141 lines
No EOL
4.5 KiB
Python
141 lines
No EOL
4.5 KiB
Python
import copy
|
|
import os
|
|
import time
|
|
|
|
import cv2
|
|
import numpy as np
|
|
#from playsound import playsound
|
|
#import pygame as pg
|
|
|
|
|
|
## Define our config values
|
|
|
|
# What is our min dish count to alarm on?
|
|
min_dishes = 1
|
|
|
|
# Define areas we want to ignore
|
|
# First value is the x range, second is the y range
|
|
ignore_list = ["339-345,257-260"]
|
|
|
|
# Set our timestamp
|
|
time_stamp = time.strftime("%Y%m%d%H%M%S")
|
|
|
|
# Set our circle detection variables
|
|
circle_sensitivity = 40 # Larger numbers increase false positives
|
|
#circle_sensitivity = 60 # Larger numbers increase false positives
|
|
|
|
min_rad = 30 # Tweak this if you're detecting circles that are too small
|
|
max_rad = 75 # Tweak if you're detecting circles that are too big (Ie: round sinks)
|
|
|
|
# Cropping the image allows us to only process areas of the image
|
|
# that should have images. Set our crop values
|
|
crop_left = 100
|
|
crop_right = 2000
|
|
crop_top = 0
|
|
crop_bottom = 2000
|
|
|
|
def should_ignore(ignore_list, x, y):
|
|
# Loop through our ignore_list and check for this x/y
|
|
ignore = False
|
|
for range in ignore_list:
|
|
x_range = range.split(',')[0]
|
|
y_range = range.split(',')[1]
|
|
x_min = int(x_range.split('-')[0])
|
|
x_max = int(x_range.split('-')[1])
|
|
y_min = int(y_range.split('-')[0])
|
|
y_max = int(y_range.split('-')[1])
|
|
|
|
if (x >= x_min and x <= x_max and y >= y_min and y <= y_max):
|
|
ignore = True
|
|
|
|
return ignore
|
|
|
|
|
|
def play_music(music_file, volume=0.8):
|
|
'''
|
|
stream music with mixer.music module in a blocking manner
|
|
this will stream the sound from disk while playing
|
|
'''
|
|
# set up the mixer
|
|
freq = 44100 # audio CD quality
|
|
bitsize = -16 # unsigned 16 bit
|
|
channels = 2 # 1 is mono, 2 is stereo
|
|
buffer = 2048 # number of samples (experiment to get best sound)
|
|
pg.mixer.init(freq, bitsize, channels, buffer)
|
|
# volume value 0.0 to 1.0
|
|
pg.mixer.music.set_volume(volume)
|
|
clock = pg.time.Clock()
|
|
try:
|
|
pg.mixer.music.load(music_file)
|
|
#print("Music file {} loaded!".format(music_file))
|
|
except pg.error:
|
|
print("File {} not found! ({})".format(music_file, pg.get_error()))
|
|
return
|
|
pg.mixer.music.play()
|
|
while pg.mixer.music.get_busy():
|
|
# check if playback has finished
|
|
clock.tick(30)
|
|
|
|
|
|
def check_if_dishes_exist():
|
|
# Note: Larger images require more processing power and have more false positives
|
|
|
|
image_original = cv2.imread(os.path.join('dirty.jpeg'))
|
|
|
|
#print("Cropping image to limit processing to just the sink")
|
|
image = image_original[crop_left:crop_right, crop_top:crop_bottom]
|
|
image = image_original
|
|
|
|
#print("Copying image")
|
|
output = copy.copy(image)
|
|
|
|
#print("Blurring image")
|
|
blurred = cv2.GaussianBlur(image, (9, 9), 2, 2)
|
|
cv2.imwrite(os.path.join('blurred.jpg'), blurred)
|
|
|
|
#print("Converting to grey")
|
|
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
|
|
cv2.imwrite(os.path.join('gray.jpg'), gray)
|
|
|
|
#print("Detecting circles in blurred and greyed image")
|
|
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20,
|
|
param1=100,
|
|
param2=circle_sensitivity,
|
|
minRadius=min_rad,
|
|
maxRadius=max_rad)
|
|
|
|
#print("Checking if we found images")
|
|
if circles is not None:
|
|
dish_count = 0
|
|
print("Dishes Found!")
|
|
# convert the (x, y) coordinates and radius of the circles to integers
|
|
circles = np.round(circles[0, :]).astype("int")
|
|
|
|
# loop over the (x, y) coordinates and radius of the circles
|
|
for (x, y, r) in circles:
|
|
# draw the circle in the output image, then draw a rectangle
|
|
# corresponding to the center of the circle
|
|
cv2.circle(output, (x, y), r, (0, 255, 0), 4)
|
|
cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
|
|
# Check our ignore_list
|
|
if (should_ignore(ignore_list, x, y)):
|
|
print("Circle in ignore_list: Ignoring")
|
|
else:
|
|
dish_count += 1
|
|
print("Dish count:%s" % (str(dish_count)))
|
|
|
|
cv2.imwrite(os.path.join('detected.jpg'), output)
|
|
|
|
if dish_count >= min_dishes:
|
|
print("Playing dirty dishes sound..")
|
|
global_vars.current_sink_status = "dirty"
|
|
# optional volume 0 to 1.0
|
|
print("test")
|
|
else:
|
|
print("No Dishes Found!")
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
check_if_dishes_exist() |