2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: involute_gears.scad
// Involute Spur Gears and Racks
2020-07-27 22:15:34 +00:00
// .
2019-03-23 04:13:18 +00:00
// by Leemon Baird, 2011, Leemon@Leemon.com
// http://www.thingiverse.com/thing:5505
2020-07-27 22:15:34 +00:00
// .
2019-03-23 04:13:18 +00:00
// Additional fixes and improvements by Revar Desmera, 2017-2019, revarbat@gmail.com
2020-07-27 22:15:34 +00:00
// .
2019-03-23 04:13:18 +00:00
// This file is public domain. Use it for any purpose, including commercial
// applications. Attribution would be nice, but is not required. There is
// no warranty of any kind, including its correctness, usefulness, or safety.
2020-07-27 22:15:34 +00:00
// .
2019-03-23 04:13:18 +00:00
// This is parameterized involute spur (or helical) gear. It is much simpler
// and less powerful than others on Thingiverse. But it is public domain. I
// implemented it from scratch from the descriptions and equations on Wikipedia
// and the web, using Mathematica for calculations and testing, and I now
// release it into the public domain.
2020-07-27 22:15:34 +00:00
// .
2019-03-23 04:13:18 +00:00
// To use, add the following line to the beginning of your file:
// ```
2019-04-19 07:25:10 +00:00
// include <BOSL2/std.scad>
// include <BOSL2/involute_gears.scad>
2019-03-23 04:13:18 +00:00
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// Section: Terminology
// The outline of a gear is a smooth circle (the "pitch circle") which has
// mountains and valleys added so it is toothed. There is an inner
// circle (the "root circle") that touches the base of all the teeth, an
// outer circle that touches the tips of all the teeth, and the invisible
// pitch circle in between them. There is also a "base circle", which can
// be smaller than all three of the others, which controls the shape of
// the teeth. The side of each tooth lies on the path that the end of a
// string would follow if it were wrapped tightly around the base circle,
// then slowly unwound. That shape is an "involute", which gives this
// type of gear its name.
// Section: Functions
// These functions let the user find the derived dimensions of the gear.
// A gear fits within a circle of radius outer_radius, and two gears should have
// their centers separated by the sum of their pitch_radius.
// Function: circular_pitch()
// Description: Get tooth density expressed as "circular pitch".
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
function circular_pitch ( pitch = 5 ) = pitch ;
2019-03-23 04:13:18 +00:00
// Function: diametral_pitch()
// Description: Get tooth density expressed as "diametral pitch".
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
function diametral_pitch ( pitch = 5 ) = PI / pitch ;
2019-03-23 04:13:18 +00:00
// Function: module_value()
// Description: Get tooth density expressed as "module" or "modulus" in millimeters
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
function module_value ( pitch = 5 ) = pitch / PI ;
2019-03-23 04:13:18 +00:00
// Function: adendum()
// Description: The height of the gear tooth above the pitch radius.
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
function adendum ( pitch = 5 ) = module _value ( pitch ) ;
2019-03-23 04:13:18 +00:00
// Function: dedendum()
// Description: The depth of the gear tooth valley, below the pitch radius.
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
2019-03-23 04:13:18 +00:00
// clearance = If given, sets the clearance between meshing teeth.
2020-10-20 05:53:56 +00:00
function dedendum ( pitch = 5 , clearance ) =
is_undef ( clearance ) ? ( 1.25 * module _value ( pitch ) ) :
( module _value ( pitch ) + clearance ) ;
2019-03-23 04:13:18 +00:00
// Function: pitch_radius()
2020-10-20 05:53:56 +00:00
// Description:
// Calculates the pitch radius for the gear. Two mated gears will have their centers spaced apart
// by the sum of the two gear's pitch radii.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = The number of teeth on the gear.
function pitch_radius ( pitch = 5 , teeth = 11 ) =
2020-05-30 02:04:34 +00:00
pitch * teeth / PI / 2 ;
2019-03-23 04:13:18 +00:00
// Function: outer_radius()
// Description:
// Calculates the outer radius for the gear. The gear fits entirely within a cylinder of this radius.
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = The number of teeth on the gear.
2019-03-23 04:13:18 +00:00
// clearance = If given, sets the clearance between meshing teeth.
// interior = If true, calculate for an interior gear.
2020-10-20 05:53:56 +00:00
function outer_radius ( pitch = 5 , teeth = 11 , clearance , interior = false ) =
2020-05-30 02:04:34 +00:00
pitch_radius ( pitch , teeth ) +
( interior ? dedendum ( pitch , clearance ) : adendum ( pitch ) ) ;
2019-03-23 04:13:18 +00:00
// Function: root_radius()
// Description:
// Calculates the root radius for the gear, at the base of the dedendum.
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = The number of teeth on the gear.
2019-03-23 04:13:18 +00:00
// clearance = If given, sets the clearance between meshing teeth.
// interior = If true, calculate for an interior gear.
2020-10-20 05:53:56 +00:00
function root_radius ( pitch = 5 , teeth = 11 , clearance , interior = false ) =
2020-05-30 02:04:34 +00:00
pitch_radius ( pitch , teeth ) -
( interior ? adendum ( pitch ) : dedendum ( pitch , clearance ) ) ;
2019-03-23 04:13:18 +00:00
// Function: base_radius()
2020-10-20 05:53:56 +00:00
// Description: Get the base circle for involute teeth, at the base of the teeth.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = The number of teeth on the gear.
2020-10-20 05:53:56 +00:00
// pressure_angle = Pressure angle in degrees. Controls how straight or bulged the tooth sides are.
function base_radius ( pitch = 5 , teeth = 11 , pressure_angle = 28 ) =
pitch_radius ( pitch , teeth ) * cos ( pressure_angle ) ;
2019-03-23 04:13:18 +00:00
2020-10-20 05:53:56 +00:00
// Function: bevel_pitch_angle()
2019-06-12 02:29:39 +00:00
// Usage:
2020-10-05 06:10:32 +00:00
// x = bevel_pitch_angle(teeth, mate_teeth, [drive_angle]);
2019-06-12 02:29:39 +00:00
// Description:
2020-10-14 05:32:20 +00:00
// Returns the correct pitch angle for a bevel gear with a given number of tooth, that is
2019-06-12 02:29:39 +00:00
// matched to another bevel gear with a (possibly different) number of teeth.
// Arguments:
// teeth = Number of teeth that this gear has.
// mate_teeth = Number of teeth that the matching gear has.
2020-10-14 05:32:20 +00:00
// drive_angle = Angle between the drive shafts of each gear. Default: 90º.
2019-06-12 02:29:39 +00:00
function bevel_pitch_angle ( teeth , mate_teeth , drive_angle = 90 ) =
2020-05-30 02:04:34 +00:00
atan ( sin ( drive_angle ) / ( ( mate_teeth / teeth ) + cos ( drive_angle ) ) ) ;
2019-06-12 02:29:39 +00:00
2020-10-21 05:24:12 +00:00
// Function: worm_gear_thickness()
// Usage:
// thick = worm_gear_thickness(pitch, teeth, worm_diam, <worm_arc>, <crowning>, <clearance>);
// Description:
// Calculate the thickness of the worm gear.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth along the rack. Default: 30
// worm_diam = The pitch diameter of the worm gear to match to. Default: 30
// worm_arc = The arc of the worm to mate with, in degrees. Default: 60 degrees
// crowning = The amount to oversize the virtual hobbing cutter used to make the teeth, to add a slight crowning to the teeth to make them fir the work easier. Default: 1
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
function worm_gear_thickness ( pitch = 5 , teeth = 30 , worm_diam = 30 , worm_arc = 60 , crowning = 1 , clearance ) =
let (
r = worm_diam / 2 + crowning ,
pitch_thick = r * sin ( worm_arc / 2 ) * 2 ,
pr = pitch_radius ( pitch , teeth ) ,
rr = root_radius ( pitch , teeth , clearance , false ) ,
pitchoff = ( pr - rr ) * sin ( worm_arc / 2 ) ,
thickness = pitch_thick + 2 * pitchoff
) thickness ;
2019-06-12 02:29:39 +00:00
function _gear_polar ( r , t ) = r * [ sin ( t ) , cos ( t ) ] ;
function _gear_iang ( r1 , r2 ) = sqrt ( ( r2 / r1 ) * ( r2 / r1 ) - 1 ) / PI * 180 - acos ( r1 / r2 ) ; //unwind a string this many degrees to go from radius r1 to radius r2
function _gear_q6 ( b , s , t , d ) = _gear_polar ( d , s * ( _gear_iang ( b , d ) + t ) ) ; //point at radius d on the involute curve
function _gear_q7 ( f , r , b , r2 , t , s ) = _gear_q6 ( b , s , t , ( 1 - f ) * max ( b , r ) + f * r2 ) ; //radius a fraction f up the curved side of the tooth
2019-03-23 04:13:18 +00:00
2020-10-20 05:53:56 +00:00
// Section: 2D Profiles
2019-03-23 04:13:18 +00:00
2019-06-12 02:29:39 +00:00
// Function&Module: gear_tooth_profile()
2020-10-05 06:10:32 +00:00
// Usage: As Module
2020-10-20 05:53:56 +00:00
// gear_tooth_profile(pitch, teeth, <pressure_angle>, <clearance>, <backlash>, <interior>, <valleys>);
2020-10-05 06:10:32 +00:00
// Usage: As Function
2020-10-20 05:53:56 +00:00
// path = gear_tooth_profile(pitch, teeth, <pressure_angle>, <clearance>, <backlash>, <interior>, <valleys>);
2019-03-23 04:13:18 +00:00
// Description:
2019-06-12 02:29:39 +00:00
// When called as a function, returns the 2D profile path for an individual gear tooth.
// When called as a module, creates the 2D profile shape for an individual gear tooth.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
2020-10-20 05:53:56 +00:00
// teeth = Total number of teeth on the spur gear that this is a tooth for.
// pressure_angle = Pressure Angle. Controls how straight or bulged the tooth sides are. In degrees.
2019-03-23 04:13:18 +00:00
// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
2020-10-05 06:10:32 +00:00
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
2019-03-23 04:13:18 +00:00
// interior = If true, create a mask for difference()ing from something else.
2020-10-14 05:32:20 +00:00
// valleys = If true, add the valley bottoms on either side of the tooth. Default: true
// center = If true, centers the pitch circle of the tooth profile at the origin. Default: false.
2019-06-12 02:29:39 +00:00
// Example(2D):
2020-10-20 05:53:56 +00:00
// gear_tooth_profile(pitch=5, teeth=20, pressure_angle=20);
2019-03-23 04:13:18 +00:00
// Example(2D):
2020-10-20 05:53:56 +00:00
// gear_tooth_profile(pitch=5, teeth=20, pressure_angle=20, valleys=false);
2020-10-14 05:32:20 +00:00
// Example(2D): As a function
2020-10-20 06:52:46 +00:00
// stroke(gear_tooth_profile(pitch=5, teeth=20, pressure_angle=20, valleys=false), width=0.1);
2019-06-12 02:29:39 +00:00
function gear_tooth_profile (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-05-30 02:04:34 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
interior = false ,
valleys = true ,
center = false
2019-06-12 02:29:39 +00:00
) = let (
2020-05-30 02:04:34 +00:00
p = pitch_radius ( pitch , teeth ) ,
c = outer_radius ( pitch , teeth , clearance , interior ) ,
r = root_radius ( pitch , teeth , clearance , interior ) ,
2020-10-20 05:53:56 +00:00
b = base_radius ( pitch , teeth , pressure_angle ) ,
2020-05-30 02:04:34 +00:00
t = pitch / 2 - backlash / 2 , //tooth thickness at pitch circle
k = - _gear_iang ( b , p ) - t / 2 / p / PI * 180 , //angle to where involute meets base circle on each side of tooth
kk = r < b ? k : - 180 / teeth ,
isteps = 5 ,
2020-10-14 05:32:20 +00:00
pts = [
if ( valleys ) each [
2020-05-30 02:04:34 +00:00
_gear_polar ( r - 1 , 180.1 / teeth ) ,
2020-10-14 05:32:20 +00:00
_gear_polar ( r , 180.1 / teeth ) ,
] ,
_gear_polar ( r , - kk ) ,
for ( i = [ 0 : 1 : isteps ] ) _gear_q7 ( i / isteps , r , b , c , k , - 1 ) ,
for ( i = [ isteps : - 1 : 0 ] ) _gear_q7 ( i / isteps , r , b , c , k , 1 ) ,
_gear_polar ( r , kk ) ,
if ( valleys ) each [
_gear_polar ( r , - 180.1 / teeth ) ,
_gear_polar ( r - 1 , - 180.1 / teeth ) ,
2020-05-30 02:04:34 +00:00
]
2020-10-14 05:32:20 +00:00
] ,
pts2 = center ? fwd ( p , p = pts ) : pts
) pts2 ;
2019-06-12 02:29:39 +00:00
2019-02-07 05:04:45 +00:00
module gear_tooth_profile (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-05-30 02:04:34 +00:00
backlash = 0.0 ,
clearance = undef ,
2020-10-20 06:52:46 +00:00
interior = false ,
valleys = true ,
center = false
2019-02-07 05:04:45 +00:00
) {
2020-05-30 02:04:34 +00:00
r = root_radius ( pitch , teeth , clearance , interior ) ;
2020-10-20 06:52:46 +00:00
fwd ( r )
2020-05-30 02:04:34 +00:00
polygon (
points = gear_tooth_profile (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
2020-05-30 02:04:34 +00:00
clearance = clearance ,
2020-10-20 06:52:46 +00:00
interior = interior ,
valleys = valleys ,
center = center
2020-05-30 02:04:34 +00:00
)
) ;
2019-02-07 05:04:45 +00:00
}
2019-06-12 02:29:39 +00:00
// Function&Module: gear2d()
2020-10-05 06:10:32 +00:00
// Usage: As Module
2020-10-20 05:53:56 +00:00
// gear2d(pitch, teeth, <hide>, <pressure_angle>, <clearance>, <backlash>, <interior>);
2020-10-05 06:10:32 +00:00
// Usage: As Function
2020-10-20 05:53:56 +00:00
// poly = gear2d(pitch, teeth, <hide>, <pressure_angle>, <clearance>, <backlash>, <interior>);
2019-03-23 04:13:18 +00:00
// Description:
2019-06-12 02:29:39 +00:00
// When called as a module, creates a 2D involute spur gear. When called as a function, returns a
// 2D path for the perimeter of a 2D involute spur gear. Normally, you should just specify the
// first 2 parameters `pitch` and `teeth`, and let the rest be default values.
2020-10-20 05:53:56 +00:00
// Meshing gears must match in `pitch`, `pressure_angle`, and `helical`, and be separated by
2019-06-12 02:29:39 +00:00
// the sum of their pitch radii, which can be found with `pitch_radius()`.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
2020-10-20 05:53:56 +00:00
// teeth = Total number of teeth around the spur gear.
2019-06-12 02:29:39 +00:00
// hide = Number of teeth to delete to make this only a fraction of a circle
2020-10-20 05:53:56 +00:00
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees.
2018-11-26 04:40:44 +00:00
// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
2019-03-23 04:13:18 +00:00
// interior = If true, create a mask for difference()ing from something else.
2020-03-06 23:32:53 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-03-23 04:13:18 +00:00
// Example(2D): Typical Gear Shape
2019-06-12 02:29:39 +00:00
// gear2d(pitch=5, teeth=20);
2019-03-23 04:13:18 +00:00
// Example(2D): Lower Pressure Angle
2020-10-20 05:53:56 +00:00
// gear2d(pitch=5, teeth=20, pressure_angle=20);
2019-03-23 04:13:18 +00:00
// Example(2D): Partial Gear
2020-10-20 05:53:56 +00:00
// gear2d(pitch=5, teeth=20, hide=15, pressure_angle=20);
// Example(2D): Called as a Function
// path = gear2d(pitch=8, teeth=16);
// polygon(path);
2019-06-12 02:29:39 +00:00
function gear2d (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
hide = 0 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-05-30 02:04:34 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
interior = false ,
anchor = CENTER ,
spin = 0
2019-06-12 02:29:39 +00:00
) = let (
2020-05-30 02:04:34 +00:00
pr = pitch_radius ( pitch = pitch , teeth = teeth ) ,
pts = concat (
[ for ( tooth = [ 0 : 1 : teeth - hide - 1 ] )
each rot ( tooth * 360 / teeth ,
planar = true ,
p = gear_tooth_profile (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-05-30 02:04:34 +00:00
clearance = clearance ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
interior = interior ,
valleys = false
2020-05-30 02:04:34 +00:00
)
)
] ,
hide > 0 ? [ [ 0 , 0 ] ] : [ ]
)
2020-03-30 03:56:42 +00:00
) reorient ( anchor , spin , two_d = true , r = pr , p = pts ) ;
2019-06-12 02:29:39 +00:00
2019-02-07 05:04:45 +00:00
module gear2d (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
hide = 0 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-05-30 02:04:34 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
interior = false ,
anchor = CENTER ,
spin = 0
2017-08-30 00:00:16 +00:00
) {
2020-05-30 02:04:34 +00:00
path = gear2d (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
hide = hide ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-05-30 02:04:34 +00:00
clearance = clearance ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
interior = interior
2020-05-30 02:04:34 +00:00
) ;
pr = pitch_radius ( pitch = pitch , teeth = teeth ) ;
attachable ( anchor , spin , two_d = true , r = pr ) {
polygon ( path ) ;
children ( ) ;
}
2019-02-07 05:04:45 +00:00
}
2020-10-20 05:53:56 +00:00
// Function&Module: rack2d()
// Usage: As a Function
2020-10-20 06:52:46 +00:00
// path = rack2d(pitch, teeth, height, <pressure_angle>, <backlash>);
2020-10-20 05:53:56 +00:00
// Usage: As a Module
2020-10-20 06:52:46 +00:00
// rack2d(pitch, teeth, height, <pressure_angle>, <backlash>);
2020-10-20 05:53:56 +00:00
// Description:
// This is used to create a 2D rack, which is a linear bar with teeth that a gear can roll along.
// A rack can mesh with any gear that has the same `pitch` and `pressure_angle`.
// When called as a function, returns a 2D path for the outline of the rack.
// When called as a module, creates a 2D rack shape.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth along the rack
2020-10-20 06:52:46 +00:00
// height = Height of rack in mm, from tooth top to back of rack.
2020-10-20 05:53:56 +00:00
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees.
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Anchors:
// "adendum" = At the tips of the teeth, at the center of rack.
// "adendum-left" = At the tips of the teeth, at the left end of the rack.
// "adendum-right" = At the tips of the teeth, at the right end of the rack.
2020-10-20 06:52:46 +00:00
// "dedendum" = At the height of the teeth, at the center of rack.
// "dedendum-left" = At the height of the teeth, at the left end of the rack.
// "dedendum-right" = At the height of the teeth, at the right end of the rack.
2020-10-20 05:53:56 +00:00
// Example(2D):
2020-10-20 06:52:46 +00:00
// rack2d(pitch=5, teeth=10, height=10, pressure_angle=20);
2020-10-20 05:53:56 +00:00
// Example(2D): Called as a Function
2020-10-20 06:52:46 +00:00
// path = rack2d(pitch=8, teeth=8, height=10, pressure_angle=28);
2020-10-20 05:53:56 +00:00
// polygon(path);
function rack2d (
2020-10-20 06:52:46 +00:00
pitch = 5 ,
teeth = 20 ,
height = 10 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
2020-10-20 05:53:56 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
anchor = CENTER ,
spin = 0
2020-10-20 05:53:56 +00:00
) =
let (
a = adendum ( pitch ) ,
2020-10-20 06:52:46 +00:00
d = dedendum ( pitch , clearance )
)
assert ( a + d < height )
let (
2020-10-20 05:53:56 +00:00
xa = a * sin ( pressure_angle ) ,
xd = d * sin ( pressure_angle ) ,
l = teeth * pitch ,
anchors = [
2020-10-20 06:52:46 +00:00
anchorpt ( "adendum" , [ 0 , a , 0 ] , BACK ) ,
anchorpt ( "adendum-left" , [ - l / 2 , a , 0 ] , LEFT ) ,
anchorpt ( "adendum-right" , [ l / 2 , a , 0 ] , RIGHT ) ,
anchorpt ( "dedendum" , [ 0 , - d , 0 ] , BACK ) ,
anchorpt ( "dedendum-left" , [ - l / 2 , - d , 0 ] , LEFT ) ,
anchorpt ( "dedendum-right" , [ l / 2 , - d , 0 ] , RIGHT ) ,
2020-10-20 05:53:56 +00:00
] ,
path = [
2020-10-20 06:52:46 +00:00
[ - ( teeth - 1 ) / 2 * pitch + - 1 / 2 * pitch , a - height ] ,
2020-10-20 05:53:56 +00:00
[ - ( teeth - 1 ) / 2 * pitch + - 1 / 2 * pitch , - d ] ,
for ( i = [ 0 : 1 : teeth - 1 ] ) let (
off = ( i - ( teeth - 1 ) / 2 ) * pitch
) each [
[ off + - 1 / 4 * pitch + backlash - xd , - d ] ,
[ off + - 1 / 4 * pitch + backlash + xa , a ] ,
[ off + 1 / 4 * pitch - backlash - xa , a ] ,
[ off + 1 / 4 * pitch - backlash + xd , - d ] ,
] ,
[ ( teeth - 1 ) / 2 * pitch + 1 / 2 * pitch , - d ] ,
2020-10-20 06:52:46 +00:00
[ ( teeth - 1 ) / 2 * pitch + 1 / 2 * pitch , a - height ] ,
2020-10-20 05:53:56 +00:00
]
2020-10-20 06:52:46 +00:00
) reorient ( anchor , spin , two_d = true , size = [ l , 2 * abs ( a - height ) ] , anchors = anchors , p = path ) ;
2020-10-20 05:53:56 +00:00
module rack2d (
2020-10-20 06:52:46 +00:00
pitch = 5 ,
teeth = 20 ,
height = 10 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
2020-10-20 05:53:56 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
anchor = CENTER ,
spin = 0
2020-10-20 05:53:56 +00:00
) {
a = adendum ( pitch ) ;
d = dedendum ( pitch , clearance ) ;
l = teeth * pitch ;
anchors = [
2020-10-20 06:52:46 +00:00
anchorpt ( "adendum" , [ 0 , a , 0 ] , BACK ) ,
anchorpt ( "adendum-left" , [ - l / 2 , a , 0 ] , LEFT ) ,
anchorpt ( "adendum-right" , [ l / 2 , a , 0 ] , RIGHT ) ,
anchorpt ( "dedendum" , [ 0 , - d , 0 ] , BACK ) ,
anchorpt ( "dedendum-left" , [ - l / 2 , - d , 0 ] , LEFT ) ,
anchorpt ( "dedendum-right" , [ l / 2 , - d , 0 ] , RIGHT ) ,
2020-10-20 05:53:56 +00:00
] ;
path = rack2d (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
height = height ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
backlash = backlash ,
clearance = clearance
) ;
2020-10-20 06:52:46 +00:00
attachable ( anchor , spin , two_d = true , size = [ l , 2 * abs ( a - height ) ] , anchors = anchors ) {
2020-10-20 05:53:56 +00:00
polygon ( path ) ;
children ( ) ;
}
}
// Section: 3D Gears and Racks
// Function&Module: gear()
// Usage: As a Module
// gear(pitch, teeth, thickness, <shaft_diam>, <hide>, <pressure_angle>, <clearance>, <backlash>, <helical>, <slices>, <interior>);
// Usage: As a Function
// vnf = gear(pitch, teeth, thickness, <shaft_diam>, <hide>, <pressure_angle>, <clearance>, <backlash>, <helical>, <slices>, <interior>);
2019-03-23 04:13:18 +00:00
// Description:
2020-10-05 06:10:32 +00:00
// Creates a (potentially helical) involute spur gear. The module `gear()` gives an involute spur
// gear, with reasonable defaults for all the parameters. Normally, you should just choose the
// first 4 parameters, and let the rest be default values. The module `gear()` gives a gear in the
2020-10-20 05:53:56 +00:00
// XY plane, centered on the origin, with one tooth centered on the positive Y axis. The
2020-10-05 06:10:32 +00:00
// most important is `pitch_radius()`, which tells how far apart to space gears that are meshing,
// and `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch
// circle", which is an invisible circle that cuts through the middle of each tooth (though not the
// exact center). In order for two gears to mesh, their pitch circles should just touch. So the
// distance between their centers should be `pitch_radius()` for one, plus `pitch_radius()` for the
// other, which gives the radii of their pitch circles. In order for two gears to mesh, they must
2020-10-20 05:53:56 +00:00
// have the same `pitch` and `pressure_angle` parameters. `pitch` gives the number of millimeters of arc around
// the pitch circle covered by one tooth and one space between teeth. The `pressure_angle` controls how flat or
2020-10-05 06:10:32 +00:00
// bulged the sides of the teeth are. Common values include 14.5 degrees and 20 degrees, and
// occasionally 25. Though I've seen 28 recommended for plastic gears. Larger numbers bulge out
// more, giving stronger teeth, so 28 degrees is the default here. The ratio of `teeth` for two
// meshing gears gives how many times one will make a full revolution when the the other makes one
// full revolution. If the two numbers are coprime (i.e. are not both divisible by the same number
// greater than 1), then every tooth on one gear will meet every tooth on the other, for more even
// wear. So coprime numbers of teeth are good.
2019-03-23 04:13:18 +00:00
// Arguments:
2019-06-12 02:29:39 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth around the entire perimeter
2019-03-23 04:13:18 +00:00
// thickness = Thickness of gear in mm
2020-10-21 05:24:12 +00:00
// shaft_diam = Diameter of the hole in the center, in mm. Default: 0 (no shaft hole)
2019-06-12 02:29:39 +00:00
// hide = Number of teeth to delete to make this only a fraction of a circle
2020-10-20 05:53:56 +00:00
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees.
2019-03-23 04:13:18 +00:00
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
2019-02-07 05:04:45 +00:00
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
2019-06-12 02:29:39 +00:00
// helical = Teeth rotate this many degrees from bottom of gear to top. 360 makes the gear a screw with each thread going around once.
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `helical`.
2019-02-07 05:04:45 +00:00
// scale = Scale of top of gear compared to bottom. Useful for making crown gears.
2019-03-23 04:13:18 +00:00
// interior = If true, create a mask for difference()ing from something else.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-03-23 04:13:18 +00:00
// Example: Spur Gear
2019-06-12 02:29:39 +00:00
// gear(pitch=5, teeth=20, thickness=8, shaft_diam=5);
2020-10-14 05:32:20 +00:00
// Example: Helical Gear
2019-06-12 02:47:31 +00:00
// gear(pitch=5, teeth=20, thickness=10, shaft_diam=5, helical=-30, slices=12, $fa=1, $fs=1);
2020-10-20 05:53:56 +00:00
// Example(2D): Assembly of Gears
2020-10-05 06:10:32 +00:00
// n1 = 11; //red gear number of teeth
// n2 = 20; //green gear
// n3 = 5; //blue gear
// n4 = 20; //orange gear
// n5 = 8; //gray rack
2020-10-20 05:53:56 +00:00
// pitch = 9; //all meshing gears need the same `pitch` (and the same `pressure_angle`)
2020-10-05 06:10:32 +00:00
// thickness = 6;
// hole = 3;
2020-10-20 05:53:56 +00:00
// rack_base = 12;
2020-10-05 06:10:32 +00:00
// d1 =pitch_radius(pitch,n1);
// d12=pitch_radius(pitch,n1) + pitch_radius(pitch,n2);
// d13=pitch_radius(pitch,n1) + pitch_radius(pitch,n3);
// d14=pitch_radius(pitch,n1) + pitch_radius(pitch,n4);
// translate([ 0, 0, 0]) rotate([0,0, $t*360/n1]) color([1.00,0.75,0.75]) gear(pitch,n1,thickness,hole);
// translate([ 0, d12, 0]) rotate([0,0,-($t+n2/2-0*n1+1/2)*360/n2]) color([0.75,1.00,0.75]) gear(pitch,n2,thickness,hole);
// translate([ d13, 0, 0]) rotate([0,0,-($t-n3/4+n1/4+1/2)*360/n3]) color([0.75,0.75,1.00]) gear(pitch,n3,thickness,hole);
// translate([ d13, 0, 0]) rotate([0,0,-($t-n3/4+n1/4+1/2)*360/n3]) color([0.75,0.75,1.00]) gear(pitch,n3,thickness,hole);
// translate([-d14, 0, 0]) rotate([0,0,-($t-n4/4-n1/4+1/2-floor(n4/4)-3)*360/n4]) color([1.00,0.75,0.50]) gear(pitch,n4,thickness,hole,hide=n4-3);
2020-10-20 06:52:46 +00:00
// translate([(-floor(n5/2)-floor(n1/2)+$t+n1/2)*9, -d1+0.0, 0]) color([0.75,0.75,0.75]) rack(pitch=pitch,teeth=n5,thickness=thickness,height=rack_base,anchor=CENTER,orient=BACK);
2020-10-20 05:53:56 +00:00
function gear (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
2020-10-20 05:53:56 +00:00
thickness = 6 ,
2020-10-21 05:24:12 +00:00
shaft_diam = 0 ,
2020-10-20 06:52:46 +00:00
hide = 0 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
clearance = undef ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
helical = 0 ,
slices = 2 ,
interior = false ,
anchor = CENTER ,
spin = 0 ,
orient = UP
2020-10-20 05:53:56 +00:00
) =
let (
p = pitch_radius ( pitch , teeth ) ,
c = outer_radius ( pitch , teeth , clearance , interior ) ,
r = root_radius ( pitch , teeth , clearance , interior ) ,
twist = atan2 ( thickness * tan ( helical ) , p ) ,
rgn = [
gear2d (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-10-20 06:52:46 +00:00
hide = hide ,
2020-10-20 05:53:56 +00:00
clearance = clearance ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
interior = interior
2020-10-20 05:53:56 +00:00
) ,
if ( shaft_diam > 0 ) circle ( d = shaft_diam , $fn = max ( 12 , segs ( shaft_diam / 2 ) ) )
] ,
vnf = linear_sweep ( rgn , height = thickness , center = true )
) reorient ( anchor , spin , orient , h = thickness , r = p , p = vnf ) ;
2019-02-08 05:11:28 +00:00
module gear (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
2020-05-30 02:04:34 +00:00
thickness = 6 ,
2020-10-21 05:24:12 +00:00
shaft_diam = 0 ,
2020-10-20 06:52:46 +00:00
hide = 0 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-05-30 02:04:34 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
helical = 0 ,
slices = 2 ,
interior = false ,
anchor = CENTER ,
spin = 0 ,
orient = UP
2019-02-07 05:04:45 +00:00
) {
2020-05-30 02:04:34 +00:00
p = pitch_radius ( pitch , teeth ) ;
c = outer_radius ( pitch , teeth , clearance , interior ) ;
r = root_radius ( pitch , teeth , clearance , interior ) ;
twist = atan2 ( thickness * tan ( helical ) , p ) ;
attachable ( anchor , spin , orient , r = p , l = thickness ) {
difference ( ) {
linear_extrude ( height = thickness , center = true , convexity = 10 , twist = twist ) {
gear2d (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-10-20 06:52:46 +00:00
hide = hide ,
2020-05-30 02:04:34 +00:00
clearance = clearance ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
interior = interior
2020-05-30 02:04:34 +00:00
) ;
}
if ( shaft_diam > 0 ) {
cylinder ( h = 2 * thickness + 1 , r = shaft_diam / 2 , center = true , $fn = max ( 12 , segs ( shaft_diam / 2 ) ) ) ;
}
}
children ( ) ;
}
2019-06-12 02:29:39 +00:00
}
2020-10-20 05:53:56 +00:00
// Function&Module: bevel_gear()
// Usage: As a Module
// bevel_gear(pitch, teeth, face_width, pitch_angle, <shaft_diam>, <hide>, <pressure_angle>, <clearance>, <backlash>, <cutter_radius>, <spiral_angle>, <slices>, <interior>);
// Usage: As a Function
// vnf = bevel_gear(pitch, teeth, face_width, pitch_angle, <hide>, <pressure_angle>, <clearance>, <backlash>, <cutter_radius>, <spiral_angle>, <slices>, <interior>);
2019-06-12 02:29:39 +00:00
// Description:
2020-10-14 05:32:20 +00:00
// Creates a (potentially spiral) bevel gear. The module `bevel_gear()` gives a bevel gear, with
// reasonable defaults for all the parameters. Normally, you should just choose the first 4
// parameters, and let the rest be default values. The module `bevel_gear()` gives a gear in the XY
// plane, centered on the origin, with one tooth centered on the positive Y axis. The various
// functions below it take the same parameters, and return various measurements for the gear. The
// most important is `pitch_radius()`, which tells how far apart to space gears that are meshing,
// and `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch
// circle", which is an invisible circle that cuts through the middle of each tooth (though not the
// exact center). In order for two gears to mesh, their pitch circles should just touch. So the
// distance between their centers should be `pitch_radius()` for one, plus `pitch_radius()` for the
// other, which gives the radii of their pitch circles. In order for two gears to mesh, they must
2020-10-20 05:53:56 +00:00
// have the same `pitch` and `pressure_angle` parameters. `pitch` gives the number of millimeters of arc around
// the pitch circle covered by one tooth and one space between teeth. The `pressure_angle` controls how flat or
2020-10-14 05:32:20 +00:00
// bulged the sides of the teeth are. Common values include 14.5 degrees and 20 degrees, and
// occasionally 25. Though I've seen 28 recommended for plastic gears. Larger numbers bulge out
// more, giving stronger teeth, so 28 degrees is the default here. The ratio of `teeth` for two
// meshing gears gives how many times one will make a full revolution when the the other makes one
// full revolution. If the two numbers are coprime (i.e. are not both divisible by the same number
// greater than 1), then every tooth on one gear will meet every tooth on the other, for more even
// wear. So coprime numbers of teeth are good.
2019-06-12 02:29:39 +00:00
// Arguments:
2020-10-21 05:24:12 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth around the entire perimeter. Default: 20
// face_width = Width of the toothed surface in mm, from inside to outside. Default: 10
// pitch_angle = Angle of beveled gear face. Default: 45
// mate_teeth = The number of teeth in the gear that this gear will mate with. Overrides `pitch_angle` if given.
// shaft_diam = Diameter of the hole in the center, in mm. Module use only. Default: 0 (no shaft hole)
// hide = Number of teeth to delete to make this only a fraction of a circle. Default: 0
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 28
2019-06-12 02:29:39 +00:00
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
2020-10-21 05:24:12 +00:00
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
2020-10-14 05:32:20 +00:00
// cutter_radius = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0
// spiral_angle = The base angle for spiral teeth. Default: 0
2020-10-21 05:24:12 +00:00
// left_handed = If true, the gear returned will have a left-handed spiral. Default: false
2020-10-14 05:32:20 +00:00
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`. Default: 1
2019-06-12 02:29:39 +00:00
// interior = If true, create a mask for difference()ing from something else.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2020-10-14 05:32:20 +00:00
// Extra Anchors:
2020-10-14 22:37:56 +00:00
// "apex" = At the pitch cone apex for the bevel gear.
2020-10-14 05:32:20 +00:00
// "pitchbase" = At the natural height of the pitch radius of the beveled gear.
// "flattop" = At the top of the flat top of the bevel gear.
2019-06-12 02:29:39 +00:00
// Example: Beveled Gear
2020-10-14 05:32:20 +00:00
// bevel_gear(pitch=5, teeth=36, face_width=10, shaft_diam=5, pitch_angle=45, spiral_angle=0);
// Example: Spiral Beveled Gear and Pinion
2020-10-14 22:37:56 +00:00
// t1 = 16; t2 = 28;
// bevel_gear(pitch=5, teeth=t1, mate_teeth=t2, slices=12, anchor="apex", orient=FWD);
// bevel_gear(pitch=5, teeth=t2, mate_teeth=t1, left_handed=true, slices=12, anchor="apex", spin=180/t2);
2020-10-20 05:53:56 +00:00
function bevel_gear (
2020-10-21 05:24:12 +00:00
pitch = 5 ,
teeth = 20 ,
2020-10-20 06:52:46 +00:00
face_width = 10 ,
2020-10-20 05:53:56 +00:00
pitch_angle = 45 ,
2020-10-20 06:52:46 +00:00
mate_teeth = undef ,
hide = 0 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 20 ,
2020-10-20 06:52:46 +00:00
clearance = undef ,
backlash = 0.0 ,
cutter_radius = 30 ,
2020-10-20 05:53:56 +00:00
spiral_angle = 35 ,
left_handed = false ,
2020-10-20 06:52:46 +00:00
slices = 1 ,
interior = false ,
anchor = "pitchbase" ,
spin = 0 ,
orient = UP
2020-10-20 05:53:56 +00:00
) =
let (
slices = cutter_radius = = 0 ? 1 : slices ,
pitch_angle = is_undef ( mate_teeth ) ? pitch_angle : atan ( teeth / mate_teeth ) ,
pr = pitch_radius ( pitch , teeth ) ,
rr = root_radius ( pitch , teeth , clearance , interior ) ,
pitchoff = ( pr - rr ) * cos ( pitch_angle ) ,
ocone_rad = opp_ang_to_hyp ( pr , pitch_angle ) ,
icone_rad = ocone_rad - face_width ,
cutter_radius = cutter_radius = = 0 ? 1000 : cutter_radius ,
midpr = ( icone_rad + ocone_rad ) / 2 ,
radcp = [ 0 , midpr ] + polar_to_xy ( cutter_radius , 180 + spiral_angle ) ,
angC1 = law_of_cosines ( a = cutter_radius , b = norm ( radcp ) , c = ocone_rad ) ,
angC2 = law_of_cosines ( a = cutter_radius , b = norm ( radcp ) , c = icone_rad ) ,
radcpang = vang ( radcp ) ,
sang = radcpang - ( 180 - angC1 ) ,
eang = radcpang - ( 180 - angC2 ) ,
slice_us = [ for ( i = [ 0 : 1 : slices ] ) i / slices ] ,
apts = [ for ( u = slice_us ) radcp + polar_to_xy ( cutter_radius , lerp ( sang , eang , u ) ) ] ,
polars = [ for ( p = apts ) [ vang ( p ) - 90 , norm ( p ) ] ] ,
profile = gear_tooth_profile (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
clearance = clearance ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
interior = interior ,
valleys = false ,
center = true
2020-10-20 05:53:56 +00:00
) ,
verts1 = [
for ( polar = polars ) [
let (
u = polar . y / ocone_rad ,
m = up ( ( 1 - u ) * pr / tan ( pitch_angle ) ) *
up ( pitchoff ) *
zrot ( polar . x / sin ( pitch_angle ) ) *
back ( u * pr ) *
xrot ( pitch_angle ) *
scale ( u )
)
for ( tooth = [ 0 : 1 : teeth - 1 ] )
each apply ( xflip ( ) * zrot ( 360 * tooth / teeth ) * m , path3d ( profile ) )
]
] ,
thickness = abs ( verts1 [ 0 ] [ 0 ] . z - select ( verts1 , - 1 ) [ 0 ] . z ) ,
vertices = [ for ( x = verts1 ) down ( thickness / 2 , p = reverse ( x ) ) ] ,
sides_vnf = vnf_vertex_array ( vertices , caps = false , col_wrap = true , reverse = true ) ,
top_verts = select ( vertices , - 1 ) ,
bot_verts = select ( vertices , 0 ) ,
gear_pts = len ( top_verts ) ,
face_pts = gear_pts / teeth ,
top_faces = [
for ( i = [ 0 : 1 : teeth - 1 ] , j = [ 0 : 1 : ( face_pts / 2 ) - 1 ] ) each [
[ i * face_pts + j , ( i + 1 ) * face_pts - j - 1 , ( i + 1 ) * face_pts - j - 2 ] ,
[ i * face_pts + j , ( i + 1 ) * face_pts - j - 2 , i * face_pts + j + 1 ]
] ,
for ( i = [ 0 : 1 : teeth - 1 ] ) each [
[ gear_pts , ( i + 1 ) * face_pts - 1 , i * face_pts ] ,
[ gear_pts , ( ( i + 1 ) % teeth ) * face_pts , ( i + 1 ) * face_pts - 1 ]
]
] ,
vnf1 = vnf_merge ( [
[
[ each top_verts , [ 0 , 0 , top_verts [ 0 ] . z ] ] ,
top_faces
] ,
[
[ each bot_verts , [ 0 , 0 , bot_verts [ 0 ] . z ] ] ,
[ for ( x = top_faces ) reverse ( x ) ]
] ,
sides_vnf
] ) ,
vnf = left_handed ? vnf1 : xflip ( p = vnf1 ) ,
anchors = [
anchorpt ( "pitchbase" , [ 0 , 0 , pitchoff - thickness / 2 ] ) ,
anchorpt ( "flattop" , [ 0 , 0 , thickness / 2 ] ) ,
anchorpt ( "apex" , [ 0 , 0 , hyp_ang_to_opp ( ocone_rad , 90 - pitch_angle ) + pitchoff - thickness / 2 ] )
]
) reorient ( anchor , spin , orient , vnf = vnf , extent = true , anchors = anchors , p = vnf ) ;
2019-06-12 02:29:39 +00:00
module bevel_gear (
2020-10-20 06:52:46 +00:00
pitch = 3 ,
teeth = 11 ,
face_width = 10 ,
2020-10-14 05:32:20 +00:00
pitch_angle = 45 ,
2020-10-20 06:52:46 +00:00
mate_teeth ,
2020-10-21 05:24:12 +00:00
shaft_diam = 0 ,
2020-10-20 06:52:46 +00:00
hide = 0 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 20 ,
2020-10-20 06:52:46 +00:00
clearance = undef ,
backlash = 0.0 ,
cutter_radius = 30 ,
2020-10-14 05:32:20 +00:00
spiral_angle = 35 ,
left_handed = false ,
2020-10-20 06:52:46 +00:00
slices = 1 ,
interior = false ,
anchor = "pitchbase" ,
spin = 0 ,
orient = UP
2019-06-12 02:29:39 +00:00
) {
2020-10-14 05:32:20 +00:00
slices = cutter_radius = = 0 ? 1 : slices ;
2020-10-14 22:37:56 +00:00
pitch_angle = is_undef ( mate_teeth ) ? pitch_angle : atan ( teeth / mate_teeth ) ;
2020-10-14 05:32:20 +00:00
pr = pitch_radius ( pitch , teeth ) ;
2020-10-20 05:53:56 +00:00
ipr = pr - face_width * sin ( pitch_angle ) ;
2020-10-14 05:32:20 +00:00
rr = root_radius ( pitch , teeth , clearance , interior ) ;
pitchoff = ( pr - rr ) * cos ( pitch_angle ) ;
2020-10-20 05:53:56 +00:00
thickness = face_width * cos ( pitch_angle ) ;
vnf = bevel_gear (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
face_width = face_width ,
2020-10-20 05:53:56 +00:00
pitch_angle = pitch_angle ,
2020-10-20 06:52:46 +00:00
hide = hide ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-10-20 06:52:46 +00:00
clearance = clearance ,
backlash = backlash ,
cutter_radius = cutter_radius ,
2020-10-20 05:53:56 +00:00
spiral_angle = spiral_angle ,
left_handed = left_handed ,
2020-10-20 06:52:46 +00:00
slices = slices ,
interior = interior ,
2020-10-20 05:53:56 +00:00
anchor = CENTER
2020-05-30 02:04:34 +00:00
) ;
2020-10-14 05:32:20 +00:00
anchors = [
anchorpt ( "pitchbase" , [ 0 , 0 , pitchoff - thickness / 2 ] ) ,
2020-10-14 22:37:56 +00:00
anchorpt ( "flattop" , [ 0 , 0 , thickness / 2 ] ) ,
2020-10-20 05:53:56 +00:00
anchorpt ( "apex" , [ 0 , 0 , adj_ang_to_opp ( pr , 90 - pitch_angle ) + pitchoff - thickness / 2 ] )
2020-10-14 05:32:20 +00:00
] ;
2020-10-20 05:53:56 +00:00
attachable ( anchor , spin , orient , r1 = pr , r2 = ipr , h = thickness , anchors = anchors ) {
2020-10-14 05:32:20 +00:00
difference ( ) {
vnf_polyhedron ( vnf , convexity = teeth ) ;
if ( shaft_diam > 0 ) {
cylinder ( h = 2 * thickness + 1 , r = shaft_diam / 2 , center = true , $fn = max ( 12 , segs ( shaft_diam / 2 ) ) ) ;
2020-05-30 02:04:34 +00:00
}
}
children ( ) ;
}
2019-02-07 05:04:45 +00:00
}
2020-10-20 05:53:56 +00:00
// Function&Module: rack()
// Usage: As a Module
2020-10-20 06:52:46 +00:00
// rack(pitch, teeth, thickness, height, <pressure_angle>, <backlash>);
2020-10-20 05:53:56 +00:00
// Usage: As a Function
2020-10-20 06:52:46 +00:00
// vnf = rack(pitch, teeth, thickness, height, <pressure_angle>, <backlash>);
2019-03-23 04:13:18 +00:00
// Description:
2020-10-20 05:53:56 +00:00
// This is used to create a 3D rack, which is a linear bar with teeth that a gear can roll along.
// A rack can mesh with any gear that has the same `pitch` and `pressure_angle`.
// When called as a function, returns a 3D [VNF](vnf.scad) for the rack.
// When called as a module, creates a 3D rack shape.
2019-03-23 04:13:18 +00:00
// Arguments:
2020-10-21 05:24:12 +00:00
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth along the rack. Default: 20
// thickness = Thickness of rack in mm (affects each tooth). Default: 5
// height = Height of rack in mm, from tooth top to back of rack. Default: 10
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 28
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-05-17 21:41:45 +00:00
// Anchors:
// "adendum" = At the tips of the teeth, at the center of rack.
// "adendum-left" = At the tips of the teeth, at the left end of the rack.
// "adendum-right" = At the tips of the teeth, at the right end of the rack.
2020-10-20 05:53:56 +00:00
// "adendum-back" = At the tips of the teeth, at the back of the rack.
// "adendum-front" = At the tips of the teeth, at the front of the rack.
2019-05-17 21:41:45 +00:00
// "dedendum" = At the base of the teeth, at the center of rack.
// "dedendum-left" = At the base of the teeth, at the left end of the rack.
// "dedendum-right" = At the base of the teeth, at the right end of the rack.
2020-10-20 05:53:56 +00:00
// "dedendum-back" = At the base of the teeth, at the back of the rack.
// "dedendum-front" = At the base of the teeth, at the front of the rack.
2018-11-26 04:40:44 +00:00
// Example:
2020-10-20 06:52:46 +00:00
// rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20);
2019-02-08 05:11:28 +00:00
module rack (
2020-10-20 06:52:46 +00:00
pitch = 5 ,
teeth = 20 ,
2020-05-30 02:04:34 +00:00
thickness = 5 ,
2020-10-20 06:52:46 +00:00
height = 10 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
2020-05-30 02:04:34 +00:00
clearance = undef ,
2020-10-20 06:52:46 +00:00
anchor = CENTER ,
spin = 0 ,
orient = UP
2017-08-30 00:00:16 +00:00
) {
2020-05-30 02:04:34 +00:00
a = adendum ( pitch ) ;
d = dedendum ( pitch , clearance ) ;
l = teeth * pitch ;
anchors = [
2020-10-20 05:53:56 +00:00
anchorpt ( "adendum" , [ 0 , 0 , a ] , BACK ) ,
anchorpt ( "adendum-left" , [ - l / 2 , 0 , a ] , LEFT ) ,
anchorpt ( "adendum-right" , [ l / 2 , 0 , a ] , RIGHT ) ,
anchorpt ( "adendum-front" , [ 0 , - thickness / 2 , a ] , DOWN ) ,
anchorpt ( "adendum-back" , [ 0 , thickness / 2 , a ] , UP ) ,
anchorpt ( "dedendum" , [ 0 , 0 , - d ] , BACK ) ,
anchorpt ( "dedendum-left" , [ - l / 2 , 0 , - d ] , LEFT ) ,
anchorpt ( "dedendum-right" , [ l / 2 , 0 , - d ] , RIGHT ) ,
anchorpt ( "dedendum-front" , [ 0 , - thickness / 2 , - d ] , DOWN ) ,
anchorpt ( "dedendum-back" , [ 0 , thickness / 2 , - d ] , UP ) ,
2020-05-30 02:04:34 +00:00
] ;
2020-10-20 06:52:46 +00:00
attachable ( anchor , spin , orient , size = [ l , thickness , 2 * abs ( a - height ) ] , anchors = anchors ) {
2020-10-20 05:53:56 +00:00
xrot ( 90 ) {
linear_extrude ( height = thickness , center = true , convexity = teeth * 2 ) {
rack2d (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
height = height ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
2020-10-20 05:53:56 +00:00
clearance = clearance
) ;
2020-05-30 02:04:34 +00:00
}
}
children ( ) ;
}
2019-02-07 05:04:45 +00:00
}
2017-08-30 00:00:16 +00:00
2020-10-20 05:53:56 +00:00
function rack (
2020-10-20 06:52:46 +00:00
pitch = 5 ,
teeth = 20 ,
2020-10-20 05:53:56 +00:00
thickness = 5 ,
2020-10-20 06:52:46 +00:00
height = 10 ,
2020-10-20 05:53:56 +00:00
pressure_angle = 28 ,
2020-10-20 06:52:46 +00:00
backlash = 0.0 ,
2020-10-21 05:24:12 +00:00
clearance ,
2020-10-20 06:52:46 +00:00
anchor = CENTER ,
spin = 0 ,
orient = UP
2020-10-20 05:53:56 +00:00
) =
let (
a = adendum ( pitch ) ,
d = dedendum ( pitch , clearance ) ,
l = teeth * pitch ,
anchors = [
anchorpt ( "adendum" , [ 0 , 0 , a ] , BACK ) ,
anchorpt ( "adendum-left" , [ - l / 2 , 0 , a ] , LEFT ) ,
anchorpt ( "adendum-right" , [ l / 2 , 0 , a ] , RIGHT ) ,
anchorpt ( "adendum-front" , [ 0 , - thickness / 2 , a ] , DOWN ) ,
anchorpt ( "adendum-back" , [ 0 , thickness / 2 , a ] , UP ) ,
anchorpt ( "dedendum" , [ 0 , 0 , - d ] , BACK ) ,
anchorpt ( "dedendum-left" , [ - l / 2 , 0 , - d ] , LEFT ) ,
anchorpt ( "dedendum-right" , [ l / 2 , 0 , - d ] , RIGHT ) ,
anchorpt ( "dedendum-front" , [ 0 , - thickness / 2 , - d ] , DOWN ) ,
anchorpt ( "dedendum-back" , [ 0 , thickness / 2 , - d ] , UP ) ,
] ,
path = rack2d (
2020-10-20 06:52:46 +00:00
pitch = pitch ,
teeth = teeth ,
height = height ,
2020-10-20 05:53:56 +00:00
pressure_angle = pressure_angle ,
2020-10-20 06:52:46 +00:00
backlash = backlash ,
2020-10-20 05:53:56 +00:00
clearance = clearance
) ,
vnf = linear_sweep ( path , height = thickness , anchor = "origin" , orient = FWD )
2020-10-20 06:52:46 +00:00
) reorient ( anchor , spin , orient , size = [ l , thickness , 2 * abs ( a - height ) ] , anchors = anchors , p = vnf ) ;
2020-10-20 05:53:56 +00:00
2020-10-21 05:24:12 +00:00
// Function&Module: worm()
// Usage: As a Module
// worm(pitch, d, l, <starts>, <left_handed>, <pressure_angle>, <backlash>, <clearance>);
// Usage: As a Function
// vnf = worm(pitch, d, l, <starts>, <left_handed>, <pressure_angle>, <backlash>, <clearance>);
// Description:
// Creates a worm shape that can be matched to a work gear.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// d = The diameter of the worm. Default: 30
// l = The length of the worm. Default: 100
// starts = The number of lead starts. Default: 1
// left_handed = If true, the gear returned will have a left-handed spiral. Default: false
2020-10-22 03:13:37 +00:00
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20
2020-10-21 05:24:12 +00:00
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// worm(pitch=8, d=30, l=50, $fn=72);
// Example: Multiple Starts.
// worm(pitch=8, d=30, l=50, starts=3, $fn=72);
// Example: Left Handed
// worm(pitch=8, d=30, l=50, starts=3, left_handed=true, $fn=72);
// Example: Called as Function
// vnf = worm(pitch=8, d=35, l=50, starts=2, left_handed=true, pressure_angle=20, $fn=72);
// vnf_polyhedron(vnf);
function worm (
pitch = 5 ,
d = 30 , l = 100 ,
starts = 1 ,
left_handed = false ,
2020-10-22 03:13:37 +00:00
pressure_angle = 20 ,
2020-10-21 05:24:12 +00:00
backlash = 0 ,
clearance ,
anchor = CENTER ,
spin = 0 ,
orient = UP
) =
let (
rack_profile = select ( rack2d (
pitch = pitch ,
teeth = starts ,
height = d ,
pressure_angle = pressure_angle ,
backlash = backlash ,
clearance = clearance
) , 1 , - 2 ) ,
polars = [
for ( i = idx ( rack_profile ) ) let (
p = rack_profile [ i ] ,
a = 360 * p . x / pitch / starts
) [ a , p . y + d / 2 ]
] ,
maxang = 360 / segs ( d / 2 ) ,
refined_polars = [
for ( i = idx ( polars , end = - 2 ) ) let (
delta = polars [ i + 1 ] . x - polars [ i ] . x ,
steps = ceil ( delta / maxang ) ,
step = delta / steps
) for ( j = [ 0 : 1 : steps - 1 ] )
[ polars [ i ] . x + j * step , lerp ( polars [ i ] . y , polars [ i + 1 ] . y , j / steps ) ]
] ,
cross_sect = [ for ( p = refined_polars ) polar_to_xy ( p . y , p . x ) ] ,
revs = l / pitch / starts ,
zsteps = ceil ( revs * 360 / maxang ) ,
zstep = l / zsteps ,
astep = revs * 360 / zsteps ,
profiles = [
for ( i = [ 0 : 1 : zsteps ] ) let (
z = i * zstep - l / 2 ,
2020-10-22 03:13:37 +00:00
a = i * astep - 360 * revs / 2
2020-10-21 05:24:12 +00:00
)
apply ( zrot ( a ) * up ( z ) , path3d ( cross_sect ) )
] ,
vnf1 = vnf_vertex_array ( profiles , caps = true , col_wrap = true , reverse = true , style = "alt" ) ,
vnf = left_handed ? xflip ( p = vnf1 ) : vnf1
) reorient ( anchor , spin , orient , d = d , l = l , p = vnf ) ;
module worm (
pitch = 5 ,
d = 15 , l = 100 ,
starts = 1 ,
left_handed = false ,
2020-10-22 03:13:37 +00:00
pressure_angle = 20 ,
2020-10-21 05:24:12 +00:00
backlash = 0 ,
clearance ,
anchor = CENTER ,
spin = 0 ,
orient = UP
) {
vnf = worm (
pitch = pitch ,
starts = starts ,
d = d , l = l ,
left_handed = left_handed ,
pressure_angle = pressure_angle ,
backlash = backlash ,
clearance = clearance
) ;
attachable ( anchor , spin , orient , d = d , l = l ) {
vnf_polyhedron ( vnf ) ;
children ( ) ;
}
}
// Function&Module: worm_gear()
// Usage: As a Module
// worm_gear(pitch, teeth, worm_diam, <worm_starts>, <crowning>, <left_handed>, <pressure_angle>, <backlash>, <slices>, <clearance>, <shaft_diam>);
// Usage: As a Function
// vnf = worm_gear(pitch, teeth, worm_diam, <worm_starts>, <crowning>, <left_handed>, <pressure_angle>, <backlash>, <slices>, <clearance>);
// Description:
// Creates a worm gear to match with a worm.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth along the rack. Default: 30
// worm_diam = The pitch diameter of the worm gear to match to. Default: 30
// worm_starts = The number of lead starts on the worm gear to match to. Default: 1
// worm_arc = The arc of the worm to mate with, in degrees. Default: 60 degrees
// crowning = The amount to oversize the virtual hobbing cutter used to make the teeth, to add a slight crowning to the teeth to make them fir the work easier. Default: 1
// left_handed = If true, the gear returned will have a left-handed spiral. Default: false
2020-10-22 03:13:37 +00:00
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20
2020-10-21 05:24:12 +00:00
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// slices = The number of vertical slices to refine the curve of the worm throat. Default: 10
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: Right-Handed
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=1);
// Example: Left-Handed
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=1, left_handed=true);
// Example: Multiple Starts
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=4);
// Example: Called as Function
// vnf = worm_gear(pitch=8, teeth=30, worm_diam=30, worm_starts=1);
// vnf_polyhedron(vnf);
function worm_gear (
pitch = 5 ,
teeth = 36 ,
worm_diam = 30 ,
worm_starts = 1 ,
worm_arc = 60 ,
crowning = 1 ,
left_handed = false ,
2020-10-22 03:13:37 +00:00
pressure_angle = 20 ,
2020-10-21 05:24:12 +00:00
backlash = 0 ,
clearance ,
slices = 10 ,
anchor = CENTER ,
spin = 0 ,
orient = UP
) =
2020-10-22 03:13:37 +00:00
assert ( worm_arc >= 10 && worm_arc < = 60 )
2020-10-21 05:24:12 +00:00
let (
p = pitch_radius ( pitch , teeth ) ,
circ = 2 * PI * p ,
r1 = p + worm_diam / 2 + crowning ,
r2 = worm_diam / 2 + crowning ,
2020-10-22 03:13:37 +00:00
thickness = worm_gear_thickness ( pitch = pitch , teeth = teeth , worm_diam = worm_diam , worm_arc = worm_arc , crowning = crowning , clearance = clearance ) ,
helical = pitch * worm_starts * worm_arc / 360 * 360 / circ ,
2020-10-21 05:24:12 +00:00
tooth_profile = reverse ( gear_tooth_profile (
pitch = pitch ,
teeth = teeth ,
pressure_angle = pressure_angle ,
clearance = clearance ,
backlash = backlash ,
valleys = false ,
center = true
) ) ,
profiles = [
for ( slice = [ 0 : 1 : slices ] ) let (
u = slice / slices - 0.5 ,
zang = u * worm_arc ,
tp = [ 0 , r1 , 0 ] - spherical_to_xyz ( r2 , 90 , 90 + zang ) ,
2020-10-22 03:13:37 +00:00
zang2 = u * helical
2020-10-21 05:24:12 +00:00
) [
for ( i = [ 0 : 1 : teeth ] ) each
apply (
zrot ( - i * 360 / teeth + zang2 ) *
move ( tp ) *
2020-10-22 03:13:37 +00:00
xrot ( - zang ) *
scale ( cos ( zang ) ) ,
2020-10-21 05:24:12 +00:00
path3d ( tooth_profile )
)
]
] ,
top_verts = select ( profiles , - 1 ) ,
bot_verts = select ( profiles , 0 ) ,
face_pts = len ( tooth_profile ) ,
gear_pts = face_pts * teeth ,
top_faces = [
for ( i = [ 0 : 1 : teeth - 1 ] , j = [ 0 : 1 : ( face_pts / 2 ) - 1 ] ) each [
[ i * face_pts + j , ( i + 1 ) * face_pts - j - 1 , ( i + 1 ) * face_pts - j - 2 ] ,
[ i * face_pts + j , ( i + 1 ) * face_pts - j - 2 , i * face_pts + j + 1 ]
] ,
for ( i = [ 0 : 1 : teeth - 1 ] ) each [
[ gear_pts , ( i + 1 ) * face_pts - 1 , i * face_pts ] ,
[ gear_pts , ( ( i + 1 ) % teeth ) * face_pts , ( i + 1 ) * face_pts - 1 ]
]
] ,
2020-10-22 03:13:37 +00:00
sides_vnf = vnf_vertex_array ( profiles , caps = false , col_wrap = true , style = "quincunx" ) ,
2020-10-21 05:24:12 +00:00
vnf1 = vnf_merge ( [
[
[ each top_verts , [ 0 , 0 , top_verts [ 0 ] . z ] ] ,
[ for ( x = top_faces ) reverse ( x ) ]
] ,
[
[ each bot_verts , [ 0 , 0 , bot_verts [ 0 ] . z ] ] ,
top_faces
] ,
sides_vnf
] ) ,
vnf = left_handed ? xflip ( p = vnf1 ) : vnf1
) reorient ( anchor , spin , orient , r = p , l = thickness , p = vnf ) ;
module worm_gear (
pitch = 5 ,
teeth = 36 ,
worm_diam = 30 ,
worm_starts = 1 ,
worm_arc = 60 ,
crowning = 1 ,
left_handed = false ,
2020-10-22 03:13:37 +00:00
pressure_angle = 20 ,
2020-10-21 05:24:12 +00:00
backlash = 0 ,
slices = 10 ,
clearance ,
shaft_diam = 0 ,
anchor = CENTER ,
spin = 0 ,
orient = UP
) {
p = pitch_radius ( pitch , teeth ) ;
vnf = worm_gear (
pitch = pitch ,
teeth = teeth ,
worm_diam = worm_diam ,
worm_starts = worm_starts ,
worm_arc = worm_arc ,
crowning = crowning ,
left_handed = left_handed ,
pressure_angle = pressure_angle ,
backlash = backlash ,
slices = slices ,
clearance = clearance
) ;
thickness = pointlist_bounds ( vnf [ 0 ] ) [ 1 ] . z ;
attachable ( anchor , spin , orient , r = p , l = thickness ) {
difference ( ) {
vnf_polyhedron ( vnf ) ;
if ( shaft_diam > 0 ) {
cylinder ( d = shaft_diam , l = worm_diam , center = true ) ;
}
}
children ( ) ;
}
}
2017-08-30 00:00:16 +00:00
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
2017-08-30 00:00:16 +00:00