import numpy as np import argparse import cv2 import copy import os import time from slackclient import SlackClient from gpiozero import Buzzer ## Define our config values # What is our min dish count to alarm on? min_dishes = 2 # Define areas we want to ignore # First value is the x range, second is the y range ignore_list = ["339-345,257-260"] # Set the GPIO our buzzer is connected to buzzer = Buzzer(21) # Set how long we want to buzz buzz_seconds = 180 # Set our timestamp time_stamp = time.strftime("%Y%m%d%H%M%S") # Set our circle detection variables circle_sensitivity = 40 # Larger numbers increase false positives min_rad = 30 # Tweak this if you're detecting circles that are too small max_rad = 75 # Tweak if you're detecting circles that are too big (Ie: round sinks) # Cropping the image allows us to only process areas of the image # that should have images. Set our crop values crop_left = 0 crop_right = 360 crop_top = 150 crop_bottom = 850 def should_ignore(ignore_list, x, y): # Loop through our ignore_list and check for this x/y ignore = False for range in ignore_list: x_range = range.split(',')[0] y_range = range.split(',')[1] x_min = int(x_range.split('-')[0]) x_max = int(x_range.split('-')[1]) y_min = int(y_range.split('-')[0]) y_max = int(y_range.split('-')[1]) if (x >= x_min and x <= x_max and y >= y_min and y <= y_max): ignore = True return ignore def main(): print("Acquiring Image") # Note: Larger images require more processing power and have more false positives os.system("raspistill -w 1024 -h 768 -o /var/www/html/images/process.jpg") image_original = cv2.imread("/var/www/html/images/process.jpg") print("Cropping image to limit processing to just the sink") image = image_original[crop_left:crop_right, crop_top:crop_bottom] print("Copying image") output = copy.copy(image) print("Blurring image") blurred = cv2.GaussianBlur(image, (9, 9), 2, 2) cv2.imwrite('/var/www/html/images/blurred.jpg', blurred) print("Converting to grey") gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY) cv2.imwrite('/var/www/html/images/gray.jpg', gray) print("Detecting circles in blurred and greyed image") circles = cv2.HoughCircles(gray, cv2.cv.CV_HOUGH_GRADIENT, 1, 20, param1=100, param2=circle_sensitivity, minRadius=min_rad, maxRadius=max_rad) print("Checking if we found images") if circles is not None: dish_count = 0 print("Dishes Found!") # convert the (x, y) coordinates and radius of the circles to integers circles = np.round(circles[0, :]).astype("int") # loop over the (x, y) coordinates and radius of the circles for (x, y, r) in circles: print("Tracing circle x:%s, y:%s, r:%s" % (x,y,r)) # draw the circle in the output image, then draw a rectangle # corresponding to the center of the circle cv2.circle(output, (x, y), r, (0, 255, 0), 4) cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1) # Check our ignore_list if (should_ignore(ignore_list, x, y)): print("Circle in ignore_list: Ignoring") else: dish_count += 1 print("Dish count:%s" % (str(dish_count))) print("Writing detected image") cv2.imwrite('/var/www/html/images/detected.jpg', output) if dish_count >= min_dishes: print("Starting Buzzer") timeout_start = time.time() while time.time() < timeout_start + buzz_seconds: buzzer.on() time.sleep(2) buzzer.off() time.sleep(1) else: print("No Dishes Found!") if __name__ == "__main__": main()