BOSL2/phillips_drive.scad
2019-07-17 18:37:16 -07:00

79 lines
2.6 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: phillips_drive.scad
// Phillips driver bits
// To use, add these lines to the top of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/phillips_drive.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Modules
// Module: phillips_drive()
// Description: Creates a model of a phillips driver bit of a given named size.
// Arguments:
// size = The size of the bit. "#1", "#2", or "#3"
// shaft = The diameter of the drive bit's shaft.
// l = The length of the drive bit.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// xdistribute(10) {
// phillips_drive(size="#1", shaft=4, l=20);
// phillips_drive(size="#2", shaft=6, l=20);
// phillips_drive(size="#3", shaft=6, l=20);
// }
module phillips_drive(size="#2", shaft=6, l=20, anchor=BOTTOM, spin=0, orient=UP) {
// These are my best guess reverse-engineered measurements of
// the tip diameters of various phillips screwdriver sizes.
ang = 11;
rads = [["#1", 1.25], ["#2", 1.77], ["#3", 2.65]];
radidx = search([size], rads)[0];
r = radidx == []? 0 : rads[radidx][1];
h = (r/2)/tan(ang);
cr = r/2;
orient_and_anchor([shaft, shaft, l], orient, anchor, chain=true) {
down(l/2) {
difference() {
intersection() {
union() {
clip = (shaft-1.2*r)/2/tan(26.5);
zrot(360/8/2) cylinder(h=clip, d1=1.2*r/cos(360/8/2), d2=shaft/cos(360/8/2), center=false, $fn=8);
up(clip-0.01) cylinder(h=l-clip, d=shaft, center=false, $fn=24);
}
cylinder(d=shaft, h=l, center=false, $fn=24);
}
zrot(45)
zrot_copies(n=4) {
yrot(ang) {
zrot(-45) {
off = (r/2-cr*(sqrt(2)-1))/sqrt(2);
translate([off, off, 0]) {
linear_extrude(height=l, convexity=4) {
difference() {
union() {
square([shaft/2, shaft/2], center=false);
mirror_copy([1,-1]) back(cr) zrot(1.125) square([shaft/2, shaft/2], center=false);
}
difference() {
square([cr*2, cr*2], center=true);
translate([cr,cr,0]) circle(r=cr, $fn=8);
}
}
}
}
}
}
}
}
}
children();
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap