2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2019-03-23 04:13:18 +00:00
// LibFile: math.scad
// Math helper functions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL/math.scad>
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
/*
BSD 2 - Clause License
Copyright ( c ) 2017 , Revar Desmera
All rights reserved .
Redistribution and use in source and binary forms , with or without
modification , are permitted provided that the following conditions are met :
* Redistributions of source code must retain the above copyright notice , this
list of conditions and the following disclaimer .
* Redistributions in binary form must reproduce the above copyright notice ,
this list of conditions and the following disclaimer in the documentation
and / or other materials provided with the distribution .
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL
DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY ,
OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
* /
2019-03-23 04:13:18 +00:00
include < compat.scad >
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: Cpi()
// Status: DEPRECATED, use `PI` instead.
// Description:
// Returns the value of pi.
2018-10-10 03:50:27 +00:00
function Cpi ( ) = PI ; // Deprecated! Use the variable PI instead.
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Section: Simple Calculations
// Function: quant()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2017-08-30 00:00:16 +00:00
function quant ( x , y ) = floor ( x / y + 0.5 ) * y ;
2019-03-23 04:13:18 +00:00
// Function: quantdn()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2017-08-30 00:00:16 +00:00
function quantdn ( x , y ) = floor ( x / y ) * y ;
2019-03-23 04:13:18 +00:00
// Function: quantup()
// Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
// Arguments:
// x = The value to quantize.
// y = The multiple to quantize to.
2017-08-30 00:00:16 +00:00
function quantup ( x , y ) = ceil ( x / y ) * y ;
2019-03-23 04:13:18 +00:00
// Function: constrain()
// Usage:
// constrain(v, minval, maxval);
// Description:
// Constrains value to a range of values between minval and maxval, inclusive.
// Arguments:
// v = value to constrain.
// minval = minimum value to return, if out of range.
// maxval = maximum value to return, if out of range.
function constrain ( v , minval , maxval ) = min ( maxval , max ( minval , v ) ) ;
2018-02-16 22:49:32 +00:00
2019-03-23 04:13:18 +00:00
// Function: posmod()
// Usage:
// posmod(x,m)
// Description:
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
// This if useful for normalizing angles to 0 ... 360.
// Arguments:
// x = The value to constrain.
// m = Modulo value.
function posmod ( x , m ) = ( x % m + m ) % m ;
// Function: modrange()
// Usage:
// modrange(x, y, m, [step])
// Description:
// Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
// Arguments:
// x = The start value to constrain.
// y = The end value to constrain.
// m = Modulo value.
// step = Step by this amount.
// Examples:
// echo(modrange(90,270,360, step=45)); // Outputs [90,135,180,225,270]
// echo(modrange(270,90,360, step=45)); // Outputs [270,315,0,45,90]
// echo(modrange(90,270,360, step=-45)); // Outputs [90,45,0,315,270]
// echo(modrange(270,90,360, step=-45)); // Outputs [270,225,180,135,90]
function modrange ( x , y , m , step = 1 ) =
let (
a = posmod ( x , m ) ,
b = posmod ( y , m ) ,
c = step > 0 ? ( a > b ? b + m : b ) : ( a < b ? b - m : b )
) [ for ( i = [ a : step : c ] ) posmod ( i , m ) ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: segs()
// Description:
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
// Arguments:
// r = Radius of circle to get the number of segments for.
function segs ( r ) = $fn > 0 ? ( $fn > 3 ? $fn : 3 ) : ( ceil ( max ( min ( 360.0 / $fa , abs ( r ) * 2 * PI / $fs ) , 5 ) ) ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: lerp()
// Description: Interpolate between two values or vectors.
// Arguments:
// a = First value.
// b = Second value.
// u = The proportion from `a` to `b` to calculate. Valid range is 0.0 to 1.0, inclusive.
function lerp ( a , b , u ) = ( 1 - u ) * a + u * b ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: hypot()
// Description: Calculate hypotenuse length of a 2D or 3D triangle.
// Arguments:
// x = Length on the X axis.
// y = Length on the Y axis.
// z = Length on the Z axis.
function hypot ( x , y , z = 0 ) = norm ( [ x , y , z ] ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: hypot3()
// Status: DEPRECATED, use `norm([x,y,z])` instead.
// Description: Calculate hypotenuse length of 3D triangle.
// Arguments:
// x = Length on the X axis.
// y = Length on the Y axis.
// z = Length on the Z axis.
function hypot3 ( x , y , z ) = norm ( [ x , y , z ] ) ;
2018-09-01 09:38:47 +00:00
2019-03-23 04:13:18 +00:00
// Function: distance()
// Status: DEPRECATED, use `norm(p2-p1)` instead. It's shorter.
// Description: Returns the distance between a pair of 2D or 3D points.
function distance ( p1 , p2 ) = norm ( point3d ( p2 ) - point3d ( p1 ) ) ;
2018-09-01 09:38:47 +00:00
2019-03-23 04:13:18 +00:00
// Function: sinh()
// Description: Takes a radians value `x`, and returns the hyperbolic sine of it.
function sinh ( x ) = ( exp ( x ) - exp ( - x ) ) / 2 ;
2018-09-01 09:38:47 +00:00
2019-03-23 04:13:18 +00:00
// Function: cosh()
// Description: Takes a radians value `x`, and returns the hyperbolic cosine of it.
function cosh ( x ) = ( exp ( x ) + exp ( - x ) ) / 2 ;
// Function: tanh()
// Description: Takes a radians value `x`, and returns the hyperbolic tangent of it.
function tanh ( x ) = sinh ( x ) / cosh ( x ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: asinh()
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it in radians.
function asinh ( x ) = ln ( x + sqrt ( x * x + 1 ) ) ;
// Function: acosh()
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it in radians.
function acosh ( x ) = ln ( x + sqrt ( x * x - 1 ) ) ;
// Function: atanh()
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it in radians.
function atanh ( x ) = ln ( ( 1 + x ) / ( 1 - x ) ) / 2 ;
// Function: sum()
// Description:
// Returns the sum of all entries in the given array.
// If passed an array of vectors, returns a vector of sums of each part.
// Arguments:
// v = The vector to get the sum of.
// Example:
// sum([1,2,3]); // returns 6.
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
function sum ( v , i = 0 , tot = undef ) = i >= len ( v ) ? tot : sum ( v , i + 1 , ( ( tot = = undef ) ? v [ i ] : tot + v [ i ] ) ) ;
// Function: sum_of_squares()
// Description:
// Returns the sum of the square of each element of a vector.
// Arguments:
// v = The vector to get the sum of.
// Example:
// sum_of_squares([1,2,3]); // returns 14.
function sum_of_squares ( v , i = 0 , tot = 0 ) = sum ( vmul ( v , v ) ) ;
// Function: sum_of_sines()
// Usage:
// sum_of_sines(a,sines)
// Description:
// Gives the sum of a series of sines, at a given angle.
// Arguments:
// a = Angle to get the value for.
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
function sum_of_sines ( a , sines ) =
sum ( [
for ( s = sines ) let (
ss = point3d ( s ) ,
v = ss . x * sin ( a * ss . y + ss . z )
) v
] ) ;
// Function: mean()
// Description:
// Returns the mean of all entries in the given array.
// If passed an array of vectors, returns a vector of mean of each part.
// Arguments:
// v = The list of values to get the mean of.
// Example:
// mean([2,3,4]); // returns 4.5.
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [4.5, 6, 7.5]
function mean ( v ) = sum ( v ) / len ( v ) ;
// Section: List/Array Operations
// Function: cdr()
// Status: DEPRECATED, use `slice(list,1,-1)` instead.
// Description: Returns all but the first item of a given array.
// Arguments:
// list = The list to get the tail of.
function cdr ( list ) = len ( list ) < = 1 ? [ ] : [ for ( i = [ 1 : len ( list ) - 1 ] ) list [ i ] ] ;
// Function: any()
// Description: Returns true if any item in list `l` evaluates as true.
// Arguments:
// l = The list to test for true items.
// Example:
// any([0,false,undef]); // Returns false.
// any([1,false,undef]); // Returns true.
// any([1,5,true]); // Returns true.
function any ( l ) = sum ( [ for ( x = l ) x ? 1 : 0 ] ) > 0 ;
// Function: all()
// Description: Returns true if all items in list `l` evaluate as true.
// Arguments:
// l = The list to test for true items.
// Example:
// all([0,false,undef]); // Returns false.
// all([1,false,undef]); // Returns false.
// all([1,5,true]); // Returns true.
function all ( l ) = sum ( [ for ( x = l ) x ? 1 : 0 ] ) = = len ( l ) ;
// Function: in_list()
// Description: Returns true if value `x` is in list `l`.
// Arguments:
// x = The value to search for.
// l = The list to search.
// idx = If given, searches the given subindexes for matches for `x`.
// Example:
// in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
function in_list ( x , l , idx = undef ) = search ( [ x ] , l , num_returns_per_match = 1 , index_col_num = idx ) ! = [ [ ] ] ;
// Function: slice()
// Description:
// Returns a slice of a list. The first item is index 0.
// Negative indexes are counted back from the end. The last item is -1.
// Arguments:
// arr = The array/list to get the slice of.
// st = The index of the first item to return.
// end = The index after the last item to return, unless negative, in which case the last item to return.
// Example:
// slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7]
// slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9]
// slice([3,4,5,6,7,8,9], 1, 1); // Returns []
// slice([3,4,5,6,7,8,9], 6, -1); // Returns [9]
// slice([3,4,5,6,7,8,9], 2, -2); // Returns [5,6,7,8]
function slice ( arr , st , end ) = let (
s = st < 0 ? ( len ( arr ) + st ) : st ,
e = end < 0 ? ( len ( arr ) + end + 1 ) : end
) ( s = = e ) ? [ ] : [ for ( i = [ s : e - 1 ] ) if ( e > s ) arr [ i ] ] ;
// Function: wrap_range()
2019-03-25 08:42:08 +00:00
// Status: DEPRECATED, use `select()` instead.
2019-03-23 04:13:18 +00:00
// Description:
// Returns a portion of a list, wrapping around past the beginning, if end<start.
// The first item is index 0. Negative indexes are counted back from the end.
// The last item is -1. If only the `start` index is given, returns just the value
// at that position.
// Usage:
// wrap_range(list,start)
// wrap_range(list,start,end)
// Arguments:
// list = The list to get the portion of.
// start = The index of the first item.
// end = The index of the last item.
2019-03-25 08:42:08 +00:00
function wrap_range ( list , start , end = undef ) = select ( list , start , end ) ;
// Function: select()
// Description:
// Returns a portion of a list, wrapping around past the beginning, if end<start.
// The first item is index 0. Negative indexes are counted back from the end.
// The last item is -1. If only the `start` index is given, returns just the value
// at that position.
// Usage:
// select(list,start)
// select(list,start,end)
// Arguments:
// list = The list to get the portion of.
// start = The index of the first item.
// end = The index of the last item.
2019-03-23 04:13:18 +00:00
// Example:
// l = [3,4,5,6,7,8,9];
2019-03-25 08:42:08 +00:00
// select(l, 5, 6); // Returns [8,9]
// select(l, 5, 8); // Returns [8,9,3,4]
// select(l, 5, 2); // Returns [8,9,3,4,5]
// select(l, -3, -1); // Returns [7,8,9]
// select(l, 3, 3); // Returns [6]
// select(l, 4); // Returns 7
// select(l, -2); // Returns 8
// select(l, [1:3]); // Returns [4,5,6]
// select(l, [1,3]); // Returns [4,6]
function select ( list , start , end = undef ) =
2019-03-23 04:13:18 +00:00
let ( l = len ( list ) )
! is_def ( end ) ? (
is_scalar ( start ) ?
list [ posmod ( start , l ) ] :
[ for ( i = start ) list [ posmod ( i , l ) ] ]
) : [ for ( i = modrange ( start , end , l ) ) list [ i ] ] ;
// Function: reverse()
// Description: Reverses a list/array.
// Arguments:
// list = The list to reverse.
// Example:
// reverse([3,4,5,6]); // Returns [6,5,4,3]
function reverse ( list ) = [ for ( i = [ len ( list ) - 1 : - 1 : 0 ] ) list [ i ] ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: array_subindex()
// Description:
// For each array item, return the indexed subitem.
// Returns a list of the values of each vector at the specfied
// index list or range. If the index list or range has
// only one entry the output list is flattened.
// Arguments:
// v = The given list of lists.
// idx = The index, list of indices, or range of indices to fetch.
// Example:
// v = [[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
// array_subindex(v,2); // Returns [3, 7, 11, 15]
// array_subindex(v,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
// array_subindex(v,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
function array_subindex ( v , idx ) = [
for ( val = v ) let ( value = [ for ( i = idx ) val [ i ] ] )
len ( value ) = = 1 ? value [ 0 ] : value
] ;
2017-08-30 00:00:16 +00:00
2019-03-25 08:42:08 +00:00
// Function: array_shortest()
// Description:
// Returns the length of the shortest list in a list of list.
// Arguments:
// vecs = A list of lists.
function array_shortest ( vecs ) = min ( [ for ( v = vecs ) len ( v ) ] ) ;
// Function: array_longest()
// Description:
// Returns the length of the longest list in a list of list.
// Arguments:
// vecs = A list of lists.
function array_longest ( vecs ) = max ( [ for ( v = vecs ) len ( v ) ] ) ;
// Function: array_pad()
// Description:
// If the list `v` is shorter than `minlen` length, pad it to length with the value given in `fill`.
// Arguments:
// v = A list.
// minlen = The minimum length to pad the list to.
// fill = The value to pad the list with.
function array_pad ( v , minlen , fill = undef ) = let ( l = len ( v ) ) [ for ( i = [ 0 : max ( l , minlen ) - 1 ] ) i < l ? v [ i ] : fill ] ;
// Function: array_trim()
// Description:
// If the list `v` is longer than `maxlen` length, truncates it to be `maxlen` items long.
// Arguments:
// v = A list.
// minlen = The minimum length to pad the list to.
function array_trim ( v , maxlen ) = maxlen < 1 ? [ ] : [ for ( i = [ 0 : min ( len ( v ) , maxlen ) - 1 ] ) v [ i ] ] ;
// Function: array_fit()
// Description:
// If the list `v` is longer than `length` items long, truncates it to be exactly `length` items long.
// If the list `v` is shorter than `length` items long, pad it to length with the value given in `fill`.
// Arguments:
// v = A list.
// minlen = The minimum length to pad the list to.
// fill = The value to pad the list with.
function array_fit ( v , length , fill ) = let ( l = len ( v ) ) ( l = = length ) ? v : ( l > length ) ? array_trim ( v , length ) : array_pad ( v , length , fill ) ;
2019-03-23 04:13:18 +00:00
// Function: array_zip()
2019-03-25 08:42:08 +00:00
// Usage:
// array_zip(v1, v2, v3, [fit], [fill]);
// array_zip(vecs, [fit], [fill]);
2019-03-23 04:13:18 +00:00
// Description:
// Zips together corresponding items from two or more lists.
2019-03-25 08:42:08 +00:00
// Returns a list of lists, where each sublist contains corresponding
// items from each of the imput lists. `[[A1, B1, C1], [A2, B2, C2], ...]`
2019-03-23 04:13:18 +00:00
// Arguments:
// vecs = A list of two or more lists to zipper together.
2019-03-25 08:42:08 +00:00
// fit = If `fit=="short"`, the zips together up to the length of the shortest list in vecs. If `fit=="long"`, then pads all lists to the length of the longest, using the value in `fill`. If `fit==false`, then requires all lists to be the same length. Default: false.
// fill = The default value to fill in with if one or more lists if short. Default: undef
2019-03-23 04:13:18 +00:00
// Example:
// v1 = [1,2,3,4];
// v2 = [5,6,7];
// v3 = [8,9,10,11];
2019-03-25 08:42:08 +00:00
// array_zip(v1,v3); // returns [[1,8], [2,9], [3,10], [4,11]]
// array_zip([v1,v3]); // returns [[1,8], [2,9], [3,10], [4,11]]
// array_zip([v1,v2], fit="short"); // returns [[1,5], [2,6], [3,7]]
// array_zip([v1,v2], fit="long"); // returns [[1,5], [2,6], [3,7], [4,undef]]
// array_zip([v1,v2], fit="long, fill=0); // returns [[1,5], [2,6], [3,7], [4,0]]
// array_zip([v1,v2,v3], fit="long"); // returns [[1,5,8], [2,6,9], [3,7,10], [4,undef,11]]
// Example:
// v1 = [[1,2,3], [4,5,6], [7,8,9]];
// v2 = [[20,19,18], [17,16,15], [14,13,12]];
// array_zip(v1,v2); // Returns [[1,2,3,20,19,18], [4,5,6,17,16,15], [7,8,9,14,13,12]]
function array_zip ( vecs , v2 , v3 , fit = false , fill = undef ) =
( v3 ! = undef ) ? array_zip ( [ vecs , v2 , v3 ] , fit = fit , fill = fill ) :
( v2 ! = undef ) ? array_zip ( [ vecs , v2 ] , fit = fit , fill = fill ) :
let (
dummy1 = assert_in_list ( "fit" , fit , [ false , "short" , "long" ] ) ,
minlen = array_shortest ( vecs ) ,
maxlen = array_longest ( vecs ) ,
dummy2 = ( fit = = false ) ? assertion ( minlen = = maxlen , "Input vectors must have the same length" ) : 0
) ( fit = = "long" ) ?
