BOSL2/transforms.scad

947 lines
38 KiB
OpenSCAD
Raw Normal View History

2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: transforms.scad
// Functions and modules for translation, rotation, reflection and skewing.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// Section: Translations
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// Function&Module: move()
//
// Usage: As Module
// move([x], [y], [z]) ...
// move(v) ...
// Usage: Translate Points
// pts = move(v, p);
// pts = move([x], [y], [z], p);
// Usage: Get Translation Matrix
// mat = move(v);
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
//
// Arguments:
// v = An [X,Y,Z] vector to translate by.
2017-08-30 00:00:16 +00:00
// x = X axis translation.
// y = Y axis translation.
// z = Z axis translation.
// p = Either a point, or a list of points to be translated when used as a function.
//
2017-08-30 00:00:16 +00:00
// Example:
// #sphere(d=10);
// move([0,20,30]) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(y=20) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
// Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
module move(v=[0,0,0], x=0, y=0, z=0)
{
translate(point3d(v)+[x,y,z]) children();
2017-08-30 00:00:16 +00:00
}
function move(v=[0,0,0], p=undef, x=0, y=0, z=0) =
is_undef(p)? (
len(v)==2? affine2d_translate(v+[x,y]) :
affine3d_translate(point3d(v)+[x,y,z])
) : (
assert(is_list(p))
let(v=v+[x,y,z])
is_num(p.x)? p+v :
is_vnf(p)? [move(v=v,p=p.x), p.y] :
[for (l=p) is_vector(l)? l+v : move(v=v, p=l)]
);
function translate(v=[0,0,0], p=undef) = move(v=v, p=p);
2017-08-30 00:00:16 +00:00
// Function&Module: left()
//
// Usage: As Module
// left(x) ...
// Usage: Translate Points
// pts = left(x, p);
// Usage: Get Translation Matrix
// mat = left(x);
//
// Description:
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// x = Scalar amount to move left.
// p = Either a point, or a list of points to be translated when used as a function.
//
2017-08-30 00:00:16 +00:00
// Example:
// #sphere(d=10);
// left(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = left(20, p=[23,42]); // Returns: [3,42]
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module left(x=0) translate([-x,0,0]) children();
function left(x=0,p=undef) = move([-x,0,0],p=p);
// Function&Module: right()
//
// Usage: As Module
// right(x) ...
// Usage: Translate Points
// pts = right(x, p);
// Usage: Get Translation Matrix
// mat = right(x);
//
// Description:
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// x = Scalar amount to move right.
// p = Either a point, or a list of points to be translated when used as a function.
//
2017-08-30 00:00:16 +00:00
// Example:
// #sphere(d=10);
// right(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = right(20, p=[23,42]); // Returns: [43,42]
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module right(x=0) translate([x,0,0]) children();
function right(x=0,p=undef) = move([x,0,0],p=p);
// Function&Module: fwd()
//
// Usage: As Module
// fwd(y) ...
// Usage: Translate Points
// pts = fwd(y, p);
// Usage: Get Translation Matrix
// mat = fwd(y);
//
// Description:
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// y = Scalar amount to move forward.
// p = Either a point, or a list of points to be translated when used as a function.
//
2017-08-30 00:00:16 +00:00
// Example:
// #sphere(d=10);
// fwd(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = fwd(20, p=[23,42]); // Returns: [23,22]
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
module fwd(y=0) translate([0,-y,0]) children();
function fwd(y=0,p=undef) = move([0,-y,0],p=p);
// Function&Module: back()
//
// Usage: As Module
// back(y) ...
// Usage: Translate Points
// pts = back(y, p);
// Usage: Get Translation Matrix
// mat = back(y);
//
// Description:
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// y = Scalar amount to move back.
// p = Either a point, or a list of points to be translated when used as a function.
//
2017-08-30 00:00:16 +00:00
// Example:
// #sphere(d=10);
// back(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = back(20, p=[23,42]); // Returns: [23,62]
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
module back(y=0) translate([0,y,0]) children();
function back(y=0,p=undef) = move([0,y,0],p=p);
// Function&Module: down()
//
// Usage: As Module
// down(z) ...
// Usage: Translate Points
// pts = down(z, p);
// Usage: Get Translation Matrix
// mat = down(z);
//
// Description:
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// z = Scalar amount to move down.
// p = Either a point, or a list of points to be translated when used as a function.
//
2017-08-30 00:00:16 +00:00
// Example:
// #sphere(d=10);
// down(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
module down(z=0) translate([0,0,-z]) children();
function down(z=0,p=undef) = move([0,0,-z],p=p);
// Function&Module: up()
//
// Usage: As Module
// up(z) ...
// Usage: Translate Points
// pts = up(z, p);
// Usage: Get Translation Matrix
// mat = up(z);
//
// Description:
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// z = Scalar amount to move up.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// up(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
module up(z=0) translate([0,0,z]) children();
2017-08-30 00:00:16 +00:00
function up(z=0,p=undef) = move([0,0,z],p=p);
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Rotations
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
// Function&Module: rot()
//
// Usage:
// rot(a, [cp], [reverse]) ...
// rot([X,Y,Z], [cp], [reverse]) ...
// rot(a, v, [cp], [reverse]) ...
// rot(from, to, [a], [reverse]) ...
//
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the top towards the right, similar to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,0,1], to=[1,1,0], a=45)` rotates 45 degrees around the Z axis, then rotates the top towards the back-right. Similar to `rot(a=90,v=[-1,1,0])`
// If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint.
// If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
// v = vector for the axis of rotation. Default: [0,0,1] or UP
2019-01-25 21:47:14 +00:00
// cp = centerpoint to rotate around. Default: [0,0,0]
// from = Starting vector for vector-based rotations.
// to = Target vector for vector-based rotations.
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
// planar = If called as a function, this specifies if you want to work with 2D points.
// p = If called as a function, this contains a point or list of points to rotate.
//
2019-01-25 21:47:14 +00:00
// Example:
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
//
// Example:
// #cube([2,4,9]);
2019-01-25 21:47:14 +00:00
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
//
// Example:
// #cube([2,4,9]);
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
{
m = rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=false);
multmatrix(m) children();
}
function rot(a=0, v, cp, from, to, reverse=false, planar=false, p, _m) =
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
is_undef(p)? (
planar? let(
cp = is_undef(cp)? cp : point2d(cp),
m1 = is_undef(from)? affine2d_zrot(a) :
assert(is_vector(from))
assert(!approx(norm(from),0))
assert(approx(point3d(from).z, 0))
assert(is_vector(to))
assert(!approx(norm(to),0))
assert(approx(point3d(to).z, 0))
affine2d_zrot(
vang(point2d(to)) -
vang(point2d(from))
),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
m3 = reverse? matrix_inverse(m2) : m2
) m3 : let(
from = is_undef(from)? undef : point3d(from),
to = is_undef(to)? undef : point3d(to),
cp = is_undef(cp)? undef : point3d(cp),
m1 = !is_undef(from)? (
assert(is_vector(from))
assert(!approx(norm(from),0))
assert(is_vector(to))
assert(!approx(norm(to),0))
affine3d_rot_from_to(from,to) * affine3d_zrot(a)
) :
!is_undef(v)? affine3d_rot_by_axis(v,a) :
is_num(a)? affine3d_zrot(a) :
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
m3 = reverse? matrix_inverse(m2) : m2
) m3
) : (
assert(is_list(p))
let(
m = !is_undef(_m)? _m :
rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, planar=planar),
res = p==[]? [] :
is_vector(p)? apply(m, p) :
is_vnf(p)? [apply(m, p[0]), p[1]] :
is_list(p[0])? [for (pp=p) rot(p=pp, _m=m)] :
assert(false, "The p argument for rot() is not a point, path, patch, matrix, or VNF.")
) res
);
// Function&Module: xrot()
//
// Usage: As Module
// xrot(a, [cp]) ...
// Usage: Rotate Points
// rotated = xrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = xrot(a, [cp]);
//
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
// p = If called as a function, this contains a point or list of points to rotate.
//
2017-08-30 00:00:16 +00:00
// Example:
// #cylinder(h=50, r=10, center=true);
// xrot(90) cylinder(h=50, r=10, center=true);
module xrot(a=0, cp=undef)
{
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate([a, 0, 0]) translate(-cp) children();
} else {
rotate([a, 0, 0]) children();
}
}
2017-08-30 00:00:16 +00:00
function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
2017-08-30 00:00:16 +00:00
// Function&Module: yrot()
//
// Usage: As Module
// yrot(a, [cp]) ...
// Usage: Rotate Points
// rotated = yrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = yrot(a, [cp]);
//
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
// p = If called as a function, this contains a point or list of points to rotate.
//
2017-08-30 00:00:16 +00:00
// Example:
// #cylinder(h=50, r=10, center=true);
// yrot(90) cylinder(h=50, r=10, center=true);
module yrot(a=0, cp=undef)
{
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate([0, a, 0]) translate(-cp) children();
} else {
rotate([0, a, 0]) children();
}
}
2017-08-30 00:00:16 +00:00
function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
2017-08-30 00:00:16 +00:00
// Function&Module: zrot()
//
// Usage: As Module
// zrot(a, [cp]) ...
// Usage: Rotate Points
// rotated = zrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = zrot(a, [cp]);
//
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
// p = If called as a function, this contains a point or list of points to rotate.
//
2017-08-30 00:00:16 +00:00
// Example:
// #cube(size=[60,20,40], center=true);
// zrot(90) cube(size=[60,20,40], center=true);
module zrot(a=0, cp=undef)
{
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate(a) translate(-cp) children();
} else {
rotate(a) children();
}
}
function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Scaling and Mirroring
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
// Function&Module: scale()
// Usage: As Module
// scale(SCALAR) ...
// scale([X,Y,Z]) ...
// Usage: Scale Points
// pts = scale(v, p);
// Usage: Get Scaling Matrix
// mat = scale(v);
// Description:
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// Arguments:
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
// p = If called as a function, the point or list of points to scale.
// Example(NORENDER):
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
// Example(2D):
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path),closed=true);
function scale(v=1, p=undef) =
2020-03-25 22:31:07 +00:00
assert(is_num(v) || is_vector(v))
assert(is_undef(p) || is_list(p))
let(v = is_num(v)? [v,v,v] : v)
is_undef(p)? (
len(v)==2? affine2d_scale(v) : affine3d_scale(point3d(v))
) : (
assert(is_list(p))
is_num(p.x)? vmul(p,v) :
is_vnf(p)? let(inv=product([for (x=v) x<0? -1 : 1])) [
scale(v=v,p=p.x),
inv>=0? p.y : [for (l=p.y) reverse(l)]
] :
[for (l=p) is_vector(l)? vmul(l,v) : scale(v=v, p=l)]
);
// Function&Module: xscale()
//
//
// Usage: As Module
// xscale(x) ...
// Usage: Scale Points
// scaled = xscale(x, p);
// Usage: Get Affine Matrix
// mat = xscale(x);
//
// Description:
// Scales along the X axis by the scaling factor `x`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// x = Factor to scale by, along the X axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// xscale(3) sphere(r=10);
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(xscale(2,p=path),closed=true);
module xscale(x=1) scale([x,1,1]) children();
function xscale(x=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)==2))? scale([x,1],p=p) : scale([x,1,1],p=p);
// Function&Module: yscale()
//
// Usage: As Module
// yscale(y) ...
// Usage: Scale Points
// scaled = yscale(y, p);
// Usage: Get Affine Matrix
// mat = yscale(y);
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// y = Factor to scale by, along the Y axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// yscale(3) sphere(r=10);
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(yscale(2,p=path),closed=true);
module yscale(y=1) scale([1,y,1]) children();
function yscale(y=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)==2))? scale([1,y],p=p) : scale([1,y,1],p=p);
// Function&Module: zscale()
//
// Usage: As Module
// zscale(z) ...
// Usage: Scale Points
// scaled = zscale(z, p);
// Usage: Get Affine Matrix
// mat = zscale(z);
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// z = Factor to scale by, along the Z axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// zscale(3) sphere(r=10);
//
// Example: Scaling Points
2020-04-26 11:29:21 +00:00
// path = xrot(90,p=path3d(circle(d=50,$fn=12)));
// #trace_polyline(path);
// trace_polyline(zscale(2,p=path));
module zscale(z=1) scale([1,1,z]) children();
function zscale(z=1, p=undef) = scale([1,1,z],p=p);
// Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
// Description:
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
function mirror(v, p) =
assert(is_vector(v))
assert(is_undef(p) || is_list(p))
let(m = len(v)==2? affine2d_mirror(v) : affine3d_mirror(v))
is_undef(p)? m :
2020-03-22 12:41:58 +00:00
is_num(p.x)? apply(m,p) :
is_vnf(p)? [mirror(v=v,p=p[0]), [for (face=p[1]) reverse(face)]] :
2020-03-22 12:41:58 +00:00
[for (l=p) is_vector(l)? apply(m,l) : mirror(v=v, p=l)];
// Function&Module: xflip()
//
// Usage: As Module
// xflip([x]) ...
// Usage: As Function
// pt = xflip([x], p);
// Usage: Get Affine Matrix
// pt = xflip([x]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// x = The X coordinate of the plane of reflection. Default: 0
//
// Example:
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children();
function xflip(x=0,p) =
x==0? mirror([1,0,0],p=p) :
move([x,0,0],p=mirror([1,0,0],p=move([-x,0,0],p=p)));
2020-01-07 00:31:16 +00:00
// Function&Module: yflip()
//
// Usage: As Module
// yflip([y]) ...
// Usage: As Function
// pt = yflip([y], p);
// Usage: Get Affine Matrix
// pt = yflip([y]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// y = The Y coordinate of the plane of reflection. Default: 0
//
// Example:
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children();
function yflip(y=0,p) =
y==0? mirror([0,1,0],p=p) :
move([0,y,0],p=mirror([0,1,0],p=move([0,-y,0],p=p)));
// Function&Module: zflip()
//
// Usage: As Module
// zflip([z]) ...
// Usage: As Function
// pt = zflip([z], p);
// Usage: Get Affine Matrix
// pt = zflip([z]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// z = The Z coordinate of the plane of reflection. Default: 0
//
// Example:
// zflip() cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
//
// Example:
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children();
2017-08-30 00:00:16 +00:00
function zflip(z=0,p) =
z==0? mirror([0,0,1],p=p) :
move([0,0,z],p=mirror([0,0,1],p=move([0,0,-z],p=p)));
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Skewing
//////////////////////////////////////////////////////////////////////
2017-08-30 00:00:16 +00:00
2019-12-20 05:03:13 +00:00
// Function&Module: skew()
// Usage: As Module
2019-12-20 05:03:13 +00:00
// skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) ...
// Usage: As Function
2019-12-20 05:03:13 +00:00
// pts = skew(p, [sxy], [sxz], [syx], [syz], [szx], [szy]);
// Usage: Get Affine Matrix
2019-12-20 05:03:13 +00:00
// mat = skew([sxy], [sxz], [syx], [syz], [szx], [szy], [planar]);
// Description:
2019-12-20 05:03:13 +00:00
// Skews geometry by the given skew factors.
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
2019-12-20 05:03:13 +00:00
// Each skew factor is a multiplier. For example, if `sxy=2`, then it will skew along the X axis by 2x the value of the Y axis.
// Arguments:
2019-12-20 05:03:13 +00:00
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
// Example(2D): Skew along the X axis in 2D.
// skew(sxy=0.5) square(40, center=true);
// Example(2D): Skew along the Y axis in 2D.
// skew(syx=0.5) square(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Y coordinate.
// skew(sxy=0.5) cube(40, center=true);
// Example: Skew along the X axis in 3D as a factor of Z coordinate.
// skew(sxz=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of X coordinate.
// skew(syx=0.5) cube(40, center=true);
// Example: Skew along the Y axis in 3D as a factor of Z coordinate.
// skew(syz=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of X coordinate.
// skew(szx=0.5) cube(40, center=true);
// Example: Skew along the Z axis in 3D as a factor of Y coordinate.
// skew(szy=0.75) cube(40, center=true);
// Example(FlatSpin): Skew Along Multiple Axes.
// skew(sxy=0.5, syx=0.3, szy=0.75) cube(40, center=true);
// Example(2D): Calling as a 2D Function
// pts = skew(p=square(40,center=true), sxy=0.5);
// color("yellow") stroke(pts, closed=true);
// color("blue") move_copies(pts) circle(d=3, $fn=8);
2019-12-20 05:03:13 +00:00
// Example(FlatSpin): Calling as a 3D Function
// pts = skew(p=path3d(square(40,center=true)), szx=0.5, szy=0.3);
// trace_polyline(close_path(pts), showpts=true);
module skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0)
{
2019-12-20 07:26:54 +00:00
multmatrix(
affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy)
) children();
2019-12-20 05:03:13 +00:00
}
2019-12-20 05:03:13 +00:00
function skew(p, sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0, planar=false) =
let(
planar = planar || (is_list(p) && is_num(p.x) && len(p)==2),
m = planar? [
[ 1, sxy, 0],
[syx, 1, 0],
[ 0, 0, 1]
2019-12-20 07:26:54 +00:00
] : affine3d_skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy)
2019-12-20 05:03:13 +00:00
)
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? (
planar?
point2d(m*concat(point2d(p),[1])) :
point3d(m*concat(point3d(p),[1]))
) :
2019-12-20 05:03:13 +00:00
is_vnf(p)? [skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy, planar=planar, p=p.x), p.y] :
[for (l=p) skew(sxy=sxy, sxz=sxz, syx=syx, syz=syz, szx=szx, szy=szy, planar=planar, p=l)];
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap