MessDetector/main.py

37 lines
1.1 KiB
Python
Raw Normal View History

2023-11-07 11:38:19 +00:00
import cv2
import numpy as np
# Load the image
image = cv2.imread('dirty.jpeg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise
gray = cv2.GaussianBlur(gray, (9, 9), 2)
# Detect circles using the Hough Circles method
circles = cv2.HoughCircles(
gray,
cv2.HOUGH_GRADIENT,
dp=1, # Inverse ratio of accumulator resolution to image resolution
minDist=20, # Minimum distance between the centers of detected circles
param1=50, # Higher threshold for edge detection
param2=30, # Accumulator threshold for circle detection
minRadius=10, # Minimum radius
maxRadius=100 # Maximum radius
)
if circles is not None:
circles = np.uint16(np.around(circles))
for circle in circles[0, :]:
center = (circle[0], circle[1])
radius = circle[2]
# Draw the circle and its center
cv2.circle(image, center, radius, (0, 255, 0), 2)
cv2.circle(image, center, 2, (0, 0, 255), 3)
# Display the result
cv2.imshow('Hough Circles', image)
cv2.waitKey(0)
cv2.destroyAllWindows()