[ for ( i = [ 0 : maxlen - 1 ] ) [ for ( v = vecs ) for ( x = ( i < len ( v ) ? v [ i ] : fill ) ) x ] ] :
[ for ( i = [ 0 : minlen - 1 ] ) [ for ( v = vecs ) for ( x = v [ i ] ) x ] ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: array_group()
// Description:
// Takes a flat array of values, and groups items in sets of `cnt` length.
// The opposite of this is `flatten()`.
// Arguments:
// v = The list of items to group.
// cnt = The number of items to put in each grouping.
// dflt = The default value to fill in with is the list is not a multiple of `cnt` items long.
// Example:
// v = [1,2,3,4,5,6];
// array_group(v,2) returns [[1,2], [3,4], [5,6]]
// array_group(v,3) returns [[1,2,3], [4,5,6]]
// array_group(v,4,0) returns [[1,2,3,4], [5,6,0,0]]
function array_group ( v , cnt = 2 , dflt = 0 ) = [ for ( i = [ 0 : cnt : len ( v ) - 1 ] ) [ for ( j = [ 0 : cnt - 1 ] ) default ( v [ i + j ] , dflt ) ] ] ;
// Function: flatten()
// Description: Takes a list of list and flattens it by one level.
// Arguments:
// l = List to flatten.
// Example:
// flatten([[1,2,3], [4,5,[6,7,8]]]) returns [1,2,3,4,5,[6,7,8]]
function flatten ( l ) = [ for ( a = l ) for ( b = a ) b ] ;
// Section: Vector Manipulation
// Function: vmul()
// Description:
// Element-wise vector multiplication. Multiplies each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the products.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
2019-02-12 02:47:07 +00:00
function vmul ( v1 , v2 ) = [ for ( i = [ 0 : len ( v1 ) - 1 ] ) v1 [ i ] * v2 [ i ] ] ;
2019-03-23 04:13:18 +00:00
// Function: vdiv()
// Description:
// Element-wise vector division. Divides each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the quotients.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
function vdiv ( v1 , v2 ) = [ for ( i = [ 0 : len ( v1 ) - 1 ] ) v1 [ i ] / v2 [ i ] ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: vabs()
// Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments:
// v = The vector to get the absolute values of.
function vabs ( v ) = [ for ( x = v ) abs ( x ) ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: normalize()
// Description:
// Returns unit length normalized version of vector v.
// Arguments:
// v = The vector to normalize.
function normalize ( v ) = v / norm ( v ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: vector2d_angle()
// Usage:
// vector2d_angle(v1,v2);
// Description:
// Returns angle in degrees between two 2D vectors.
// Arguments:
// v1 = First 2D vector.
// v2 = Second 2D vector.
function vector2d_angle ( v1 , v2 ) = atan2 ( v1 [ 1 ] , v1 [ 0 ] ) - atan2 ( v2 [ 1 ] , v2 [ 0 ] ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: vector3d_angle()
// Usage:
// vector3d_angle(v1,v2);
// Description:
// Returns angle in degrees between two 3D vectors.
// Arguments:
// v1 = First 3D vector.
// v2 = Second 3D vector.
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
function vector3d_angle ( v1 , v2 ) = acos ( constrain ( ( v1 * v2 ) / ( norm ( v1 ) * norm ( v2 ) ) , - 1 , 1 ) ) ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Section: Coordinates Manipulation
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: point2d()
// Description:
// Returns a 2D vector/point from a 2D or 3D vector.
// If given a 3D point, removes the Z coordinate.
// Arguments:
// p = The coordinates to force into a 2D vector/point.
function point2d ( p ) = [ for ( i = [ 0 : 1 ] ) ( p [ i ] = = undef ) ? 0 : p [ i ] ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: path2d()
// Description:
// Returns a list of 2D vectors/points from a list of 2D or 3D vectors/points.
// If given a 3D point list, removes the Z coordinates from each point.
// Arguments:
// points = A list of 2D or 3D points/vectors.
function path2d ( points ) = [ for ( point = points ) point2d ( point ) ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: point3d()
// Description:
// Returns a 3D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 3D vector/point.
function point3d ( p ) = [ for ( i = [ 0 : 2 ] ) ( p [ i ] = = undef ) ? 0 : p [ i ] ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: path3d()
// Description:
// Returns a list of 3D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
// points = A list of 2D or 3D points/vectors.
function path3d ( points ) = [ for ( point = points ) point3d ( point ) ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: translate_points()
// Usage:
// translate_points(pts, v);
// Description:
// Moves each point in an array by a given amount.
// Arguments:
// pts = List of points to translate.
// v = Amount to translate points by.
2018-11-25 20:49:44 +00:00
function translate_points ( pts , v = [ 0 , 0 , 0 ] ) = [ for ( pt = pts ) pt + v ] ;
2019-03-23 04:13:18 +00:00
// Function: scale_points()
// Usage:
// scale_points(pts, v, [cp]);
// Description:
// Scales each point in an array by a given amount, around a given centerpoint.
// Arguments:
// pts = List of points to scale.
// v = A vector with a scaling factor for each axis.
// cp = Centerpoint to scale around.
2018-11-25 20:49:44 +00:00
function scale_points ( pts , v = [ 0 , 0 , 0 ] , cp = [ 0 , 0 , 0 ] ) = [ for ( pt = pts ) [ for ( i = [ 0 : len ( pt ) - 1 ] ) ( pt [ i ] - cp [ i ] ) * v [ i ] + cp [ i ] ] ] ;
2019-03-23 04:13:18 +00:00
// Function: rotate_points2d()
// Usage:
// rotate_points2d(pts, ang, [cp]);
// Description:
// Rotates each 2D point in an array by a given amount, around an optional centerpoint.
// Arguments:
// pts = List of 3D points to rotate.
// ang = Angle to rotate by.
// cp = 2D Centerpoint to rotate around. Default: `[0,0]`
2018-11-25 20:49:44 +00:00
function rotate_points2d ( pts , ang , cp = [ 0 , 0 ] ) = let (
m = matrix3_zrot ( ang )
) [ for ( pt = pts ) m * point3d ( pt - cp ) + cp ] ;
2019-03-23 04:13:18 +00:00
// Function: rotate_points3d()
// Usage:
// rotate_points3d(pts, v, [cp], [reverse]);
// Description:
// Rotates each 3D point in an array by a given amount, around a given centerpoint.
// Arguments:
// pts = List of 3D points to rotate.
// v = Vector of rotation angles for each axis, [X,Y,Z]
// cp = 3D Centerpoint to rotate around.
// reverse = If true, performs an exactly reversed rotation.
function rotate_points3d ( pts , v = [ 0 , 0 , 0 ] , cp = [ 0 , 0 , 0 ] , reverse = false ) = let (
m = reverse ?
matrix4_xrot ( - v [ 0 ] ) * matrix4_yrot ( - v [ 1 ] ) * matrix4_zrot ( - v [ 2 ] ) :
matrix4_zrot ( v [ 2 ] ) * matrix4_yrot ( v [ 1 ] ) * matrix4_xrot ( v [ 0 ] )
2018-11-25 20:49:44 +00:00
) [ for ( pt = pts ) m * concat ( point3d ( pt ) - cp , 0 ) + cp ] ;
2019-03-23 04:13:18 +00:00
// Function: rotate_points3d_around_axis()
// Usage:
// rotate_points3d_around_axis(pts, ang, u, [cp])
// Description:
// Rotates each 3D point in an array by a given amount, around a given centerpoint and axis.
// Arguments:
// pts = List of 3D points to rotate.
// ang = Angle to rotate by.
// u = Vector of the axis to rotate around.
// cp = 3D Centerpoint to rotate around.
2018-11-25 20:49:44 +00:00
function rotate_points3d_around_axis ( pts , ang , u = [ 0 , 0 , 0 ] , cp = [ 0 , 0 , 0 ] ) = let (
m = matrix4_rot_by_axis ( u , ang )
) [ for ( pt = pts ) m * concat ( point3d ( pt ) - cp , 0 ) + cp ] ;
2019-03-23 04:13:18 +00:00
// Section: Coordinate Systems
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: polar_to_xy()
// Usage:
// polar_to_xy(r, theta);
// polar_to_xy([r, theta]);
// Description:
// Convert polar coordinates to 2D cartesian coordinates.
// Returns [X,Y] cartesian coordinates.
// Arguments:
2019-02-05 03:18:08 +00:00
// r = distance from the origin.
// theta = angle in degrees, counter-clockwise of X+.
// Examples:
// xy = polar_to_xy(20,30);
// xy = polar_to_xy([40,60]);
function polar_to_xy ( r , theta = undef ) = let (
rad = theta = = undef ? r [ 0 ] : r ,
t = theta = = undef ? r [ 1 ] : theta
) rad * [ cos ( t ) , sin ( t ) ] ;
2019-03-23 04:13:18 +00:00
// Function: xy_to_polar()
// Usage:
// xy_to_polar(x,y);
// xy_to_polar([X,Y]);
// Description:
// Convert 2D cartesian coordinates to polar coordinates.
// Returns [radius, theta] where theta is the angle counter-clockwise of X+.
// Arguments:
2019-02-05 03:18:08 +00:00
// x = X coordinate.
// y = Y coordinate.
// Examples:
// plr = xy_to_polar(20,30);
// plr = xy_to_polar([40,60]);
function xy_to_polar ( x , y = undef ) = let (
xx = y = = undef ? x [ 0 ] : x ,
yy = y = = undef ? x [ 1 ] : y
) [ norm ( [ xx , yy ] ) , atan2 ( yy , xx ) ] ;
2019-03-23 04:13:18 +00:00
// Function: cylindrical_to_xyz()
// Usage:
// cylindrical_to_xyz(r, theta, z)
// cylindrical_to_xyz([r, theta, z])
// Description:
// Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates.
// Arguments:
2019-02-05 03:18:08 +00:00
// r = distance from the Z axis.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// z = Height above XY plane.
// Examples:
// xyz = cylindrical_to_xyz(20,30,40);
// xyz = cylindrical_to_xyz([40,60,50]);
function cylindrical_to_xyz ( r , theta = undef , z = undef ) = let (
rad = theta = = undef ? r [ 0 ] : r ,
t = theta = = undef ? r [ 1 ] : theta ,
zed = theta = = undef ? r [ 2 ] : z
) [ rad * cos ( t ) , rad * sin ( t ) , zed ] ;
2019-03-23 04:13:18 +00:00
// Function: xyz_to_cylindrical()
// Usage:
// xyz_to_cylindrical(x,y,z)
// xyz_to_cylindrical([X,Y,Z])
// Description:
// Convert 3D cartesian coordinates to cylindrical coordinates.
// Returns [radius,theta,Z]. Theta is the angle counter-clockwise
// of X+ on the XY plane. Z is height above the XY plane.
// Arguments:
2019-02-05 03:18:08 +00:00
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// cyl = xyz_to_cylindrical(20,30,40);
// cyl = xyz_to_cylindrical([40,50,70]);
function xyz_to_cylindrical ( x , y = undef , z = undef ) = let (
2019-03-23 04:13:18 +00:00
p = is_scalar ( x ) ? [ x , default ( y , 0 ) , default ( z , 0 ) ] : point3d ( x )
) [ norm ( [ p . x , p . y ] ) , atan2 ( p . y , p . x ) , p . z ] ;
// Function: spherical_to_xyz()
// Usage:
// spherical_to_xyz(r, theta, phi);
// spherical_to_xyz([r, theta, phi]);
// Description:
// Convert spherical coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
// Arguments:
2019-02-05 03:18:08 +00:00
// r = distance from origin.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// phi = angle in degrees from the vertical Z+ axis.
// Examples:
// xyz = spherical_to_xyz(20,30,40);
// xyz = spherical_to_xyz([40,60,50]);
function spherical_to_xyz ( r , theta = undef , phi = undef ) = let (
rad = theta = = undef ? r [ 0 ] : r ,
t = theta = = undef ? r [ 1 ] : theta ,
p = theta = = undef ? r [ 2 ] : phi
) rad * [ sin ( p ) * cos ( t ) , sin ( p ) * sin ( t ) , cos ( p ) ] ;
2019-03-23 04:13:18 +00:00
// Function: xyz_to_spherical()
// Usage:
// xyz_to_spherical(x,y,z)
// xyz_to_spherical([X,Y,Z])
// Description:
// Convert 3D cartesian coordinates to spherical coordinates.
// Returns [r,theta,phi], where phi is the angle from the Z+ pole,
// and theta is degrees counter-clockwise of X+ on the XY plane.
// Arguments:
2019-02-05 03:18:08 +00:00
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// sph = xyz_to_spherical(20,30,40);
// sph = xyz_to_spherical([40,50,70]);
function xyz_to_spherical ( x , y = undef , z = undef ) = let (
2019-03-23 04:13:18 +00:00
p = is_scalar ( x ) ? [ x , default ( y , 0 ) , default ( z , 0 ) ] : point3d ( x )
) [ norm ( p ) , atan2 ( p . y , p . x ) , atan2 ( norm ( [ p . x , p . y ] ) , p . z ) ] ;
// Function: altaz_to_xyz()
// Usage:
// altaz_to_xyz(alt, az, r);
// altaz_to_xyz([alt, az, r]);
// Description:
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
// Arguments:
2019-02-05 03:18:08 +00:00
// alt = altitude angle in degrees above the XY plane.
// az = azimuth angle in degrees clockwise of Y+ on the XY plane.
// r = distance from origin.
// Examples:
// xyz = altaz_to_xyz(20,30,40);
// xyz = altaz_to_xyz([40,60,50]);
function altaz_to_xyz ( alt , az = undef , r = undef ) = let (
p = az = = undef ? alt [ 0 ] : alt ,
t = 90 - ( az = = undef ? alt [ 1 ] : az ) ,
rad = az = = undef ? alt [ 2 ] : r
) rad * [ cos ( p ) * cos ( t ) , cos ( p ) * sin ( t ) , sin ( p ) ] ;
2019-03-23 04:13:18 +00:00
// Function: xyz_to_altaz()
// Usage:
// xyz_to_altaz(x,y,z);
// xyz_to_altaz([X,Y,Z]);
// Description:
// Convert 3D cartesian coordinates to altitude/azimuth/range coordinates.
// Returns [altitude,azimuth,range], where altitude is angle above the
// XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and
// range is the distance from the origin.
// Arguments:
2019-02-05 03:18:08 +00:00
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// aa = xyz_to_altaz(20,30,40);
// aa = xyz_to_altaz([40,50,70]);
function xyz_to_altaz ( x , y = undef , z = undef ) = let (
2019-03-23 04:13:18 +00:00
p = is_scalar ( x ) ? [ x , default ( y , 0 ) , default ( z , 0 ) ] : point3d ( x )
) [ atan2 ( p . z , norm ( [ p . x , p . y ] ) ) , atan2 ( p . x , p . y ) , norm ( p ) ] ;
2019-02-05 03:18:08 +00:00
2019-03-23 04:13:18 +00:00
// Section: Matrix Manipulation
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Function: ident()
// Description: Create an `n` by `n` identity matrix.
// Arguments:
// n = The size of the identity matrix square, `n` by `n`.
function ident ( n ) = [ for ( i = [ 0 : n - 1 ] ) [ for ( j = [ 0 : n - 1 ] ) ( i = = j ) ? 1 : 0 ] ] ;
2017-08-30 00:00:16 +00:00
2019-03-23 04:13:18 +00:00
// Create an identity matrix, for 3 axes.
ident3 = ident ( 3 ) ;
ident4 = ident ( 4 ) ;
2019-02-27 11:51:19 +00:00
2019-03-23 04:13:18 +00:00
// Function: mat3_to_mat4()
// Description: Takes a 3x3 matrix and returns its 4x4 equivalent.
function mat3_to_mat4 ( m ) = concat (
[ for ( r = [ 0 : 2 ] )
concat (
[ for ( c = [ 0 : 2 ] ) m [ r ] [ c ] ] ,
[ 0 ]
)
] ,
[ [ 0 , 0 , 0 , 1 ] ]
2019-02-27 11:51:19 +00:00
) ;
2019-03-23 04:13:18 +00:00
// Function: matrix3_translate()
// Description:
// Returns the 3x3 matrix to perform a 2D translation.
// Arguments:
// v = 2D Offset to translate by. [X,Y]
function matrix3_translate ( v ) = [
[ 1 , 0 , v . x ] ,
[ 0 , 1 , v . y ] ,
[ 0 , 0 , 1 ]
] ;
2019-02-24 12:35:40 +00:00
2019-03-23 04:13:18 +00:00
// Function: matrix4_translate()
// Description:
// Returns the 4x4 matrix to perform a 3D translation.
// Arguments:
// v = 3D offset to translate by. [X,Y,Z]
function matrix4_translate ( v ) = [
[ 1 , 0 , 0 , v . x ] ,
[ 0 , 1 , 0 , v . y ] ,
[ 0 , 0 , 1 , v . z ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-03-02 19:14:36 +00:00
2019-02-24 12:35:40 +00:00
2019-03-23 04:13:18 +00:00
// Function: matrix3_scale()
// Description:
// Returns the 3x3 matrix to perform a 2D scaling transformation.
// Arguments:
// v = 2D vector of scaling factors. [X,Y]
function matrix3_scale ( v ) = [
[ v . x , 0 , 0 ] ,
[ 0 , v . y , 0 ] ,
[ 0 , 0 , 1 ]
] ;
// Function: matrix4_scale()
// Description:
// Returns the 4x4 matrix to perform a 3D scaling transformation.
// Arguments:
// v = 3D vector of scaling factors. [X,Y,Z]
function matrix4_scale ( v ) = [
[ v . x , 0 , 0 , 0 ] ,
[ 0 , v . y , 0 , 0 ] ,
[ 0 , 0 , v . z , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
2019-02-27 11:51:19 +00:00
2019-03-23 04:13:18 +00:00
// Function: matrix3_zrot()
// Description:
// Returns the 3x3 matrix to perform a rotation of a 2D vector around the Z axis.
// Arguments:
// ang = Number of degrees to rotate.
function matrix3_zrot ( ang ) = [
[ cos ( ang ) , - sin ( ang ) , 0 ] ,
[ sin ( ang ) , cos ( ang ) , 0 ] ,
[ 0 , 0 , 1 ]
] ;
// Function: matrix4_xrot()
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the X axis.
// Arguments:
// ang = number of degrees to rotate.
function matrix4_xrot ( ang ) = [
[ 1 , 0 , 0 , 0 ] ,
[ 0 , cos ( ang ) , - sin ( ang ) , 0 ] ,
[ 0 , sin ( ang ) , cos ( ang ) , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix4_yrot()
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the Y axis.
// Arguments:
// ang = Number of degrees to rotate.
function matrix4_yrot ( ang ) = [
[ cos ( ang ) , 0 , sin ( ang ) , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ - sin ( ang ) , 0 , cos ( ang ) , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix4_zrot()
// Usage:
// matrix4_zrot(ang)
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around the Z axis.
// Arguments:
// ang = number of degrees to rotate.
function matrix4_zrot ( ang ) = [
[ cos ( ang ) , - sin ( ang ) , 0 , 0 ] ,
[ sin ( ang ) , cos ( ang ) , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix4_rot_by_axis()
// Usage:
// matrix4_rot_by_axis(u, ang);
// Description:
// Returns the 4x4 matrix to perform a rotation of a 3D vector around an axis.
// Arguments:
// u = 3D axis vector to rotate around.
// ang = number of degrees to rotate.
function matrix4_rot_by_axis ( u , ang ) = let (
u = normalize ( u ) ,
c = cos ( ang ) ,
c2 = 1 - c , s = sin ( ang )
) [
[ u [ 0 ] * u [ 0 ] * c2 + c , u [ 0 ] * u [ 1 ] * c2 - u [ 2 ] * s , u [ 0 ] * u [ 2 ] * c2 + u [ 1 ] * s , 0 ] ,
[ u [ 1 ] * u [ 0 ] * c2 + u [ 2 ] * s , u [ 1 ] * u [ 1 ] * c2 + c , u [ 1 ] * u [ 2 ] * c2 - u [ 0 ] * s , 0 ] ,
[ u [ 2 ] * u [ 0 ] * c2 - u [ 1 ] * s , u [ 2 ] * u [ 1 ] * c2 + u [ 0 ] * s , u [ 2 ] * u [ 2 ] * c2 + c , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix3_skew()
// Usage:
// matrix3_skew(xa, ya)
// Description:
// Returns the 3x3 matrix to skew a 2D vector along the XY plane.
// Arguments:
// xa = Skew angle, in degrees, in the direction of the X axis.
// ya = Skew angle, in degrees, in the direction of the Y axis.
function matrix3_skew ( xa , ya ) = [
[ 1 , tan ( xa ) , 0 ] ,
[ tan ( ya ) , 1 , 0 ] ,
[ 0 , 0 , 1 ]
] ;
// Function: matrix4_skew_xy()
// Usage:
// matrix4_skew_xy(xa, ya)
// Description:
// Returns the 4x4 matrix to perform a skew transformation along the XY plane..
// Arguments:
// xa = Skew angle, in degrees, in the direction of the X axis.
// ya = Skew angle, in degrees, in the direction of the Y axis.
function matrix4_skew_xy ( xa , ya ) = [
[ 1 , 0 , tan ( xa ) , 0 ] ,
[ 0 , 1 , tan ( ya ) , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix4_skew_xz()
// Usage:
// matrix4_skew_xz(xa, za)
// Description:
// Returns the 4x4 matrix to perform a skew transformation along the XZ plane.
// Arguments:
// xa = Skew angle, in degrees, in the direction of the X axis.
// za = Skew angle, in degrees, in the direction of the Z axis.
function matrix4_skew_xz ( xa , za ) = [
[ 1 , tan ( xa ) , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , tan ( za ) , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix4_skew_yz()
// Usage:
// matrix4_skew_yz(ya, za)
// Description:
// Returns the 4x4 matrix to perform a skew transformation along the YZ plane.
// Arguments:
// ya = Skew angle, in degrees, in the direction of the Y axis.
// za = Skew angle, in degrees, in the direction of the Z axis.
function matrix4_skew_yz ( ya , za ) = [
[ 1 , 0 , 0 , 0 ] ,
[ tan ( ya ) , 1 , 0 , 0 ] ,
[ tan ( za ) , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ]
] ;
// Function: matrix3_mult()
// Usage:
// matrix3_mult(matrices)
// Description:
// Returns a 3x3 transformation matrix which results from applying each matrix in `matrices` in order.
// Arguments:
// matrices = A list of 3x3 matrices.
// m = Optional starting matrix to apply everything to.
function matrix3_mult ( matrices , m = ident ( 3 ) , i = 0 ) =
( i >= len ( matrices ) ) ? m :
let ( newmat = is_def ( m ) ? matrices [ i ] * m : matrices [ i ] )
matrix3_mult ( matrices , m = newmat , i = i + 1 ) ;
// Function: matrix4_mult()
// Usage:
// matrix4_mult(matrices)
// Description:
// Returns a 4x4 transformation matrix which results from applying each matrix in `matrices` in order.
// Arguments:
// matrices = A list of 4x4 matrices.
// m = Optional starting matrix to apply everything to.
function matrix4_mult ( matrices , m = ident ( 4 ) , i = 0 ) =
( i >= len ( matrices ) ) ? m :
let ( newmat = is_def ( m ) ? matrices [ i ] * m : matrices [ i ] )
matrix4_mult ( matrices , m = newmat , i = i + 1 ) ;
// Function: matrix3_apply()
// Usage:
// matrix3_apply(pts, matrices)
// Description:
// Given a list of transformation matrices, applies them in order to the points in the point list.
// Arguments:
// pts = A list of 2D points to transform.
// matrices = A list of 3x3 matrices to apply, in order.
// Example:
// npts = matrix3_apply(
// pts = [for (x=[0:3]) [5*x,0]],
// matrices =[
// matrix3_scale([3,1]),
// matrix3_rot(90),
// matrix3_translate([5,5])
// ]
// ); // Returns [[5,5], [5,20], [5,35], [5,50]]
function matrix3_apply ( pts , matrices ) = let ( m = matrix3_mult ( matrices ) ) [ for ( p = pts ) point2d ( m * concat ( point2d ( p ) , [ 1 ] ) ) ] ;
// Function: matrix4_apply()
// Usage:
// matrix4_apply(pts, matrices)
// Description:
// Given a list of transformation matrices, applies them in order to the points in the point list.
// Arguments:
// pts = A list of 3D points to transform.
// matrices = A list of 4x4 matrices to apply, in order.
// Example:
// npts = matrix4_apply(
// pts = [for (x=[0:3]) [5*x,0,0]],
// matrices =[
// matrix4_scale([2,1,1]),
// matrix4_zrot(90),
// matrix4_translate([5,5,10])
// ]
// ); // Returns [[5,5,10], [5,15,10], [5,25,10], [5,35,10]]
function matrix4_apply ( pts , matrices ) = let ( m = matrix4_mult ( matrices ) ) [ for ( p = pts ) point3d ( m * concat ( point3d ( p ) , [ 1 ] ) ) ] ;
// Section: Geometry
// Function: point_on_segment()
// Usage:
// point_on_segment(point, edge);
// Description:
// Determine if the point is on the line segment between two points.
// Returns true if yes, and false if not.
// Arguments:
// point = The point to check colinearity of.
// edge = Array of two points forming the line segment to test against.
function point_on_segment ( point , edge ) =
point = = edge [ 0 ] || point = = edge [ 1 ] || // The point is an endpoint
sign ( edge [ 0 ] . x - point . x ) = = sign ( point . x - edge [ 1 ] . x ) // point is in between the
&& sign ( edge [ 0 ] . y - point . y ) = = sign ( point . y - edge [ 1 ] . y ) // edge endpoints
&& point_left_of_segment ( point , edge ) = = 0 ; // and on the line defined by edge
// Function: point_left_of_segment()
// Usage:
// point_left_of_segment(point, edge);
// Description:
// Return >0 if point is left of the line defined by edge.
// Return =0 if point is on the line.
// Return <0 if point is right of the line.
// Arguments:
// point = The point to check position of.
// edge = Array of two points forming the line segment to test against.
function point_left_of_segment ( point , edge ) =
( edge [ 1 ] . x - edge [ 0 ] . x ) * ( point . y - edge [ 0 ] . y ) - ( point . x - edge [ 0 ] . x ) * ( edge [ 1 ] . y - edge [ 0 ] . y ) ;
// Internal non-exposed function.
function _point_above_below_segment ( point , edge ) =
edge [ 0 ] . y < = point . y ? (
( edge [ 1 ] . y > point . y && point_left_of_segment ( point , edge ) > 0 ) ? 1 : 0
) : (
( edge [ 1 ] . y < = point . y && point_left_of_segment ( point , edge ) < 0 ) ? - 1 : 0
) ;
// Function: point_in_polygon()
// Usage:
// point_in_polygon(point, path)
// Description:
// This function tests whether the given point is inside, outside or on the boundary of
// the specified polygon using the Winding Number method. (http://geomalgorithms.com/a03-_inclusion.html)
// The polygon is given as a list of points, not including the repeated end point.
// Returns -1 if the point is outside the polyon.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies in the interior.
// The polygon does not need to be simple: it can have self-intersections.
// But the polygon cannot have holes (it must be simply connected).
// Rounding error may give mixed results for points on or near the boundary.
// Arguments:
// point = The point to check position of.
// path = The list of 2D path points forming the perimeter of the polygon.
function point_in_polygon ( point , path ) =
// Does the point lie on any edges? If so return 0.
2019-03-25 08:42:08 +00:00
sum ( [ for ( i = [ 0 : len ( path ) - 1 ] ) point_on_segment ( point , select ( path , i , i + 1 ) ) ? 1 : 0 ] ) > 0 ? 0 :
2019-03-23 04:13:18 +00:00
// Otherwise compute winding number and return 1 for interior, -1 for exterior
2019-03-25 08:42:08 +00:00
sum ( [ for ( i = [ 0 : len ( path ) - 1 ] ) _point_above_below_segment ( point , select ( path , i , i + 1 ) ) ] ) ! = 0 ? 1 : - 1 ;
2019-03-23 04:13:18 +00:00
// Function: pointlist_bounds()
// Usage:
// pointlist_bounds(pts);
// Description:
// Finds the bounds containing all the points in pts.
// Returns [[minx, miny, minz], [maxx, maxy, maxz]]
// Arguments:
// pts = List of points.
function pointlist_bounds ( pts ) = [
[ for ( a = [ 0 : 2 ] ) min ( [ for ( x = pts ) point3d ( x ) [ a ] ] ) ] ,
[ for ( a = [ 0 : 2 ] ) max ( [ for ( x = pts ) point3d ( x ) [ a ] ] ) ]
] ;
2019-02-27 11:51:19 +00:00
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap