v=unit(point3d(v)),
|
|
a=v.x, b=v.y, c=v.z
|
|
) [
|
|
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
|
[ -2*b*a, 1-2*b*b, -2*b*c, 0],
|
|
[ -2*c*a, -2*c*b, 1-2*c*c, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew()
|
|
// Usage:
|
|
// mat = affine3d_skew([sxy], [sxz], [syx], [syz], [szx], [szy]);
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation.
|
|
// Arguments:
|
|
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
|
|
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
|
|
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
|
|
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
|
|
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
|
|
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
|
|
function affine3d_skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) = [
|
|
[ 1, sxy, sxz, 0],
|
|
[syx, 1, syz, 0],
|
|
[szx, szy, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew_xy()
|
|
// Usage:
|
|
// affine3d_skew_xy(xa, ya)
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane.
|
|
// Arguments:
|
|
// xa = Skew angle, in degrees, in the direction of the X axis.
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis.
|
|
function affine3d_skew_xy(xa, ya) = [
|
|
[1, 0, tan(xa), 0],
|
|
[0, 1, tan(ya), 0],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew_xz()
|
|
// Usage:
|
|
// affine3d_skew_xz(xa, za)
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane.
|
|
// Arguments:
|
|
// xa = Skew angle, in degrees, in the direction of the X axis.
|
|
// za = Skew angle, in degrees, in the direction of the Z axis.
|
|
function affine3d_skew_xz(xa, za) = [
|
|
[1, tan(xa), 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, tan(za), 1, 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew_yz()
|
|
// Usage:
|
|
// affine3d_skew_yz(ya, za)
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane.
|
|
// Arguments:
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis.
|
|
// za = Skew angle, in degrees, in the direction of the Z axis.
|
|
function affine3d_skew_yz(ya, za) = [
|
|
[ 1, 0, 0, 0],
|
|
[tan(ya), 1, 0, 0],
|
|
[tan(za), 0, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_chain()
|
|
// Usage:
|
|
// affine3d_chain(affines)
|
|
// Description:
|
|
// Returns a 4x4 affine3d transformation matrix which results from applying each matrix in `affines` in order.
|
|
// Arguments:
|
|
// affines = A list of 4x4 affine3d matrices.
|
|
function affine3d_chain(affines, _m=undef, _i=0) =
|
|
(_i>=len(affines))? (is_undef(_m)? ident(4) : _m) :
|
|
affine3d_chain(affines, _m=(is_undef(_m)? affines[_i] : affines[_i] * _m), _i=_i+1);
|
|
|
|
|
|
// Function: apply()
|
|
// Usage:
|
|
// pts = apply(transform, points)
|
|
// Description:
|
|
// Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed
|
|
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
|
|
// Examples:
|
|
// transformed = apply(xrot(45), path3d(circle(r=3))); // Rotates 3d circle data around x axis
|
|
// transformed = apply(rot(45), circle(r=3)); // Rotates 2d circle data by 45 deg
|
|
// transformed = apply(rot(45)*right(4)*scale(3), circle(r=3)); // Scales, translates and rotates 2d circle data
|
|
function apply(transform,points) =
|
|
points==[] ? [] :
|
|
is_vector(points) ? apply(transform, [points])[0] :
|
|
let(
|
|
tdim = len(transform[0])-1,
|
|
datadim = len(points[0])
|
|
)
|
|
tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] :
|
|
tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] :
|
|
tdim == 3 && datadim == 2 ?
|
|
assert(is_2d_transform(transform),str("Transforms is 3d but points are 2d"))
|
|
[for(p=points) point2d(transform*concat(p,[0,1]))] :
|
|
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
|
|
|
|
|
// Function: apply_list()
|
|
// Usage:
|
|
// pts = apply_list(points, transform_list)
|
|
// Description:
|
|
// Transforms the specified point list (or single point) using a list of transformation matrices. Transformations on
|
|
// the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be
|
|
// 2d or 3d, and it is also allowed to supply 3d transformations with 2d data as long as the the only action on the z coordinate
|
|
// is a simple scaling. All transformations on `transform_list` must have the same dimension: you cannot mix 2d and 3d transformations
|
|
// even when acting on 2d data.
|
|
// Examples:
|
|
// transformed = apply_list(path3d(circle(r=3)),[xrot(45)]); // Rotates 3d circle data around x axis
|
|
// transformed = apply_list(circle(r=3), [scale(3), right(4), rot(45)]); // Scales, then translates, and then rotates 2d circle data
|
|
function apply_list(points,transform_list) =
|
|
transform_list == []? points :
|
|
is_vector(points) ? apply_list([points],transform_list)[0] :
|
|
let(
|
|
tdims = array_dim(transform_list),
|
|
datadim = len(points[0])
|
|
)
|
|
assert(len(tdims)==3 || tdims[1]!=tdims[2], "Invalid transformation list")
|
|
let( tdim = tdims[1]-1 )
|
|
tdim==2 && datadim == 2 ? apply(affine2d_chain(transform_list), points) :
|
|
tdim==3 && datadim == 3 ? apply(affine3d_chain(transform_list), points) :
|
|
tdim==3 && datadim == 2 ?
|
|
let(
|
|
badlist = [for(i=idx(transform_list)) if (!is_2d_transform(transform_list[i])) i]
|
|
)
|
|
assert(badlist==[],str("Transforms with indices ",badlist," are 3d but points are 2d"))
|
|
apply(affine3d_chain(transform_list), points) :
|
|
assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim));
|
|
|
|
|
|
// Function: is_2d_transform()
|
|
// Usage:
|
|
// is_2d_transform(t)
|
|
// Description:
|
|
// Checks if the input is a 3d transform that does not act on the z coordinate, except
|
|
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
|
|
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
|
|
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&
|
|
(t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale()
|
|
|
|
|
|
|
|
// Function: rot_decode()
|
|
// Usage:
|
|
// [angle,axis,cp,translation] = rot_decode(rotation)
|
|
// Description:
|
|
// Given an input 3d rigid transformation operator (one composed of just rotations and translations)
|
|
// represented as a 4x4 matrix, compute the rotation and translation parameters of the operator.
|
|
// Returns a list of the four parameters, the angle, in the interval [0,180], the rotation axis
|
|
// as a unit vector, a centerpoint for the rotation, and a translation. If you set `parms=rot_decode(rotation)`
|
|
// then the transformation can be reconstructed from parms as `move(parms[3])*rot(a=parms[0],v=parms[1],cp=parms[2])`.
|
|
// This decomposition makes it possible to perform interpolation. If you construct a transformation using `rot`
|
|
// the decoding may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector,
|
|
// and the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different
|
|
// than the centerpoint you used to construct the transformation.
|
|
// Example:
|
|
// rot_decode(rot(45)); // Returns [45,[0,0,1], [0,0,0], [0,0,0]]
|
|
// rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7]))); // Returns [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]]
|
|
// rot_decode(left(12)*xrot(-33)); // Returns [33, [-1,0,0], [0,0,0], [-12,0,0]]
|
|
// rot_decode(translate([3,4,5])); // Returns [0, [0,0,1], [0,0,0], [3,4,5]]
|
|
function rot_decode(M) =
|
|
assert(is_matrix(M,4,4) && M[3]==[0,0,0,1], "Input matrix must be a 4x4 matrix representing a 3d transformation")
|
|
let(R = submatrix(M,[0:2],[0:2]))
|
|
assert(approx(det3(R),1) && approx(norm_fro(R * transpose(R)-ident(3)),0),"Input matrix is not a rotation")
|
|
let(
|
|
translation = [for(row=[0:2]) M[row][3]], // translation vector
|
|
largest = max_index([R[0][0], R[1][1], R[2][2]]),
|
|
axis_matrix = R + transpose(R) - (matrix_trace(R)-1)*ident(3), // Each row is on the rotational axis
|
|
// Construct quaternion q = c * [x sin(theta/2), y sin(theta/2), z sin(theta/2), cos(theta/2)]
|
|
q_im = axis_matrix[largest],
|
|
q_re = R[(largest+2)%3][(largest+1)%3] - R[(largest+1)%3][(largest+2)%3],
|
|
c_sin = norm(q_im), // c * sin(theta/2) for some c
|
|
c_cos = abs(q_re) // c * cos(theta/2)
|
|
)
|
|
approx(c_sin,0) ? [0,[0,0,1],[0,0,0],translation] :
|
|
let(
|
|
angle = 2*atan2(c_sin, c_cos), // This is supposed to be more accurate than acos or asin
|
|
axis = (q_re>=0 ? 1:-1)*q_im/c_sin,
|
|
tproj = translation - (translation*axis)*axis, // Translation perpendicular to axis determines centerpoint
|
|
cp = (tproj + cross(axis,tproj)*c_cos/c_sin)/2
|
|
)
|
|
[angle, axis, cp, (translation*axis)*axis];
|
|
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|