2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: transforms.scad
2020-02-01 01:03:41 +00:00
// Functions and modules for translation, rotation, reflection and skewing.
2019-03-23 04:13:18 +00:00
// To use, add the following lines to the beginning of your file:
// ```
2019-04-19 07:25:10 +00:00
// include <BOSL2/std.scad>
2019-03-23 04:13:18 +00:00
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// Section: Translations
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-05-27 01:14:26 +00:00
// Function&Module: move()
2019-03-23 04:13:18 +00:00
//
2019-05-27 01:14:26 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// move([x], [y], [z]) ...
2019-12-04 10:24:34 +00:00
// move(v) ...
2019-05-27 01:14:26 +00:00
// Usage: Translate Points
2019-12-04 10:24:34 +00:00
// pts = move(v, p);
2019-05-27 01:14:26 +00:00
// pts = move([x], [y], [z], p);
// Usage: Get Translation Matrix
2019-12-04 10:24:34 +00:00
// mat = move(v);
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-12-04 10:24:34 +00:00
// v = An [X,Y,Z] vector to translate by.
2017-08-30 00:00:16 +00:00
// x = X axis translation.
// y = Y axis translation.
// z = Z axis translation.
2019-05-27 01:14:26 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// move([0,20,30]) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(y=20) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10);
2019-05-27 01:14:26 +00:00
//
2019-12-04 10:24:34 +00:00
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
2019-05-27 01:14:26 +00:00
// Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
2019-12-04 10:24:34 +00:00
module move ( v = [ 0 , 0 , 0 ] , x = 0 , y = 0 , z = 0 )
2019-03-23 04:13:18 +00:00
{
2019-12-04 10:24:34 +00:00
translate ( v + [ x , y , z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
}
2019-12-04 10:24:34 +00:00
function move ( v = [ 0 , 0 , 0 ] , p = undef , x = 0 , y = 0 , z = 0 ) =
2019-05-27 01:14:26 +00:00
is_undef ( p ) ? (
2019-12-04 10:24:34 +00:00
len ( v ) = = 2 ? affine2d_translate ( v + [ x , y ] ) :
affine3d_translate ( point3d ( v ) + [ x , y , z ] )
2019-05-27 01:14:26 +00:00
) : (
2019-12-04 10:24:34 +00:00
assert ( is_list ( p ) )
let ( v = v + [ x , y , z ] )
is_num ( p . x ) ? p + v :
is_vnf ( p ) ? [ move ( v = v , p = p . x ) , p . y ] :
[ for ( l = p ) is_vector ( l ) ? l + v : move ( v = v , p = l ) ]
2019-05-27 01:14:26 +00:00
) ;
2019-12-04 10:24:34 +00:00
function translate ( v = [ 0 , 0 , 0 ] , p = undef ) = move ( v = v , p = p ) ;
2019-08-06 23:43:41 +00:00
2017-08-30 00:00:16 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: left()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// left(x) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = left(x, p);
// Usage: Get Translation Matrix
// mat = left(x);
//
// Description:
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// x = Scalar amount to move left.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// left(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = left(20, p=[23,42]); // Returns: [3,42]
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module left ( x = 0 ) translate ( [ - x , 0 , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function left ( x = 0 , p = undef ) = move ( [ - x , 0 , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: right()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// right(x) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = right(x, p);
// Usage: Get Translation Matrix
// mat = right(x);
//
// Description:
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// x = Scalar amount to move right.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// right(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = right(20, p=[23,42]); // Returns: [43,42]
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module right ( x = 0 ) translate ( [ x , 0 , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function right ( x = 0 , p = undef ) = move ( [ x , 0 , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: fwd()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// fwd(y) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = fwd(y, p);
// Usage: Get Translation Matrix
// mat = fwd(y);
//
// Description:
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// y = Scalar amount to move forward.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// fwd(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = fwd(20, p=[23,42]); // Returns: [23,22]
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module fwd ( y = 0 ) translate ( [ 0 , - y , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function fwd ( y = 0 , p = undef ) = move ( [ 0 , - y , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: back()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// back(y) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = back(y, p);
// Usage: Get Translation Matrix
// mat = back(y);
//
// Description:
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// y = Scalar amount to move back.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// back(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = back(20, p=[23,42]); // Returns: [23,62]
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module back ( y = 0 ) translate ( [ 0 , y , 0 ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function back ( y = 0 , p = undef ) = move ( [ 0 , y , 0 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: down()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// down(z) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = down(z, p);
// Usage: Get Translation Matrix
// mat = down(z);
//
// Description:
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// z = Scalar amount to move down.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #sphere(d=10);
// down(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module down ( z = 0 ) translate ( [ 0 , 0 , - z ] ) children ( ) ;
2019-12-04 10:24:34 +00:00
function down ( z = 0 , p = undef ) = move ( [ 0 , 0 , - z ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-08-22 06:54:36 +00:00
// Function&Module: up()
2019-03-23 04:13:18 +00:00
//
2019-08-22 06:54:36 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// up(z) ...
2019-08-22 06:54:36 +00:00
// Usage: Translate Points
// pts = up(z, p);
// Usage: Get Translation Matrix
// mat = up(z);
//
// Description:
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
// z = Scalar amount to move up.
2019-08-22 06:54:36 +00:00
// p = Either a point, or a list of points to be translated when used as a function.
2019-03-23 04:13:18 +00:00
//
// Example:
// #sphere(d=10);
// up(20) sphere(d=10);
2019-08-22 06:54:36 +00:00
//
// Example(NORENDER):
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
2019-03-23 04:13:18 +00:00
module up ( z = 0 ) translate ( [ 0 , 0 , z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
2019-12-04 10:24:34 +00:00
function up ( z = 0 , p = undef ) = move ( [ 0 , 0 , z ] , p = p ) ;
2019-08-22 06:54:36 +00:00
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Rotations
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-05-27 01:14:26 +00:00
// Function&Module: rot()
2019-03-23 04:13:18 +00:00
//
// Usage:
// rot(a, [cp], [reverse]) ...
// rot([X,Y,Z], [cp], [reverse]) ...
// rot(a, v, [cp], [reverse]) ...
// rot(from, to, [a], [reverse]) ...
//
2019-12-04 10:24:34 +00:00
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the top towards the right, similar to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,0,1], to=[1,1,0], a=45)` rotates 45 degrees around the Z axis, then rotates the top towards the back-right. Similar to `rot(a=90,v=[-1,1,0])`
// If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint.
// If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
2019-04-19 06:32:17 +00:00
// v = vector for the axis of rotation. Default: [0,0,1] or UP
2019-01-25 21:47:14 +00:00
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-03-23 04:13:18 +00:00
// from = Starting vector for vector-based rotations.
// to = Target vector for vector-based rotations.
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
2019-05-27 01:14:26 +00:00
// planar = If called as a function, this specifies if you want to work with 2D points.
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2019-01-25 21:47:14 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
2019-03-23 04:13:18 +00:00
//
// Example:
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
2019-03-23 04:13:18 +00:00
//
2019-02-27 11:52:59 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube([2,4,9]);
2019-04-19 06:32:17 +00:00
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
2019-12-04 10:24:34 +00:00
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
2019-03-23 04:13:18 +00:00
module rot ( a = 0 , v = undef , cp = undef , from = undef , to = undef , reverse = false )
{
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( cp ) ) {
2019-03-23 04:13:18 +00:00
translate ( cp ) rot ( a = a , v = v , from = from , to = to , reverse = reverse ) translate ( - cp ) children ( ) ;
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( from ) ) {
assert ( ! is_undef ( to ) , "`from` and `to` should be used together." ) ;
2019-05-12 10:29:08 +00:00
from = point3d ( from ) ;
to = point3d ( to ) ;
2019-04-01 01:43:54 +00:00
axis = vector_axis ( from , to ) ;
ang = vector_angle ( from , to ) ;
if ( ang < 0.0001 && a = = 0 ) {
2019-03-23 04:13:18 +00:00
children ( ) ; // May be slightly faster?
2019-04-01 01:43:54 +00:00
} else if ( reverse ) {
rotate ( a = - ang , v = axis ) rotate ( a = - a , v = from ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
2019-04-01 01:43:54 +00:00
rotate ( a = ang , v = axis ) rotate ( a = a , v = from ) children ( ) ;
2019-03-23 04:13:18 +00:00
}
} else if ( a = = 0 ) {
2019-02-27 11:52:59 +00:00
children ( ) ; // May be slightly faster?
2019-03-23 04:13:18 +00:00
} else if ( reverse ) {
2019-04-20 00:02:17 +00:00
if ( ! is_undef ( v ) ) {
2019-03-23 04:13:18 +00:00
rotate ( a = - a , v = v ) children ( ) ;
2019-04-20 00:02:17 +00:00
} else if ( is_num ( a ) ) {
2019-03-23 04:13:18 +00:00
rotate ( - a ) children ( ) ;
} else {
rotate ( [ - a [ 0 ] , 0 , 0 ] ) rotate ( [ 0 , - a [ 1 ] , 0 ] ) rotate ( [ 0 , 0 , - a [ 2 ] ] ) children ( ) ;
2019-02-27 11:52:59 +00:00
}
2019-03-23 04:13:18 +00:00
} else {
rotate ( a = a , v = v ) children ( ) ;
2019-02-27 11:52:59 +00:00
}
}
2019-05-27 01:14:26 +00:00
function rot ( a = 0 , v = undef , cp = undef , from = undef , to = undef , reverse = false , p = undef , planar = false ) =
assert ( is_undef ( from ) = = is_undef ( to ) , "from and to must be specified together." )
let ( rev = reverse ? - 1 : 1 )
is_undef ( p ) ? (
is_undef ( cp ) ? (
planar ? (
is_undef ( from ) ? affine2d_zrot ( a * rev ) :
affine2d_zrot ( vector_angle ( from , to ) * sign ( vector_axis ( from , to ) [ 2 ] ) * rev )
) : (
2020-03-02 20:42:29 +00:00
! is_undef ( from ) ? affine3d_chain ( [
affine3d_zrot ( a * rev ) ,
affine3d_rot_by_axis (
vector_axis ( from , to ) ,
vector_angle ( from , to ) * rev
)
] ) :
2019-05-27 01:14:26 +00:00
! is_undef ( v ) ? affine3d_rot_by_axis ( v , a * rev ) :
is_num ( a ) ? affine3d_zrot ( a * rev ) :
reverse ? affine3d_chain ( [ affine3d_zrot ( - a . z ) , affine3d_yrot ( - a . y ) , affine3d_xrot ( - a . x ) ] ) :
affine3d_chain ( [ affine3d_xrot ( a . x ) , affine3d_yrot ( a . y ) , affine3d_zrot ( a . z ) ] )
)
) : (
planar ? (
affine2d_chain ( [
move ( - cp ) ,
rot ( a = a , v = v , from = from , to = to , reverse = reverse , planar = true ) ,
move ( cp )
] )
) : (
affine3d_chain ( [
move ( - cp ) ,
rot ( a = a , v = v , from = from , to = to , reverse = reverse ) ,
move ( cp )
] )
)
)
) : (
2019-12-04 10:24:34 +00:00
assert ( is_list ( p ) )
is_num ( p . x ) ? (
2019-05-27 01:14:26 +00:00
rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , p = [ p ] , planar = planar ) [ 0 ]
2019-12-04 10:24:34 +00:00
) : is_vnf ( p ) ? (
[ rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , p = p . x , planar = planar ) , p . y ]
) : is_list ( p . x ) && is_list ( p . x . x ) ? (
[ for ( l = p ) rot ( a = a , v = v , cp = cp , from = from , to = to , reverse = reverse , p = l , planar = planar ) ]
2019-05-27 01:14:26 +00:00
) : (
2019-07-11 01:52:33 +00:00
(
( planar || ( p ! = [ ] && len ( p [ 0 ] ) = = 2 ) ) && ! (
( is_vector ( a ) && norm ( point2d ( a ) ) > 0 ) ||
( ! is_undef ( v ) && norm ( point2d ( v ) ) > 0 && ! approx ( a , 0 ) ) ||
( ! is_undef ( from ) && ! approx ( from , to ) && ! ( abs ( from . z ) > 0 || abs ( to . z ) ) ) ||
( ! is_undef ( from ) && approx ( from , to ) && norm ( point2d ( from ) ) > 0 && a ! = 0 )
)
) ? (
2019-06-12 02:28:04 +00:00
is_undef ( from ) ? rotate_points2d ( p , a = a * rev , cp = cp ) : (
2019-07-11 01:52:33 +00:00
approx ( from , to ) && approx ( a , 0 ) ? p :
2019-06-12 02:28:04 +00:00
rotate_points2d ( p , a = vector_angle ( from , to ) * sign ( vector_axis ( from , to ) [ 2 ] ) * rev , cp = cp )
2019-05-29 23:27:35 +00:00
)
2019-05-27 01:14:26 +00:00
) : (
rotate_points3d ( p , a = a , v = v , cp = ( is_undef ( cp ) ? [ 0 , 0 , 0 ] : cp ) , from = from , to = to , reverse = reverse )
)
)
) ;
2019-02-27 11:52:59 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: xrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// xrot(a, [cp]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
// rotated = xrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = xrot(a, [cp]);
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-07-11 01:52:33 +00:00
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cylinder(h=50, r=10, center=true);
// xrot(90) cylinder(h=50, r=10, center=true);
module xrot ( a = 0 , cp = undef )
{
2019-02-27 11:52:59 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( cp ) ) {
2018-12-10 20:11:34 +00:00
translate ( cp ) rotate ( [ a , 0 , 0 ] ) translate ( - cp ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
rotate ( [ a , 0 , 0 ] ) children ( ) ;
2018-12-10 20:11:34 +00:00
}
}
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
function xrot ( a = 0 , cp = undef , p = undef ) = rot ( [ a , 0 , 0 ] , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: yrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// yrot(a, [cp]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
// rotated = yrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = yrot(a, [cp]);
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-07-11 01:52:33 +00:00
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cylinder(h=50, r=10, center=true);
// yrot(90) cylinder(h=50, r=10, center=true);
module yrot ( a = 0 , cp = undef )
{
2019-02-27 11:52:59 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( cp ) ) {
2018-12-10 20:11:34 +00:00
translate ( cp ) rotate ( [ 0 , a , 0 ] ) translate ( - cp ) children ( ) ;
2019-03-23 04:13:18 +00:00
} else {
rotate ( [ 0 , a , 0 ] ) children ( ) ;
2018-12-10 20:11:34 +00:00
}
}
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
function yrot ( a = 0 , cp = undef , p = undef ) = rot ( [ 0 , a , 0 ] , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: zrot()
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// zrot(a, [cp]) ...
2019-07-11 01:52:33 +00:00
// Usage: Rotate Points
// rotated = zrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = zrot(a, [cp]);
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
2019-03-23 04:13:18 +00:00
// Arguments:
2018-12-10 20:11:34 +00:00
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
2019-07-11 01:52:33 +00:00
// p = If called as a function, this contains a point or list of points to rotate.
2019-03-23 04:13:18 +00:00
//
2017-08-30 00:00:16 +00:00
// Example:
2019-03-23 04:13:18 +00:00
// #cube(size=[60,20,40], center=true);
// zrot(90) cube(size=[60,20,40], center=true);
module zrot ( a = 0 , cp = undef )
{
2019-02-27 11:52:59 +00:00
if ( a = = 0 ) {
children ( ) ; // May be slightly faster?
2019-04-20 00:02:17 +00:00
} else if ( ! is_undef ( cp ) ) {
2019-02-27 11:52:59 +00:00
translate ( cp ) rotate ( a ) translate ( - cp ) children ( ) ;
} else {
2019-03-23 04:13:18 +00:00
rotate ( a ) children ( ) ;
2018-12-10 20:11:34 +00:00
}
}
2019-07-11 01:52:33 +00:00
function zrot ( a = 0 , cp = undef , p = undef ) = rot ( a , cp = cp , p = p ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Scaling and Mirroring
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-05-27 01:14:26 +00:00
// Function&Module: scale()
// Usage: As Module
2019-06-12 05:26:09 +00:00
// scale(SCALAR) ...
2019-05-27 01:14:26 +00:00
// scale([X,Y,Z]) ...
// Usage: Scale Points
2019-12-04 10:24:34 +00:00
// pts = scale(v, p);
2019-05-27 01:14:26 +00:00
// Usage: Get Scaling Matrix
2019-12-04 10:24:34 +00:00
// mat = scale(v);
2019-05-27 01:14:26 +00:00
// Description:
2019-12-04 10:24:34 +00:00
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-05-27 01:14:26 +00:00
// Arguments:
2019-12-04 10:24:34 +00:00
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
2019-05-27 01:14:26 +00:00
// p = If called as a function, the point or list of points to scale.
// Example(NORENDER):
2019-06-12 05:26:09 +00:00
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
2019-05-27 01:14:26 +00:00
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
2019-07-11 01:52:33 +00:00
// Example(2D):
// path = circle(d=50,$fn=12);
2019-12-04 10:24:34 +00:00
// #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path),closed=true);
function scale ( v = 1 , p = undef ) =
let ( v = is_num ( v ) ? [ v , v , v ] : v )
2019-05-27 01:14:26 +00:00
is_undef ( p ) ? (
2019-12-04 10:24:34 +00:00
len ( v ) = = 2 ? affine2d_scale ( v ) : affine3d_scale ( point3d ( v ) )
2019-05-27 01:14:26 +00:00
) : (
2019-12-04 10:24:34 +00:00
assert ( is_list ( p ) )
is_num ( p . x ) ? vmul ( p , v ) :
2019-12-04 10:48:02 +00:00
is_vnf ( p ) ? let ( inv = product ( [ for ( x = v ) x < 0 ? - 1 : 1 ] ) ) [
scale ( v = v , p = p . x ) ,
inv >= 0 ? p . y : [ for ( l = p . y ) reverse ( l ) ]
] :
2019-12-04 10:24:34 +00:00
[ for ( l = p ) is_vector ( l ) ? vmul ( l , v ) : scale ( v = v , p = l ) ]
2019-05-27 01:14:26 +00:00
) ;
2019-07-11 01:52:33 +00:00
// Function&Module: xscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
//
2019-07-11 01:52:33 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// xscale(x) ...
2019-07-11 01:52:33 +00:00
// Usage: Scale Points
// scaled = xscale(x, p);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
// mat = xscale(x);
2019-07-11 01:52:33 +00:00
//
// Description:
2019-12-04 10:24:34 +00:00
// Scales along the X axis by the scaling factor `x`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// x = Factor to scale by, along the X axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// xscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
2019-12-04 10:48:02 +00:00
// #stroke(path,closed=true);
// stroke(xscale(2,p=path),closed=true);
2019-07-11 01:52:33 +00:00
module xscale ( x = 1 ) scale ( [ x , 1 , 1 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
function xscale ( x = 1 , p = undef , planar = false ) = ( planar || ( ! is_undef ( p ) && len ( p ) = = 2 ) ) ? scale ( [ x , 1 ] , p = p ) : scale ( [ x , 1 , 1 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: yscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// yscale(y) ...
2019-12-04 10:24:34 +00:00
// Usage: Scale Points
2019-07-11 01:52:33 +00:00
// scaled = yscale(y, p);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
// mat = yscale(y);
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// y = Factor to scale by, along the Y axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// yscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
2019-12-04 10:48:02 +00:00
// #stroke(path,closed=true);
// stroke(yscale(2,p=path),closed=true);
2019-07-11 01:52:33 +00:00
module yscale ( y = 1 ) scale ( [ 1 , y , 1 ] ) children ( ) ;
function yscale ( y = 1 , p = undef , planar = false ) = ( planar || ( ! is_undef ( p ) && len ( p ) = = 2 ) ) ? scale ( [ 1 , y ] , p = p ) : scale ( [ 1 , y , 1 ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-07-11 01:52:33 +00:00
// Function&Module: zscale()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-03-23 04:13:18 +00:00
// zscale(z) ...
2019-12-04 10:24:34 +00:00
// Usage: Scale Points
// scaled = zscale(z, p);
// Usage: Get Affine Matrix
// mat = zscale(z);
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-07-11 01:52:33 +00:00
// z = Factor to scale by, along the Z axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
2019-03-23 04:13:18 +00:00
//
2019-07-11 01:52:33 +00:00
// Example: As Module
2019-03-23 04:13:18 +00:00
// zscale(3) sphere(r=10);
2019-07-11 01:52:33 +00:00
//
// Example: Scaling Points
// path = xrot(90,p=circle(d=50,$fn=12));
// #trace_polyline(path);
// trace_polyline(zscale(2,p=path));
module zscale ( z = 1 ) scale ( [ 1 , 1 , z ] ) children ( ) ;
function zscale ( z = 1 , p = undef ) = scale ( [ 1 , 1 , z ] , p = p ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
// Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
2019-03-23 04:13:18 +00:00
// Description:
2019-12-04 10:24:34 +00:00
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
function mirror ( v , p ) =
is_undef ( p ) ? (
len ( v ) = = 2 ? affine2d_mirror ( v ) : affine3d_mirror ( v )
) : (
assert ( is_list ( p ) )
is_num ( p . x ) ? p - ( 2 * ( p * v ) / ( v * v ) ) * v :
is_vnf ( p ) ? [ mirror ( v = v , p = p . x ) , [ for ( l = p . y ) reverse ( l ) ] ] :
[ for ( l = p ) mirror ( v = v , p = l ) ]
) ;
// Function&Module: xflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-06-12 05:12:49 +00:00
// xflip([x]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
// pt = xflip([x], p);
// Usage: Get Affine Matrix
// pt = xflip([x]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// x = The X coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
2019-06-12 05:12:49 +00:00
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
2019-06-12 05:12:49 +00:00
module xflip ( x = 0 ) translate ( [ x , 0 , 0 ] ) mirror ( [ 1 , 0 , 0 ] ) translate ( [ - x , 0 , 0 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
function xflip ( x = 0 , p ) =
x = = 0 ? mirror ( [ 1 , 0 , 0 ] , p = p ) :
move ( [ x , 0 , 0 ] , p = mirror ( [ 1 , 0 , 0 ] , p = move ( [ - x , 0 , 0 ] , p = p ) ) ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
2020-01-07 00:31:16 +00:00
// Function&Module: yflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-06-12 05:12:49 +00:00
// yflip([y]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
// pt = yflip([y], p);
// Usage: Get Affine Matrix
// pt = yflip([y]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// y = The Y coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
//
2018-11-27 03:55:18 +00:00
// Example:
2019-06-12 05:12:49 +00:00
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
2019-06-12 05:12:49 +00:00
module yflip ( y = 0 ) translate ( [ 0 , y , 0 ] ) mirror ( [ 0 , 1 , 0 ] ) translate ( [ 0 , - y , 0 ] ) children ( ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
function yflip ( y = 0 , p ) =
y = = 0 ? mirror ( [ 0 , 1 , 0 ] , p = p ) :
move ( [ 0 , y , 0 ] , p = mirror ( [ 0 , 1 , 0 ] , p = move ( [ 0 , - y , 0 ] , p = p ) ) ) ;
2019-03-23 04:13:18 +00:00
2019-12-04 10:24:34 +00:00
// Function&Module: zflip()
2019-03-23 04:13:18 +00:00
//
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-06-12 05:12:49 +00:00
// zflip([z]) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
// pt = zflip([z], p);
// Usage: Get Affine Matrix
// pt = zflip([z]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
2019-03-23 04:13:18 +00:00
//
// Arguments:
2019-06-12 05:12:49 +00:00
// z = The Z coordinate of the plane of reflection. Default: 0
2019-03-23 04:13:18 +00:00
//
// Example:
// zflip() cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
//
// Example:
2019-06-12 05:12:49 +00:00
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
2019-03-23 04:13:18 +00:00
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
2019-06-12 05:12:49 +00:00
module zflip ( z = 0 ) translate ( [ 0 , 0 , z ] ) mirror ( [ 0 , 0 , 1 ] ) translate ( [ 0 , 0 , - z ] ) children ( ) ;
2017-08-30 00:00:16 +00:00
2019-12-04 10:24:34 +00:00
function zflip ( z = 0 , p ) =
z = = 0 ? mirror ( [ 0 , 0 , 1 ] , p = p ) :
move ( [ 0 , 0 , z ] , p = mirror ( [ 0 , 0 , 1 ] , p = move ( [ 0 , 0 , - z ] , p = p ) ) ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Skewing
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-12-20 05:03:13 +00:00
// Function&Module: skew()
2019-12-04 10:24:34 +00:00
// Usage: As Module
2019-12-20 05:03:13 +00:00
// skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) ...
2019-12-04 10:24:34 +00:00
// Usage: As Function
2019-12-20 05:03:13 +00:00
// pts = skew(p, [sxy], [sxz], [syx], [syz], [szx], [szy]);
2019-12-04 10:24:34 +00:00
// Usage: Get Affine Matrix
2019-12-20 05:03:13 +00:00
// mat = skew([sxy], [sxz], [syx], [syz], [szx], [szy], [planar]);
2019-12-04 10:24:34 +00:00
// Description:
2019-12-20 05:03:13 +00:00
// Skews geometry by the given skew factors.
2019-12-04 10:24:34 +00:00
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
2019-12-20 05:03:13 +00:00
// Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-12-20 05:03:13 +00:00
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
// Example(2D): Skew along the X axis in 2D.
// skew(sxy=0.5) square(40, center=true);
// Example(2D): Skew along the Y axis in 2D.
// skew(syx=0.5) square(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Y coordinate.
// skew(sxy=0.5) cube(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Z coordinate.
// skew(sxz=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of X coordinate.
// skew(syx=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of Z coordinate.
// skew(syz=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of X coordinate.
// skew(szx=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of Y coordinate.
// skew(szy=0.75) cube(40, center=true);
// Example(FlatSpin): Skew Along Multiple Axes.
// skew(sxy=0.5, syx=0.3, szy=0.75) cube(40, center=true);
// Example(2D): Calling as a 2D Function
// pts = skew(p=square(40,center=true), sxy=0.5);
// color("yellow") stroke(pts, closed=true);
// color("blue") place_copies(pts) circle(d=3, $fn=8);
// Example(FlatSpin): Calling as a 3D Function
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
// trace_polyline(close_path(pts), showpts=true);
module skew ( sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 )
{
2019-12-20 07:26:54 +00:00
multmatrix (
affine3d_skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy )
) children ( ) ;
2019-12-20 05:03:13 +00:00
}
2019-03-23 04:13:18 +00:00
2019-12-20 05:03:13 +00:00
function skew ( p , sxy = 0 , sxz = 0 , syx = 0 , syz = 0 , szx = 0 , szy = 0 , planar = false ) =
let (
planar = planar || ( is_list ( p ) && is_num ( p . x ) && len ( p ) = = 2 ) ,
m = planar ? [
[ 1 , sxy , 0 ] ,
[ syx , 1 , 0 ] ,
[ 0 , 0 , 1 ]
2019-12-20 07:26:54 +00:00
] : affine3d_skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy )
2019-12-20 05:03:13 +00:00
)
2019-12-04 10:24:34 +00:00
is_undef ( p ) ? m :
assert ( is_list ( p ) )
is_num ( p . x ) ? (
planar ?
point2d ( m * concat ( point2d ( p ) , [ 1 ] ) ) :
point3d ( m * concat ( point3d ( p ) , [ 1 ] ) )
) :
2019-12-20 05:03:13 +00:00
is_vnf ( p ) ? [ skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy , planar = planar , p = p . x ) , p . y ] :
[ for ( l = p ) skew ( sxy = sxy , sxz = sxz , syx = syx , syz = syz , szx = szx , szy = szy , planar = planar , p = l ) ] ;
2019-12-04 10:24:34 +00:00
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap