2019-05-14 06:11:55 +00:00
//////////////////////////////////////////////////////////////////////
2019-05-17 21:41:45 +00:00
// LibFile: affine.scad
2019-05-14 06:11:55 +00:00
// Matrix math and affine transformation matrices.
2021-01-05 09:20:01 +00:00
// Includes:
// include <BOSL2/std.scad>
2019-05-14 06:11:55 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Matrix Manipulation
// Function: ident()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = ident(n);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices
2021-01-21 02:06:46 +00:00
// Description:
// Create an `n` by `n` square identity matrix.
2019-05-14 06:11:55 +00:00
// Arguments:
// n = The size of the identity matrix square, `n` by `n`.
2021-01-21 02:06:46 +00:00
// Example:
// mat = ident(3);
// // Returns:
// // [
// // [1, 0, 0],
// // [0, 1, 0],
// // [0, 0, 1]
// // ]
// Example:
// mat = ident(4);
// // Returns:
// // [
// // [1, 0, 0, 0],
// // [0, 1, 0, 0],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1]
// // ]
function ident ( n ) = [
for ( i = [ 0 : 1 : n - 1 ] ) [
for ( j = [ 0 : 1 : n - 1 ] ) ( i = = j ) ? 1 : 0
]
] ;
// Function: is_affine()
// Usage:
// bool = is_affine(x,<dim>);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
// See Also: is_matrix()
2021-01-21 02:06:46 +00:00
// Description:
// Tests if the given value is an affine matrix, possibly also checking it's dimenstion.
// Arguments:
// x = The value to test for being an affine matrix.
// dim = The number of dimensions the given affine is required to be for. Generally 2 for 2D or 3 for 3D. If given as a list of integers, allows any of the given dimensions. Default: `[2,3]`
// Examples:
// bool = is_affine(affine2d_scale([2,3])); // Returns true
// bool = is_affine(affine3d_scale([2,3,4])); // Returns true
// bool = is_affine(affine3d_scale([2,3,4]),2); // Returns false
// bool = is_affine(affine3d_scale([2,3]),2); // Returns true
// bool = is_affine(affine3d_scale([2,3,4]),3); // Returns true
// bool = is_affine(affine3d_scale([2,3]),3); // Returns false
function is_affine ( x , dim = [ 2 , 3 ] ) =
is_finite ( dim ) ? is_affine ( x , [ dim ] ) :
let ( ll = len ( x ) )
is_list ( x ) && in_list ( ll - 1 , dim ) &&
[ for ( r = x ) if ( ! is_list ( r ) || len ( r ) ! = ll ) 1 ] = = [ ] ;
// Function: is_2d_transform()
// Usage:
// x = is_2d_transform(t);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
// See Also: is_affine(), is_matrix()
2021-01-21 02:06:46 +00:00
// Description:
// Checks if the input is a 3D transform that does not act on the z coordinate, except possibly
// for a simple scaling of z. Note that an input which is only a zscale returns false.
// Arguments:
// t = The transformation matrix to check.
// Examples:
// b = is_2d_transform(zrot(45)); // Returns: true
// b = is_2d_transform(yrot(45)); // Returns: false
// b = is_2d_transform(xrot(45)); // Returns: false
// b = is_2d_transform(move([10,20,0])); // Returns: true
// b = is_2d_transform(move([10,20,30])); // Returns: false
// b = is_2d_transform(scale([2,3,4])); // Returns: true
function is_2d_transform ( t ) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
t [ 2 ] [ 0 ] = = 0 && t [ 2 ] [ 1 ] = = 0 && t [ 2 ] [ 3 ] = = 0 && t [ 0 ] [ 2 ] = = 0 && t [ 1 ] [ 2 ] = = 0 &&
( t [ 2 ] [ 2 ] = = 1 || ! ( t [ 0 ] [ 0 ] = = 1 && t [ 0 ] [ 1 ] = = 0 && t [ 1 ] [ 0 ] = = 0 && t [ 1 ] [ 1 ] = = 1 ) ) ; // But rule out zscale()
2019-05-14 06:11:55 +00:00
2019-08-09 20:07:18 +00:00
// Function: affine2d_to_3d()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine2d_to_3d(m);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
// See Also: affine3d_to_2d()
2021-01-21 02:06:46 +00:00
// Description:
// Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent.
// Example:
// mat = affine2d_to_3d(affine2d_translate([10,20]));
// // Returns:
// // [
// // [1, 0, 0, 10],
// // [0, 1, 0, 20],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1],
// // ]
function affine2d_to_3d ( m ) = [
[ m [ 0 ] [ 0 ] , m [ 0 ] [ 1 ] , 0 , m [ 0 ] [ 2 ] ] ,
[ m [ 1 ] [ 0 ] , m [ 1 ] [ 1 ] , 0 , m [ 1 ] [ 2 ] ] ,
[ 0 , 0 , 1 , 0 ] ,
[ m [ 2 ] [ 0 ] , m [ 2 ] [ 1 ] , 0 , m [ 2 ] [ 2 ] ]
] ;
// Function: affine3d_to_2d()
// Usage:
// mat = affine3d_to_2d(m);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices
// See Also: affine2d_to_3d()
2021-01-21 02:06:46 +00:00
// Description:
// Takes a 4x4 affine3d matrix and returns its 3x3 affine2d equivalent. 3D transforms that would alter the Z coordinate are disallowed.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_to_3d(affine3d_translate([10,20,0]));
// // Returns:
// // [
// // [1, 0, 10],
// // [0, 1, 20],
// // [0, 0, 1],
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_to_2d ( m ) =
assert ( is_2d_transform ( m ) )
[
for ( r = [ 0 : 3 ] ) if ( r ! = 2 ) [
for ( c = [ 0 : 3 ] ) if ( c ! = 2 ) m [ r ] [ c ]
]
] ;
// Function: apply()
// Usage:
// pts = apply(transform, points);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
2021-01-21 02:06:46 +00:00
// Description:
// Applies the specified transformation matrix to a point, pointlist, bezier patch or VNF.
// Both inputs can be 2D or 3D, and it is also allowed to supply 3D transformations with 2D
// data as long as the the only action on the z coordinate is a simple scaling.
// Arguments:
// transform = The 2D or 3D transformation matrix to apply to the point/points.
// points = The point, pointlist, bezier patch, or VNF to apply the transformation to.
// Example(3D):
// path1 = path3d(circle(r=40));
// tmat = xrot(45);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
// Example(2D):
// path1 = circle(r=40);
// tmat = translate([10,5]);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
// Example(2D):
// path1 = circle(r=40);
// tmat = rot(30) * back(15) * scale([1.5,0.5,1]);
// path2 = apply(tmat, path1);
// #stroke(path1,closed=true);
// stroke(path2,closed=true);
function apply ( transform , points ) =
points = = [ ] ? [ ] :
is_vector ( points )
? /* Point */ apply ( transform , [ points ] ) [ 0 ] :
is_list ( points ) && len ( points ) = = 2 && is_path ( points [ 0 ] , 3 ) && is_list ( points [ 1 ] ) && is_vector ( points [ 1 ] [ 0 ] )
? /* VNF */ [ apply ( transform , points [ 0 ] ) , points [ 1 ] ] :
is_list ( points ) && is_list ( points [ 0 ] ) && is_vector ( points [ 0 ] [ 0 ] )
? /* BezPatch */ [ for ( x = points ) apply ( transform , x ) ] :
let (
tdim = len ( transform [ 0 ] ) - 1 ,
datadim = len ( points [ 0 ] )
)
tdim = = 3 && datadim = = 3 ? [ for ( p = points ) point3d ( transform * concat ( p , [ 1 ] ) ) ] :
tdim = = 2 && datadim = = 2 ? [ for ( p = points ) point2d ( transform * concat ( p , [ 1 ] ) ) ] :
tdim = = 3 && datadim = = 2 ?
assert ( is_2d_transform ( transform ) , str ( "Transforms is 3d but points are 2d" ) )
[ for ( p = points ) point2d ( transform * concat ( p , [ 0 , 1 ] ) ) ] :
assert ( false , str ( "Unsupported combination: transform with dimension " , tdim , ", data of dimension " , datadim ) ) ;
// Function: rot_decode()
// Usage:
// info = rot_decode(rotation); // Returns: [angle,axis,cp,translation]
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
2021-01-21 02:06:46 +00:00
// Description:
// Given an input 3D rigid transformation operator (one composed of just rotations and translations) represented
// as a 4x4 matrix, compute the rotation and translation parameters of the operator. Returns a list of the
// four parameters, the angle, in the interval [0,180], the rotation axis as a unit vector, a centerpoint for
2021-02-26 21:07:11 +00:00
// the rotation, and a translation. If you set `parms = rot_decode(rotation)` then the transformation can be
// reconstructed from parms as `move(parms[3]) * rot(a=parms[0],v=parms[1],cp=parms[2])`. This decomposition
2021-01-21 02:06:46 +00:00
// makes it possible to perform interpolation. If you construct a transformation using `rot` the decoding
// may flip the axis (if you gave an angle outside of [0,180]). The returned axis will be a unit vector, and
// the centerpoint lies on the plane through the origin that is perpendicular to the axis. It may be different
// than the centerpoint you used to construct the transformation.
// Example:
2021-01-22 03:59:21 +00:00
// info = rot_decode(rot(45));
// // Returns: [45, [0,0,1], [0,0,0], [0,0,0]]
// Example:
// info = rot_decode(rot(a=37, v=[1,2,3], cp=[4,3,-7])));
// // Returns: [37, [0.26, 0.53, 0.80], [4.8, 4.6, -4.6], [0,0,0]]
// Example:
// info = rot_decode(left(12)*xrot(-33));
// // Returns: [33, [-1,0,0], [0,0,0], [-12,0,0]]
// Example:
// info = rot_decode(translate([3,4,5]));
// // Returns: [0, [0,0,1], [0,0,0], [3,4,5]]
2021-01-21 02:06:46 +00:00
function rot_decode ( M ) =
assert ( is_matrix ( M , 4 , 4 ) && approx ( M [ 3 ] , [ 0 , 0 , 0 , 1 ] ) , "Input matrix must be a 4x4 matrix representing a 3d transformation" )
let ( R = submatrix ( M , [ 0 : 2 ] , [ 0 : 2 ] ) )
assert ( approx ( det3 ( R ) , 1 ) && approx ( norm_fro ( R * transpose ( R ) - ident ( 3 ) ) , 0 ) , "Input matrix is not a rotation" )
let (
translation = [ for ( row = [ 0 : 2 ] ) M [ row ] [ 3 ] ] , // translation vector
largest = max_index ( [ R [ 0 ] [ 0 ] , R [ 1 ] [ 1 ] , R [ 2 ] [ 2 ] ] ) ,
axis_matrix = R + transpose ( R ) - ( matrix_trace ( R ) - 1 ) * ident ( 3 ) , // Each row is on the rotational axis
// Construct quaternion q = c * [x sin(theta/2), y sin(theta/2), z sin(theta/2), cos(theta/2)]
q_im = axis_matrix [ largest ] ,
q_re = R [ ( largest + 2 ) % 3 ] [ ( largest + 1 ) % 3 ] - R [ ( largest + 1 ) % 3 ] [ ( largest + 2 ) % 3 ] ,
c_sin = norm ( q_im ) , // c * sin(theta/2) for some c
c_cos = abs ( q_re ) // c * cos(theta/2)
)
approx ( c_sin , 0 ) ? [ 0 , [ 0 , 0 , 1 ] , [ 0 , 0 , 0 ] , translation ] :
let (
angle = 2 * atan2 ( c_sin , c_cos ) , // This is supposed to be more accurate than acos or asin
axis = ( q_re >= 0 ? 1 : - 1 ) * q_im / c_sin ,
tproj = translation - ( translation * axis ) * axis , // Translation perpendicular to axis determines centerpoint
cp = ( tproj + cross ( axis , tproj ) * c_cos / c_sin ) / 2
)
[ angle , axis , cp , ( translation * axis ) * axis ] ;
2019-05-14 06:11:55 +00:00
// Section: Affine2d 3x3 Transformation Matrices
// Function: affine2d_identity()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine2d_identify();
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
2021-01-22 03:59:21 +00:00
// Description:
// Create a 3x3 affine2d identity matrix.
// Example:
// mat = affine2d_identity();
// // Returns:
// // [
// // [1, 0, 0],
// // [0, 1, 0],
// // [0, 0, 1]
// // ]
2019-05-14 06:11:55 +00:00
function affine2d_identity ( ) = ident ( 3 ) ;
// Function: affine2d_translate()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine2d_translate(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-02-26 21:23:45 +00:00
// See Also: move(), affine3d_translate()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 3x3 affine2d matrix to perform a 2D translation.
// Arguments:
// v = 2D Offset to translate by. [X,Y]
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_translate([30,40]);
// // Returns:
// // [
// // [1, 0, 30],
// // [0, 1, 40],
// // [0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine2d_translate ( v = [ 0 , 0 ] ) =
assert ( is_vector ( v ) , 2 )
[
[ 1 , 0 , v . x ] ,
[ 0 , 1 , v . y ] ,
[ 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine2d_scale()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine2d_scale(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), xscale(), yscale(), zscale(), affine3d_scale()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 3x3 affine2d matrix to perform a 2D scaling transformation.
// Arguments:
// v = 2D vector of scaling factors. [X,Y]
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_scale([3,4]);
// // Returns:
// // [
// // [3, 0, 0],
// // [0, 4, 0],
// // [0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine2d_scale ( v = [ 1 , 1 ] ) =
assert ( is_vector ( v , 2 ) )
[
[ v . x , 0 , 0 ] ,
[ 0 , v . y , 0 ] ,
[ 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine2d_zrot()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine2d_zrot(ang);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine3d_zrot()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis.
// Arguments:
// ang = Number of degrees to rotate.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_zrot(90);
// // Returns:
// // [
// // [0,-1, 0],
// // [1, 0, 0],
// // [0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine2d_zrot ( ang = 0 ) =
assert ( is_finite ( ang ) )
[
[ cos ( ang ) , - sin ( ang ) , 0 ] ,
[ sin ( ang ) , cos ( ang ) , 0 ] ,
[ 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
2019-12-04 03:04:56 +00:00
// Function: affine2d_mirror()
// Usage:
// mat = affine2d_mirror(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip(), zflip(), affine3d_mirror()
2019-12-04 03:04:56 +00:00
// Description:
// Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector.
// Arguments:
// v = The normal vector of the line to reflect across.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_mirror([0,1]);
// // Returns:
// // [
// // [ 1, 0, 0],
// // [ 0,-1, 0],
// // [ 0, 0, 1]
// // ]
// Example:
// mat = affine2d_mirror([1,0]);
// // Returns:
// // [
// // [-1, 0, 0],
// // [ 0, 1, 0],
// // [ 0, 0, 1]
// // ]
// Example:
// mat = affine2d_mirror([1,1]);
// // Returns approximately:
// // [
// // [ 0,-1, 0],
// // [-1, 0, 0],
// // [ 0, 0, 1]
// // ]
2019-12-04 03:04:56 +00:00
function affine2d_mirror ( v ) =
2021-01-21 02:06:46 +00:00
assert ( is_vector ( v , 2 ) )
2020-05-30 02:04:34 +00:00
let ( v = unit ( point2d ( v ) ) , a = v . x , b = v . y )
[
[ 1 - 2 * a * a , 0 - 2 * a * b , 0 ] ,
[ 0 - 2 * a * b , 1 - 2 * b * b , 0 ] ,
[ 0 , 0 , 1 ]
] ;
2019-12-04 03:04:56 +00:00
2019-05-14 06:11:55 +00:00
// Function: affine2d_skew()
// Usage:
2021-01-21 02:06:46 +00:00
// mat = affine2d_skew(xa);
// mat = affine2d_skew(ya=);
2021-01-05 09:20:01 +00:00
// mat = affine2d_skew(xa, ya);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Skewing
// See Also: skew(), affine3d_skew()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane.
// Arguments:
2021-01-21 02:06:46 +00:00
// xa = Skew angle, in degrees, in the direction of the X axis. Default: 0
// ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_skew(xa=45,ya=-45);
// // Returns approximately:
// // [
// // [ 1, 1, 0],
// // [-1, 1, 0],
// // [ 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine2d_skew ( xa = 0 , ya = 0 ) =
assert ( is_finite ( xa ) )
assert ( is_finite ( ya ) )
[
[ 1 , tan ( xa ) , 0 ] ,
[ tan ( ya ) , 1 , 0 ] ,
[ 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Section: Affine3d 4x4 Transformation Matrices
// Function: affine3d_identity()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine3d_identity();
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms
2021-01-22 03:59:21 +00:00
// Description:
// Create a 4x4 affine3d identity matrix.
// Example:
// mat = affine2d_identity();
// // Returns:
// // [
// // [1, 0, 0, 0],
// // [0, 1, 0, 0],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1]
// // ]
2019-05-14 06:11:55 +00:00
function affine3d_identity ( ) = ident ( 4 ) ;
// Function: affine3d_translate()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine3d_translate(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Translation
2021-02-26 21:23:45 +00:00
// See Also: move(), affine2d_translate()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a 3D translation.
// Arguments:
// v = 3D offset to translate by. [X,Y,Z]
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine2d_translate([30,40,50]);
// // Returns:
// // [
// // [1, 0, 0, 30],
// // [0, 1, 0, 40],
// // [0, 0, 1, 50]
// // [0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_translate ( v = [ 0 , 0 , 0 ] ) =
assert ( is_list ( v ) )
let ( v = [ for ( i = [ 0 : 2 ] ) default ( v [ i ] , 0 ) ] )
[
[ 1 , 0 , 0 , v . x ] ,
[ 0 , 1 , 0 , v . y ] ,
[ 0 , 0 , 1 , v . z ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_scale()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine3d_scale(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Scaling
// See Also: scale(), affine2d_scale()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a 3D scaling transformation.
// Arguments:
// v = 3D vector of scaling factors. [X,Y,Z]
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_scale([3,4,5]);
// // Returns:
// // [
// // [3, 0, 0, 0],
// // [0, 4, 0, 0],
// // [0, 0, 5, 0],
// // [0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_scale ( v = [ 1 , 1 , 1 ] ) =
assert ( is_list ( v ) )
let ( v = [ for ( i = [ 0 : 2 ] ) default ( v [ i ] , 1 ) ] )
[
[ v . x , 0 , 0 , 0 ] ,
[ 0 , v . y , 0 , 0 ] ,
[ 0 , 0 , v . z , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_xrot()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine3d_xrot(ang);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis.
// Arguments:
// ang = number of degrees to rotate.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_xrot(90);
// // Returns:
// // [
// // [1, 0, 0, 0],
// // [0, 0,-1, 0],
// // [0, 1, 0, 0],
// // [0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_xrot ( ang = 0 ) =
assert ( is_finite ( ang ) )
[
[ 1 , 0 , 0 , 0 ] ,
[ 0 , cos ( ang ) , - sin ( ang ) , 0 ] ,
[ 0 , sin ( ang ) , cos ( ang ) , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_yrot()
2021-01-05 09:20:01 +00:00
// Usage:
// mat = affine3d_yrot(ang);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis.
// Arguments:
// ang = Number of degrees to rotate.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_yrot(90);
// // Returns:
// // [
// // [ 0, 0, 1, 0],
// // [ 0, 1, 0, 0],
// // [-1, 0, 0, 0],
// // [ 0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_yrot ( ang = 0 ) =
assert ( is_finite ( ang ) )
[
[ cos ( ang ) , 0 , sin ( ang ) , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ - sin ( ang ) , 0 , cos ( ang ) , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_zrot()
// Usage:
2021-01-05 09:20:01 +00:00
// mat = affine3d_zrot(ang);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis.
// Arguments:
// ang = number of degrees to rotate.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_zrot(90);
// // Returns:
// // [
// // [ 0,-1, 0, 0],
// // [ 1, 0, 0, 0],
// // [ 0, 0, 1, 0],
// // [ 0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_zrot ( ang = 0 ) =
assert ( is_finite ( ang ) )
[
[ cos ( ang ) , - sin ( ang ) , 0 , 0 ] ,
[ sin ( ang ) , cos ( ang ) , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_rot_by_axis()
// Usage:
2021-01-05 09:20:01 +00:00
// mat = affine3d_rot_by_axis(u, ang);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis.
// Arguments:
// u = 3D axis vector to rotate around.
// ang = number of degrees to rotate.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_rot_by_axis([1,1,1], 120);
// // Returns approx:
// // [
// // [ 0, 0, 1, 0],
// // [ 1, 0, 0, 0],
// // [ 0, 1, 0, 0],
// // [ 0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_rot_by_axis ( u = UP , ang = 0 ) =
assert ( is_finite ( ang ) )
assert ( is_vector ( u , 3 ) )
2020-05-30 02:04:34 +00:00
approx ( ang , 0 ) ? affine3d_identity ( ) :
let (
u = unit ( u ) ,
c = cos ( ang ) ,
c2 = 1 - c ,
s = sin ( ang )
) [
[ u . x * u . x * c2 + c , u . x * u . y * c2 - u . z * s , u . x * u . z * c2 + u . y * s , 0 ] ,
[ u . y * u . x * c2 + u . z * s , u . y * u . y * c2 + c , u . y * u . z * c2 - u . x * s , 0 ] ,
[ u . z * u . x * c2 - u . y * s , u . z * u . y * c2 + u . x * s , u . z * u . z * c2 + c , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
2019-05-26 06:31:05 +00:00
// Function: affine3d_rot_from_to()
// Usage:
2021-01-05 09:20:01 +00:00
// mat = affine3d_rot_from_to(from, to);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
2019-05-26 06:31:05 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another.
// Arguments:
// from = 3D axis vector to rotate from.
// to = 3D axis vector to rotate to.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_rot_from_to(UP, RIGHT);
// // Returns:
// // [
// // [ 0, 0, 1, 0],
// // [ 0, 1, 0, 0],
// // [-1, 0, 0, 0],
// // [ 0, 0, 0, 1]
// // ]
2020-03-22 08:11:06 +00:00
function affine3d_rot_from_to ( from , to ) =
2021-01-21 02:06:46 +00:00
assert ( is_vector ( from ) )
assert ( is_vector ( to ) )
assert ( len ( from ) = = len ( to ) )
2020-05-30 02:04:34 +00:00
let (
from = unit ( point3d ( from ) ) ,
to = unit ( point3d ( to ) )
) approx ( from , to ) ? affine3d_identity ( ) :
let (
u = vector_axis ( from , to ) ,
ang = vector_angle ( from , to ) ,
c = cos ( ang ) ,
c2 = 1 - c ,
s = sin ( ang )
) [
[ u . x * u . x * c2 + c , u . x * u . y * c2 - u . z * s , u . x * u . z * c2 + u . y * s , 0 ] ,
[ u . y * u . x * c2 + u . z * s , u . y * u . y * c2 + c , u . y * u . z * c2 - u . x * s , 0 ] ,
[ u . z * u . x * c2 - u . y * s , u . z * u . y * c2 + u . x * s , u . z * u . z * c2 + c , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-26 06:31:05 +00:00
2021-01-20 21:36:41 +00:00
// Function: affine3d_frame_map()
2020-06-20 06:00:40 +00:00
// Usage:
2021-01-21 00:30:09 +00:00
// map = affine3d_frame_map(v1, v2, v3, <reverse>);
2021-01-20 21:36:41 +00:00
// map = affine3d_frame_map(x=VECTOR1, y=VECTOR2, <reverse>);
// map = affine3d_frame_map(x=VECTOR1, z=VECTOR2, <reverse>);
2021-01-21 02:06:46 +00:00
// map = affine3d_frame_map(y=VECTOR1, z=VECTOR2, <reverse>);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Rotation
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
2020-03-01 03:54:33 +00:00
// Description:
2021-01-20 21:36:41 +00:00
// Returns a transformation that maps one coordinate frame to another. You must specify two or
// three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied. If you
// give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand
// coordinate system. If the vectors you give are orthogonal the result will be a rotation and the
// `reverse` parameter will supply the inverse map, which enables you to map two arbitrary
// coordinate systems to each other by using the canonical coordinate system as an intermediary.
// You cannot use the `reverse` option with non-orthogonal inputs.
2020-03-01 03:54:33 +00:00
// Arguments:
2021-01-20 21:36:41 +00:00
// x = Destination 3D vector for x axis.
// y = Destination 3D vector for y axis.
// z = Destination 3D vector for z axis.
2020-03-17 11:11:25 +00:00
// reverse = reverse direction of the map for orthogonal inputs. Default: false
2021-01-20 21:36:41 +00:00
// Example:
// T = affine3d_frame_map(x=[1,1,0], y=[-1,1,0]); // This map is just a rotation around the z axis
// Example:
// T = affine3d_frame_map(x=[1,0,0], y=[1,1,0]); // This map is not a rotation because x and y aren't orthogonal
// Example:
// // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]
// T = affine3d_frame_map(x=[0,1,1], y=[0,-1,1]) * affine3d_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
function affine3d_frame_map ( x , y , z , reverse = false ) =
2020-05-30 02:04:34 +00:00
assert ( num_defined ( [ x , y , z ] ) >= 2 , "Must define at least two inputs" )
let (
xvalid = is_undef ( x ) || ( is_vector ( x ) && len ( x ) = = 3 ) ,
yvalid = is_undef ( y ) || ( is_vector ( y ) && len ( y ) = = 3 ) ,
zvalid = is_undef ( z ) || ( is_vector ( z ) && len ( z ) = = 3 )
)
assert ( xvalid , "Input x must be a length 3 vector" )
assert ( yvalid , "Input y must be a length 3 vector" )
assert ( zvalid , "Input z must be a length 3 vector" )
let (
2020-07-20 06:05:54 +00:00
x = is_undef ( x ) ? undef : unit ( x , RIGHT ) ,
y = is_undef ( y ) ? undef : unit ( y , BACK ) ,
z = is_undef ( z ) ? undef : unit ( z , UP ) ,
2020-05-30 02:04:34 +00:00
map = is_undef ( x ) ? [ cross ( y , z ) , y , z ] :
is_undef ( y ) ? [ x , cross ( z , x ) , z ] :
is_undef ( z ) ? [ x , y , cross ( x , y ) ] :
[ x , y , z ]
)
reverse ? (
let (
ocheck = (
approx ( map [ 0 ] * map [ 1 ] , 0 ) &&
approx ( map [ 0 ] * map [ 2 ] , 0 ) &&
approx ( map [ 1 ] * map [ 2 ] , 0 )
)
)
assert ( ocheck , "Inputs must be orthogonal when reverse==true" )
2021-01-21 02:06:46 +00:00
[ for ( r = map ) [ for ( c = r ) c , 0 ] , [ 0 , 0 , 0 , 1 ] ]
) : [ for ( r = transpose ( map ) ) [ for ( c = r ) c , 0 ] , [ 0 , 0 , 0 , 1 ] ] ;
2020-03-01 03:54:33 +00:00
2019-12-04 03:04:56 +00:00
// Function: affine3d_mirror()
// Usage:
// mat = affine3d_mirror(v);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
// See Also: mirror(), xflip(), yflip(), zflip(), affine2d_mirror()
2019-12-04 03:04:56 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector.
// Arguments:
// v = The normal vector of the plane to reflect across.
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_mirror([1,0,0]);
// // Returns:
// // [
// // [-1, 0, 0, 0],
// // [ 0, 1, 0, 0],
// // [ 0, 0, 1, 0],
// // [ 0, 0, 0, 1]
// // ]
// Example:
// mat = affine3d_mirror([0,1,0]);
// // Returns:
// // [
// // [ 1, 0, 0, 0],
// // [ 0,-1, 0, 0],
// // [ 0, 0, 1, 0],
// // [ 0, 0, 0, 1]
// // ]
2019-12-04 03:04:56 +00:00
function affine3d_mirror ( v ) =
2021-01-21 02:06:46 +00:00
assert ( is_vector ( v ) )
2020-05-30 02:04:34 +00:00
let (
v = unit ( point3d ( v ) ) ,
a = v . x , b = v . y , c = v . z
) [
[ 1 - 2 * a * a , - 2 * a * b , - 2 * a * c , 0 ] ,
[ - 2 * b * a , 1 - 2 * b * b , - 2 * b * c , 0 ] ,
[ - 2 * c * a , - 2 * c * b , 1 - 2 * c * c , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-12-04 03:04:56 +00:00
2019-12-20 07:26:54 +00:00
// Function: affine3d_skew()
// Usage:
2021-01-05 09:20:01 +00:00
// mat = affine3d_skew(<sxy>, <sxz>, <syx>, <syz>, <szx>, <szy>);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Skewing
// See Also: skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
2019-12-20 07:26:54 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a skew transformation.
// Arguments:
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_skew(sxy=2,szx=3);
// // Returns:
// // [
// // [ 1, 2, 0, 0],
// // [ 0, 1, 0, 0],
// // [ 0, 0, 1, 0],
// // [ 3, 0, 0, 1]
// // ]
2020-01-07 00:55:22 +00:00
function affine3d_skew ( sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 ) = [
2020-05-30 02:04:34 +00:00
[ 1 , sxy , sxz , 0 ] ,
[ syx , 1 , syz , 0 ] ,
[ szx , szy , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
2019-12-20 07:26:54 +00:00
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_skew_xy()
// Usage:
2021-01-21 02:06:46 +00:00
// mat = affine3d_skew_xy(xa);
// mat = affine3d_skew_xy(ya=);
2021-01-05 09:20:01 +00:00
// mat = affine3d_skew_xy(xa, ya);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Skewing
// See Also: skew(), affine3d_skew(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
2019-05-14 06:11:55 +00:00
// Description:
2019-12-20 07:26:54 +00:00
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane.
2019-05-14 06:11:55 +00:00
// Arguments:
2021-01-21 02:06:46 +00:00
// xa = Skew angle, in degrees, in the direction of the X axis. Default: 0
// ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_skew_xy(xa=45,ya=-45);
// // Returns:
// // [
// // [ 1, 0, 1, 0],
// // [ 0, 1,-1, 0],
// // [ 0, 0, 1, 0],
// // [ 0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_skew_xy ( xa = 0 , ya = 0 ) =
assert ( is_finite ( xa ) )
assert ( is_finite ( ya ) )
[
[ 1 , 0 , tan ( xa ) , 0 ] ,
[ 0 , 1 , tan ( ya ) , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_skew_xz()
// Usage:
2021-01-21 02:06:46 +00:00
// mat = affine3d_skew_xz(xa);
// mat = affine3d_skew_xz(za=);
2021-01-05 09:20:01 +00:00
// mat = affine3d_skew_xz(xa, za);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Skewing
// See Also: skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_yz(), affine2d_skew()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane.
// Arguments:
2021-01-21 02:06:46 +00:00
// xa = Skew angle, in degrees, in the direction of the X axis. Default: 0
// za = Skew angle, in degrees, in the direction of the Z axis. Default: 0
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_skew_xz(xa=45,za=-45);
// // Returns:
// // [
// // [ 1, 1, 0, 0],
// // [ 0, 1, 0, 0],
// // [ 0,-1, 1, 0],
// // [ 0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_skew_xz ( xa = 0 , za = 0 ) =
assert ( is_finite ( xa ) )
assert ( is_finite ( za ) )
[
[ 1 , tan ( xa ) , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , tan ( za ) , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-05-14 06:11:55 +00:00
// Function: affine3d_skew_yz()
// Usage:
2021-01-21 02:06:46 +00:00
// mat = affine3d_skew_yz(ya);
// mat = affine3d_skew_yz(za=);
2021-01-05 09:20:01 +00:00
// mat = affine3d_skew_yz(ya, za);
2021-02-26 21:07:11 +00:00
// Topics: Affine, Matrices, Transforms, Skewing
// See Also: skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine2d_skew()
2019-05-14 06:11:55 +00:00
// Description:
// Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane.
// Arguments:
2021-01-21 02:06:46 +00:00
// ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0
// za = Skew angle, in degrees, in the direction of the Z axis. Default: 0
2021-01-22 03:59:21 +00:00
// Example:
// mat = affine3d_skew_yz(ya=45,za=-45);
// // Returns:
// // [
// // [ 1, 0, 0, 0],
// // [ 1, 1, 0, 0],
// // [-1, 0, 1, 0],
// // [ 0, 0, 0, 1]
// // ]
2021-01-21 02:06:46 +00:00
function affine3d_skew_yz ( ya = 0 , za = 0 ) =
assert ( is_finite ( ya ) )
assert ( is_finite ( za ) )
[
[ 1 , 0 , 0 , 0 ] ,
[ tan ( ya ) , 1 , 0 , 0 ] ,
[ tan ( za ) , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2020-10-20 20:26:11 +00:00
2020-03-01 03:54:33 +00:00
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap