2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: geometry.scad
// Geometry helpers.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
2019-06-27 01:56:33 +00:00
// CommonCode:
2019-07-13 22:57:24 +00:00
// include <BOSL2/rounding.scad>
2019-06-27 01:56:33 +00:00
2019-04-20 00:02:17 +00:00
// Section: Lines and Triangles
2019-05-02 02:28:02 +00:00
// Function: point_on_segment2d()
2019-04-20 00:02:17 +00:00
// Usage:
2019-05-02 02:28:02 +00:00
// point_on_segment2d(point, edge);
2019-04-20 00:02:17 +00:00
// Description:
// Determine if the point is on the line segment between two points.
2019-06-26 00:57:03 +00:00
// Returns true if yes, and false if not.
2019-04-20 00:02:17 +00:00
// Arguments:
2019-05-01 06:45:05 +00:00
// point = The point to test.
2019-04-20 00:02:17 +00:00
// edge = Array of two points forming the line segment to test against.
2019-06-18 01:55:10 +00:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_on_segment2d ( point , edge , eps = EPSILON ) =
approx ( point , edge [ 0 ] , eps = eps ) || approx ( point , edge [ 1 ] , eps = eps ) || // The point is an endpoint
2019-04-20 00:02:17 +00:00
sign ( edge [ 0 ] . x - point . x ) = = sign ( point . x - edge [ 1 ] . x ) // point is in between the
2019-06-26 00:57:03 +00:00
&& sign ( edge [ 0 ] . y - point . y ) = = sign ( point . y - edge [ 1 ] . y ) // edge endpoints
2019-06-18 01:55:10 +00:00
&& approx ( point_left_of_segment2d ( point , edge ) , 0 , eps = eps ) ; // and on the line defined by edge
2019-04-20 00:02:17 +00:00
2019-05-02 02:28:02 +00:00
// Function: point_left_of_segment2d()
2019-04-20 00:02:17 +00:00
// Usage:
2019-05-02 02:28:02 +00:00
// point_left_of_segment2d(point, edge);
2019-04-20 00:02:17 +00:00
// Description:
// Return >0 if point is left of the line defined by edge.
// Return =0 if point is on the line.
// Return <0 if point is right of the line.
// Arguments:
// point = The point to check position of.
// edge = Array of two points forming the line segment to test against.
2019-05-02 02:28:02 +00:00
function point_left_of_segment2d ( point , edge ) =
2019-04-20 00:02:17 +00:00
( edge [ 1 ] . x - edge [ 0 ] . x ) * ( point . y - edge [ 0 ] . y ) - ( point . x - edge [ 0 ] . x ) * ( edge [ 1 ] . y - edge [ 0 ] . y ) ;
2019-06-26 00:57:03 +00:00
2019-04-20 00:02:17 +00:00
// Internal non-exposed function.
2019-07-05 06:47:42 +00:00
function _point_above_below_segment ( point , edge ) =
edge [ 0 ] . y < = point . y ? (
( edge [ 1 ] . y > point . y && point_left_of_segment2d ( point , edge ) > 0 ) ? 1 : 0
2019-04-20 00:02:17 +00:00
) : (
2019-07-05 06:47:42 +00:00
( edge [ 1 ] . y < = point . y && point_left_of_segment2d ( point , edge ) < 0 ) ? - 1 : 0
2019-04-20 00:02:17 +00:00
) ;
// Function: collinear()
// Usage:
// collinear(a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// a = First point.
// b = Second point.
// c = Third point.
2019-05-01 06:45:05 +00:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
2019-04-20 00:02:17 +00:00
function collinear ( a , b , c , eps = EPSILON ) =
2019-05-01 06:45:05 +00:00
distance_from_line ( [ a , b ] , c ) < eps ;
2019-04-20 00:02:17 +00:00
// Function: collinear_indexed()
// Usage:
// collinear_indexed(points, a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// points = A list of points.
// a = Index in `points` of first point.
// b = Index in `points` of second point.
// c = Index in `points` of third point.
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
function collinear_indexed ( points , a , b , c , eps = EPSILON ) =
let (
p1 = points [ a ] ,
p2 = points [ b ] ,
p3 = points [ c ]
2019-05-01 06:45:05 +00:00
) collinear ( p1 , p2 , p3 , eps ) ;
// Function: distance_from_line()
// Usage:
// distance_from_line(line, pt);
// Description:
// Finds the perpendicular distance of a point `pt` from the line `line`.
// Arguments:
// line = A list of two points, defining a line that both are on.
// pt = A point to find the distance of from the line.
// Example:
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
function distance_from_line ( line , pt ) =
let ( a = line [ 0 ] , n = normalize ( line [ 1 ] - a ) , d = a - pt )
norm ( d - ( ( d * n ) * n ) ) ;
2019-04-20 00:02:17 +00:00
2019-05-29 01:44:41 +00:00
// Function: line_normal()
// Usage:
// line_normal([P1,P2])
// line_normal(p1,p2)
2019-08-16 09:06:04 +00:00
// Description:
// Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray.
2019-05-29 01:44:41 +00:00
// Arguments:
// p1 = First point on 2D line.
// p2 = Second point on 2D line.
2019-08-16 09:06:04 +00:00
// Example(2D):
// p1 = [10,10];
// p2 = [50,30];
// n = line_normal(p1,p2);
// stroke([p1,p2], endcap2="arrow2");
// color("green") stroke([p1,p1+10*n], endcap2="arrow2");
// color("blue") place_copies([p1,p2]) circle(d=2, $fn=12);
2019-05-29 01:44:41 +00:00
function line_normal ( p1 , p2 ) =
is_undef ( p2 ) ? line_normal ( p1 [ 0 ] , p1 [ 1 ] ) :
normalize ( [ p1 . y - p2 . y , p2 . x - p1 . x ] ) ;
// 2D Line intersection from two segments.
// This function returns [p,t,u] where p is the intersection point of
2019-09-19 09:44:28 +00:00
// the lines defined by the two segments, t is the proportional distance
// of the intersection point along s1, and u is the proportional distance
// of the intersection point along s2. The proportional values run over
// the range of 0 to 1 for each segment, so if it is in this range, then
// the intersection lies on the segment. Otherwise it lies somewhere on
// the extension of the segment.
2019-06-18 01:55:10 +00:00
function _general_line_intersection ( s1 , s2 , eps = EPSILON ) =
let (
denominator = det2 ( [ s1 [ 0 ] , s2 [ 0 ] ] - [ s1 [ 1 ] , s2 [ 1 ] ] )
) approx ( denominator , 0 , eps = eps ) ? [ undef , undef , undef ] : let (
t = det2 ( [ s1 [ 0 ] , s2 [ 0 ] ] - s2 ) / denominator ,
2019-09-19 09:44:28 +00:00
u = det2 ( [ s1 [ 0 ] , s1 [ 0 ] ] - [ s2 [ 0 ] , s1 [ 1 ] ] ) / denominator
2019-06-18 01:55:10 +00:00
) [ s1 [ 0 ] + t * ( s1 [ 1 ] - s1 [ 0 ] ) , t , u ] ;
2019-05-29 01:44:41 +00:00
// Function: line_intersection()
// Usage:
// line_intersection(l1, l2);
// Description:
// Returns the 2D intersection point of two unbounded 2D lines.
// Returns `undef` if the lines are parallel.
// Arguments:
// l1 = First 2D line, given as a list of two 2D points on the line.
// l2 = Second 2D line, given as a list of two 2D points on the line.
2019-06-18 01:55:10 +00:00
function line_intersection ( l1 , l2 , eps = EPSILON ) =
let ( isect = _general_line_intersection ( l1 , l2 , eps = eps ) ) isect [ 0 ] ;
2019-05-29 01:44:41 +00:00
// Function: segment_intersection()
// Usage:
// segment_intersection(s1, s2);
// Description:
// Returns the 2D intersection point of two 2D line segments.
// Returns `undef` if they do not intersect.
// Arguments:
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
2019-06-18 01:55:10 +00:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function segment_intersection ( s1 , s2 , eps = EPSILON ) =
2019-05-30 01:01:00 +00:00
let (
2019-06-18 01:55:10 +00:00
isect = _general_line_intersection ( s1 , s2 , eps = eps )
2019-05-30 01:01:00 +00:00
) isect [ 1 ] < 0 - eps || isect [ 1 ] > 1 + eps || isect [ 2 ] < 0 - eps || isect [ 2 ] > 1 + eps ? undef : isect [ 0 ] ;
2019-05-29 01:44:41 +00:00
// Function: line_segment_intersection()
// Usage:
// line_segment_intersection(line, segment);
// Description:
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
2019-06-18 01:55:10 +00:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function line_segment_intersection ( line , segment , eps = EPSILON ) =
2019-05-30 01:01:00 +00:00
let (
2019-06-18 01:55:10 +00:00
isect = _general_line_intersection ( line , segment , eps = eps )
2019-05-30 01:01:00 +00:00
) isect [ 2 ] < 0 - eps || isect [ 2 ] > 1 + eps ? undef : isect [ 0 ] ;
2019-05-29 01:44:41 +00:00
2019-08-17 04:22:41 +00:00
// Function: line_closest_point()
// Usage:
// line_closest_point(line,pt);
// Description:
// Returns the point on the given `line` that is closest to the given point `pt`.
// Arguments:
// line = A list of two points that are on the unbounded line.
// pt = The point to find the closest point on the line to.
function line_closest_point ( line , pt ) =
let (
n = line_normal ( line ) ,
isect = _general_line_intersection ( line , [ pt , pt + n ] )
) isect [ 0 ] ;
// Function: segment_closest_point()
// Usage:
// segment_closest_point(seg,pt);
// Description:
// Returns the point on the given line segment `seg` that is closest to the given point `pt`.
// Arguments:
// seg = A list of two points that are the endpoints of the bounded line segment.
// pt = The point to find the closest point on the segment to.
function segment_closest_point ( seg , pt ) =
let (
n = line_normal ( seg ) ,
isect = _general_line_intersection ( seg , [ pt , pt + n ] )
)
2019-08-20 04:11:19 +00:00
norm ( n ) = = 0 ? seg [ 0 ] :
2019-08-17 04:22:41 +00:00
isect [ 1 ] < = 0 ? seg [ 0 ] :
isect [ 1 ] >= 1 ? seg [ 1 ] :
isect [ 0 ] ;
2019-06-12 09:27:42 +00:00
// Function: find_circle_2tangents()
// Usage:
// find_circle_2tangents(pt1, pt2, pt3, r|d);
// Description:
// Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point.
// Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`.
// If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle.
// Arguments:
// pt1 = A point that the first ray passes though.
// pt2 = The starting point of both rays.
// pt3 = A point that the second ray passes though.
// r = The radius of the circle to find.
// d = The diameter of the circle to find.
2019-08-16 09:06:04 +00:00
// Example(2D):
// pts = [[60,40], [10,10], [65,5]];
// rad = 10;
// stroke([pts[1],pts[0]], endcap2="arrow2");
// stroke([pts[1],pts[2]], endcap2="arrow2");
// circ = find_circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad);
// translate(circ[0]) {
// color("green") {
// stroke(circle(r=rad),closed=true);
// stroke([[0,0],rad*[cos(315),sin(315)]]);
// }
// }
// place_copies(pts) color("blue") circle(d=2, $fn=12);
// translate(circ[0]) color("red") circle(d=2, $fn=12);
// labels = [[pts[0], "pt1"], [pts[1],"pt2"], [pts[2],"pt3"], [circ[0], "CP"], [circ[0]+[cos(315),sin(315)]*rad*0.7, "r"]];
// for(l=labels) translate(l[0]+[0,2]) color("black") text(text=l[1], size=2.5, halign="center");
2019-06-12 09:27:42 +00:00
function find_circle_2tangents ( pt1 , pt2 , pt3 , r = undef , d = undef ) =
2019-10-30 05:46:00 +00:00
let ( r = get_radius ( r = r , d = d , dflt = undef ) )
assert ( r ! = undef , "Must specify either r or d." )
( is_undef ( pt2 ) && is_undef ( pt3 ) && is_list ( pt1 ) ) ? find_circle_2tangents ( pt1 [ 0 ] , pt1 [ 1 ] , pt1 [ 2 ] , r = r ) :
2019-06-12 09:27:42 +00:00
let (
v1 = normalize ( pt1 - pt2 ) ,
v2 = normalize ( pt3 - pt2 )
) approx ( norm ( v1 + v2 ) ) ? undef :
let (
a = vector_angle ( v1 , v2 ) ,
n = vector_axis ( v1 , v2 ) ,
v = normalize ( mean ( [ v1 , v2 ] ) ) ,
s = r / sin ( a / 2 ) ,
cp = pt2 + s * v / norm ( v )
) [ cp , n ] ;
2019-07-15 23:41:01 +00:00
// Function: find_circle_3points()
// Usage:
// find_circle_3points(pt1, pt2, pt3);
// Description:
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
// points. The centerpoint will be a 2D or 3D vector, depending on the points input. If all three
// points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]).
// If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are
// collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D
// vector with a non-negative Z axis.
// Arguments:
// pt1 = The first point.
// pt2 = The second point.
// pt3 = The third point.
2019-08-16 09:06:04 +00:00
// Example(2D):
// pts = [[60,40], [10,10], [65,5]];
// circ = find_circle_3points(pts[0], pts[1], pts[2]);
// translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72);
// translate(circ[0]) color("red") circle(d=3, $fn=12);
// place_copies(pts) color("blue") circle(d=3, $fn=12);
2019-07-15 23:41:01 +00:00
function find_circle_3points ( pt1 , pt2 , pt3 ) =
2019-10-30 05:46:00 +00:00
( is_undef ( pt2 ) && is_undef ( pt3 ) && is_list ( pt1 ) ) ? find_circle_3points ( pt1 [ 0 ] , pt1 [ 1 ] , pt1 [ 2 ] ) :
2019-07-15 23:41:01 +00:00
collinear ( pt1 , pt2 , pt3 ) ? [ undef , undef , undef ] :
let (
v1 = pt1 - pt2 ,
v2 = pt3 - pt2 ,
n = vector_axis ( v1 , v2 ) ,
n2 = n . z < 0 ? - n : n
) len ( pt1 ) + len ( pt2 ) + len ( pt3 ) > 6 ? (
let (
a = project_plane ( pt1 , pt1 , pt2 , pt3 ) ,
b = project_plane ( pt2 , pt1 , pt2 , pt3 ) ,
c = project_plane ( pt3 , pt1 , pt2 , pt3 ) ,
res = find_circle_3points ( a , b , c )
) res [ 0 ] = = undef ? [ undef , undef , undef ] : let (
cp = lift_plane ( res [ 0 ] , pt1 , pt2 , pt3 ) ,
2019-10-30 05:46:00 +00:00
r = norm ( pt2 - cp )
2019-07-15 23:41:01 +00:00
) [ cp , r , n2 ]
) : let (
mp1 = pt2 + v1 / 2 ,
mp2 = pt2 + v2 / 2 ,
mpv1 = rot ( 90 , v = n , p = v1 ) ,
mpv2 = rot ( 90 , v = n , p = v2 ) ,
l1 = [ mp1 , mp1 + mpv1 ] ,
l2 = [ mp2 , mp2 + mpv2 ] ,
isect = line_intersection ( l1 , l2 )
) is_undef ( isect ) ? [ undef , undef , undef ] : let (
2019-08-16 09:06:04 +00:00
r = norm ( pt2 - isect )
2019-07-15 23:41:01 +00:00
) [ isect , r , n2 ] ;
2019-10-22 01:59:35 +00:00
// Function: find_circle_tangents()
// Usage:
// tangents = find_circle_tangents(r|d, cp, pt);
// Description:
// Given a circle and a point outside that circle, finds the tangent point(s) on the circle for a
// line passing through the point. Returns list of zero or more sublists of [ANG, TANGPT]
// Arguments:
// r = Radius of the circle.
// d = Diameter of the circle.
// cp = The coordinates of the circle centerpoint.
// pt = The coordinates of the external point.
// Example(2D):
// cp = [-10,-10]; r = 30; pt = [30,10];
// tanpts = subindex(find_circle_tangents(r=r, cp=cp, pt=pt),1);
// color("yellow") translate(cp) circle(r=r);
// color("cyan") for(tp=tanpts) {stroke([tp,pt]); stroke([tp,cp]);}
// color("red") place_copies(tanpts) circle(d=3,$fn=12);
// color("blue") place_copies([cp,pt]) circle(d=3,$fn=12);
function find_circle_tangents ( r , d , cp , pt ) =
assert ( is_num ( r ) || is_num ( d ) )
assert ( is_vector ( cp ) )
assert ( is_vector ( pt ) )
let (
r = get_radius ( r = r , d = d , dflt = 1 ) ,
delta = pt - cp ,
dist = norm ( delta ) ,
baseang = atan2 ( delta . y , delta . x )
) dist < r ? [ ] :
approx ( dist , r ) ? [ [ baseang , pt ] ] :
let (
relang = acos ( r / dist ) ,
angs = [ baseang + relang , baseang - relang ]
) [ for ( ang = angs ) [ ang , cp + r * [ cos ( ang ) , sin ( ang ) ] ] ] ;
2019-07-17 08:49:51 +00:00
// Function: tri_calc()
// Usage:
// tri_calc(ang,ang2,adj,opp,hyp);
// Description:
// Given a side length and an angle, or two side lengths, calculates the rest of the side lengths
// and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where
// ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side
// opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees.
// This is certainly more verbose and slower than writing your own calculations, but has the nice
// benefit that you can just specify the info you have, and don't have to figure out which trig
// formulas you need to use.
// Figure(2D):
// color("#ccc") {
// stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]);
// stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30));
// stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58));
// }
// color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]);
// color("#0c0") {
// translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center");
// translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center");
// }
// color("blue") {
// translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center");
// translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center");
// translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center");
// }
// Arguments:
// ang = The angle in degrees of the primary corner of the triangle.
// ang2 = The angle in degrees of the other non-right corner of the triangle.
// adj = The length of the side adjacent to the primary corner.
// opp = The length of the side opposite to the primary corner.
// hyp = The length of the hypotenuse.
// Example:
// tri = tri_calc(opp=15,hyp=30);
// echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]);
// Examples:
// adj = tri_calc(ang=30,opp=10)[0];
// opp = tri_calc(ang=20,hyp=30)[1];
// hyp = tri_calc(ang2=50,adj=20)[2];
// ang = tri_calc(adj=20,hyp=30)[3];
// ang2 = tri_calc(adj=20,hyp=40)[4];
function tri_calc ( ang , ang2 , adj , opp , hyp ) =
2019-10-30 05:46:00 +00:00
assert ( ang = = undef || ang2 = = undef , "You cannot specify both ang and ang2." )
2019-07-17 08:49:51 +00:00
assert ( num_defined ( [ ang , ang2 , adj , opp , hyp ] ) = = 2 , "You must specify exactly two arguments." )
let (
ang = ang ! = undef ? assert ( ang > 0 && ang < 90 ) ang :
ang2 ! = undef ? ( 90 - ang2 ) :
adj = = undef ? asin ( constrain ( opp / hyp , - 1 , 1 ) ) :
opp = = undef ? acos ( constrain ( adj / hyp , - 1 , 1 ) ) :
atan2 ( opp , adj ) ,
ang2 = ang2 ! = undef ? assert ( ang2 > 0 && ang2 < 90 ) ang2 : ( 90 - ang ) ,
adj = adj ! = undef ? assert ( adj > 0 ) adj :
( opp ! = undef ? ( opp / tan ( ang ) ) : ( hyp * cos ( ang ) ) ) ,
opp = opp ! = undef ? assert ( opp > 0 ) opp :
( adj ! = undef ? ( adj * tan ( ang ) ) : ( hyp * sin ( ang ) ) ) ,
hyp = hyp ! = undef ? assert ( hyp > 0 ) assert ( adj < hyp ) assert ( opp < hyp ) hyp :
( adj ! = undef ? ( adj / cos ( ang ) ) : ( opp / sin ( ang ) ) )
)
[ adj , opp , hyp , ang , ang2 ] ;
2019-10-30 05:46:00 +00:00
// Function: hyp_opp_to_adj()
// Usage:
// adj = hyp_opp_to_adj(hyp,opp);
// Description:
// Given the lengths of the hypotenuse and opposite side of a right triangle, returns the length
// of the adjacent side.
// Arguments:
// hyp = The length of the hypotenuse of the right triangle.
// opp = The length of the side of the right triangle that is opposite from the primary angle.
// Example:
// hyp = hyp_opp_to_adj(5,3); // Returns: 4
function hyp_opp_to_adj ( hyp , opp ) =
assert ( is_num ( hyp ) && hyp >= 0 )
assert ( is_num ( opp ) && opp >= 0 )
sqrt ( hyp * hyp - opp * opp ) ;
// Function: hyp_ang_to_adj()
// Usage:
// adj = hyp_ang_to_adj(hyp,ang);
// Description:
// Given the length of the hypotenuse and the angle of the primary corner of a right triangle,
// returns the length of the adjacent side.
// Arguments:
// hyp = The length of the hypotenuse of the right triangle.
// ang = The angle in degrees of the primary corner of the right triangle.
// Example:
// adj = hyp_ang_to_adj(8,60); // Returns: 4
function hyp_ang_to_adj ( hyp , ang ) =
assert ( is_num ( hyp ) && hyp >= 0 )
assert ( is_num ( ang ) && ang > 0 && ang < 90 )
hyp * cos ( ang ) ;
// Function: opp_ang_to_adj()
// Usage:
// adj = opp_ang_to_adj(opp,ang);
// Description:
// Given the angle of the primary corner of a right triangle, and the length of the side opposite of it,
// returns the length of the adjacent side.
// Arguments:
// opp = The length of the side of the right triangle that is opposite from the primary angle.
// ang = The angle in degrees of the primary corner of the right triangle.
// Example:
// adj = opp_ang_to_adj(8,30); // Returns: 4
function opp_ang_to_adj ( opp , ang ) =
assert ( is_num ( opp ) && opp >= 0 )
assert ( is_num ( ang ) && ang > 0 && ang < 90 )
opp / tan ( ang ) ;
// Function: hyp_adj_to_opp()
// Usage:
// opp = hyp_adj_to_opp(hyp,adj);
// Description:
// Given the length of the hypotenuse and the adjacent side, returns the length of the opposite side.
// Arguments:
// hyp = The length of the hypotenuse of the right triangle.
// adj = The length of the side of the right triangle that is adjacent to the primary angle.
// Example:
// opp = hyp_adj_to_opp(5,4); // Returns: 3
function hyp_adj_to_opp ( hyp , adj ) =
assert ( is_num ( hyp ) && hyp >= 0 )
assert ( is_num ( adj ) && adj >= 0 )
sqrt ( hyp * hyp - adj * adj ) ;
// Function: hyp_ang_to_opp()
// Usage:
// opp = hyp_ang_to_opp(hyp,adj);
// Description:
// Given the length of the hypotenuse of a right triangle, and the angle of the corner, returns the length of the opposite side.
// Arguments:
// hyp = The length of the hypotenuse of the right triangle.
// ang = The angle in degrees of the primary corner of the right triangle.
// Example:
// opp = hyp_ang_to_opp(8,30); // Returns: 4
function hyp_ang_to_opp ( hyp , ang ) =
assert ( is_num ( hyp ) && hyp >= 0 )
assert ( is_num ( ang ) && ang > 0 && ang < 90 )
hyp * sin ( ang ) ;
// Function: adj_ang_to_opp()
// Usage:
// opp = adj_ang_to_opp(adj,ang);
// Description:
// Given the length of the adjacent side of a right triangle, and the angle of the corner, returns the length of the opposite side.
// Arguments:
// adj = The length of the side of the right triangle that is adjacent to the primary angle.
// ang = The angle in degrees of the primary corner of the right triangle.
// Example:
// opp = adj_ang_to_opp(8,45); // Returns: 8
function adj_ang_to_opp ( adj , ang ) =
assert ( is_num ( adj ) && adj >= 0 )
assert ( is_num ( ang ) && ang > 0 && ang < 90 )
adj * tan ( ang ) ;
// Function: adj_opp_to_hyp()
// Usage:
// hyp = adj_opp_to_hyp(adj,opp);
// Description:
// Given the length of the adjacent and opposite sides of a right triangle, returns the length of thee hypotenuse.
// Arguments:
// adj = The length of the side of the right triangle that is adjacent to the primary angle.
// opp = The length of the side of the right triangle that is opposite from the primary angle.
// Example:
// hyp = adj_opp_to_hyp(3,4); // Returns: 5
function adj_opp_to_hyp ( adj , opp ) =
assert ( is_num ( adj ) && adj >= 0 )
assert ( is_num ( opp ) && opp >= 0 )
norm ( [ opp , adj ] ) ;
// Function: adj_ang_to_hyp()
// Usage:
// hyp = adj_ang_to_hyp(adj,ang);
// Description:
// For a right triangle, given the length of the adjacent side, and the corner angle, returns the length of the hypotenuse.
// Arguments:
// adj = The length of the side of the right triangle that is adjacent to the primary angle.
// ang = The angle in degrees of the primary corner of the right triangle.
// Example:
// hyp = adj_ang_to_hyp(4,60); // Returns: 8
function adj_ang_to_hyp ( adj , ang ) =
assert ( is_num ( adj ) && adj >= 0 )
assert ( is_num ( ang ) && ang >= 0 && ang < 90 )
adj / cos ( ang ) ;
// Function: opp_ang_to_hyp()
// Usage:
// hyp = opp_ang_to_hyp(opp,ang);
// Description:
// For a right triangle, given the length of the opposite side, and the corner angle, returns the length of the hypotenuse.
// Arguments:
// opp = The length of the side of the right triangle that is opposite from the primary angle.
// ang = The angle in degrees of the primary corner of the right triangle.
// Example:
// hyp = opp_ang_to_hyp(4,30); // Returns: 8
function opp_ang_to_hyp ( opp , ang ) =
assert ( is_num ( opp ) && opp >= 0 )
assert ( is_num ( ang ) && ang > 0 && ang < = 90 )
opp / sin ( ang ) ;
// Function: hyp_adj_to_ang()
// Usage:
// ang = hyp_adj_to_ang(hyp,adj);
// Description:
// For a right triangle, given the lengths of the hypotenuse and the adjacent sides, returns the angle of the corner.
// Arguments:
// hyp = The length of the hypotenuse of the right triangle.
// adj = The length of the side of the right triangle that is adjacent to the primary angle.
// Example:
// ang = hyp_adj_to_ang(8,4); // Returns: 60 degrees
function hyp_adj_to_ang ( hyp , adj ) =
assert ( is_num ( hyp ) && hyp > 0 )
assert ( is_num ( adj ) && adj >= 0 )
acos ( adj / hyp ) ;
// Function: hyp_opp_to_ang()
// Usage:
// ang = hyp_opp_to_ang(hyp,opp);
// Description:
// For a right triangle, given the lengths of the hypotenuse and the opposite sides, returns the angle of the corner.
// Arguments:
// hyp = The length of the hypotenuse of the right triangle.
// opp = The length of the side of the right triangle that is opposite from the primary angle.
// Example:
// ang = hyp_opp_to_ang(8,4); // Returns: 30 degrees
function hyp_opp_to_ang ( hyp , opp ) =
assert ( is_num ( hyp ) && hyp > 0 )
assert ( is_num ( opp ) && opp >= 0 )
asin ( opp / hyp ) ;
// Function: adj_opp_to_ang()
// Usage:
// ang = adj_opp_to_ang(adj,opp);
// Description:
// For a right triangle, given the lengths of the adjacent and opposite sides, returns the angle of the corner.
// Arguments:
// adj = The length of the side of the right triangle that is adjacent to the primary angle.
// opp = The length of the side of the right triangle that is opposite from the primary angle.
// Example:
// ang = adj_opp_to_ang(sqrt(3)/2,0.5); // Returns: 30 degrees
function adj_opp_to_ang ( adj , opp ) =
assert ( is_num ( adj ) && adj >= 0 )
assert ( is_num ( opp ) && opp >= 0 )
atan2 ( opp , adj ) ;
2019-07-17 08:49:51 +00:00
2019-07-10 20:37:23 +00:00
// Function: triangle_area()
2019-04-20 00:02:17 +00:00
// Usage:
2019-07-10 20:37:23 +00:00
// triangle_area(a,b,c);
2019-04-20 00:02:17 +00:00
// Description:
2019-07-10 20:37:23 +00:00
// Returns the area of a triangle formed between three 2D or 3D vertices.
// Result will be negative if the points are 2D and in in clockwise order.
2019-04-20 00:02:17 +00:00
// Examples:
2019-07-10 20:37:23 +00:00
// triangle_area([0,0], [5,10], [10,0]); // Returns -50
// triangle_area([10,0], [5,10], [0,0]); // Returns 50
function triangle_area ( a , b , c ) =
len ( a ) = = 3 ? 0.5 * norm ( cross ( c - a , c - b ) ) : (
2019-06-26 00:57:03 +00:00
a . x * ( b . y - c . y ) +
b . x * ( c . y - a . y ) +
2019-04-20 00:02:17 +00:00
c . x * ( a . y - b . y )
) / 2 ;
2019-06-17 06:57:05 +00:00
2019-04-20 00:02:17 +00:00
// Section: Planes
// Function: plane3pt()
// Usage:
// plane3pt(p1, p2, p3);
// Description:
2019-05-01 06:45:05 +00:00
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
2019-04-20 00:02:17 +00:00
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// p1 = The first point on the plane.
// p2 = The second point on the plane.
// p3 = The third point on the plane.
function plane3pt ( p1 , p2 , p3 ) =
2019-05-01 06:45:05 +00:00
let (
p1 = point3d ( p1 ) ,
p2 = point3d ( p2 ) ,
p3 = point3d ( p3 ) ,
normal = normalize ( cross ( p3 - p1 , p2 - p1 ) )
) concat ( normal , [ normal * p1 ] ) ;
2019-04-20 00:02:17 +00:00
// Function: plane3pt_indexed()
// Usage:
// plane3pt_indexed(points, i1, i2, i3);
// Description:
2019-10-22 01:59:35 +00:00
// Given a list of points, and the indices of three of those points,
2019-04-20 00:02:17 +00:00
// generates the cartesian equation of a plane that those points all
// lie on. Requires that the three indexed points be non-collinear.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// points = A list of points.
// i1 = The index into `points` of the first point on the plane.
// i2 = The index into `points` of the second point on the plane.
// i3 = The index into `points` of the third point on the plane.
function plane3pt_indexed ( points , i1 , i2 , i3 ) =
let (
p1 = points [ i1 ] ,
p2 = points [ i2 ] ,
2019-05-01 06:45:05 +00:00
p3 = points [ i3 ]
) plane3pt ( p1 , p2 , p3 ) ;
2019-04-20 00:02:17 +00:00
2019-08-21 03:47:29 +00:00
// Function: plane_from_pointslist()
// Usage:
// plane_from_pointslist(points);
// Description:
2019-10-22 01:59:35 +00:00
// Given a list of 3 or more coplanar points, returns the cartesian equation of a plane.
2019-08-21 03:47:29 +00:00
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of the plane.
function plane_from_pointslist ( points ) =
let (
points = deduplicate ( points ) ,
2019-11-04 02:45:53 +00:00
indices = sort ( find_noncollinear_points ( points ) ) ,
2019-08-21 03:47:29 +00:00
p1 = points [ indices [ 0 ] ] ,
p2 = points [ indices [ 1 ] ] ,
2019-10-30 05:46:00 +00:00
p3 = points [ indices [ 2 ] ] ,
2019-11-04 02:45:53 +00:00
plane = plane3pt ( p1 , p2 , p3 )
) plane ;
2019-08-21 03:47:29 +00:00
2019-05-29 01:44:41 +00:00
// Function: plane_normal()
// Usage:
// plane_normal(plane);
// Description:
// Returns the normal vector for the given plane.
function plane_normal ( plane ) = [ for ( i = [ 0 : 2 ] ) plane [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: distance_from_plane()
// Usage:
// distance_from_plane(plane, point)
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
// The returned distance will be positive if the point is in front of the
// plane; on the same side of the plane as the normal of that plane points
// towards. If the point is behind the plane, then the distance returned
// will be negative. The normal of the plane is the same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function distance_from_plane ( plane , point ) =
2019-10-30 05:46:00 +00:00
[ plane . x , plane . y , plane . z ] * point3d ( point ) - plane [ 3 ] ;
2019-04-20 00:02:17 +00:00
// Function: coplanar()
// Usage:
// coplanar(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
// Returns true if the point is on that plane.
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function coplanar ( plane , point ) =
abs ( distance_from_plane ( plane , point ) ) < = EPSILON ;
// Function: in_front_of_plane()
// Usage:
// in_front_of_plane(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
// plane that the normal points towards. The normal of the plane is the
// same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function in_front_of_plane ( plane , point ) =
distance_from_plane ( plane , point ) > EPSILON ;
// Section: Paths and Polygons
2019-06-17 07:10:01 +00:00
// Function: is_path()
// Usage:
// is_path(x);
// Description:
2019-07-10 20:12:32 +00:00
// Returns true if the given item looks like a path. A path is defined as a list of two or more points.
function is_path ( x ) = is_list ( x ) && is_vector ( x . x ) && len ( x ) > 1 ;
2019-06-17 07:10:01 +00:00
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
// Description:
// Returns true if the first and last points in the given path are coincident.
2019-06-18 01:55:10 +00:00
function is_closed_path ( path , eps = EPSILON ) = approx ( path [ 0 ] , path [ len ( path ) - 1 ] , eps = eps ) ;
2019-06-17 07:10:01 +00:00
2019-07-19 04:48:32 +00:00
// Function: close_path()
2019-06-17 07:10:01 +00:00
// Usage:
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
2019-06-18 01:55:10 +00:00
function close_path ( path , eps = EPSILON ) = is_closed_path ( path , eps = eps ) ? path : concat ( path , [ path [ 0 ] ] ) ;
2019-06-17 07:10:01 +00:00
2019-07-19 04:48:32 +00:00
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
function cleanup_path ( path , eps = EPSILON ) = is_closed_path ( path , eps = eps ) ? select ( path , 0 , - 2 ) : path ;
2019-09-19 09:44:28 +00:00
// Function: path_self_intersections()
// Usage:
// isects = path_self_intersections(path, [eps]);
// Description:
// Locates all self intersections of the given path. Returns a list of intersections, where
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
// of the segment, and a proportion of 1.0 indicates the end of the segment.
// Arguments:
// path = The path to find self intersections of.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// isects = path_self_intersections(path, closed=true);
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
// stroke(path, closed=true, width=1);
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
function path_self_intersections ( path , closed = true , eps = EPSILON ) =
let (
2019-09-25 06:32:30 +00:00
path = cleanup_path ( path , eps = eps ) ,
plen = len ( path )
2019-09-19 09:44:28 +00:00
) [
2019-09-25 06:32:30 +00:00
for ( i = [ 0 : 1 : plen - ( closed ? 2 : 3 ) ] , j = [ i + 1 : 1 : plen - ( closed ? 1 : 2 ) ] ) let (
a1 = path [ i ] ,
a2 = path [ ( i + 1 ) % plen ] ,
b1 = path [ j ] ,
b2 = path [ ( j + 1 ) % plen ] ,
isect =
( max ( a1 . x , a2 . x ) < min ( b1 . x , b2 . x ) ) ? undef :
( min ( a1 . x , a2 . x ) > max ( b1 . x , b2 . x ) ) ? undef :
( max ( a1 . y , a2 . y ) < min ( b1 . y , b2 . y ) ) ? undef :
( min ( a1 . y , a2 . y ) > max ( b1 . y , b2 . y ) ) ? undef :
let (
c = a1 - a2 ,
d = b1 - b2 ,
denom = ( c . x * d . y ) - ( c . y * d . x )
) abs ( denom ) < eps ? undef : let (
e = a1 - b1 ,
t = ( ( e . x * d . y ) - ( e . y * d . x ) ) / denom ,
u = ( ( e . x * c . y ) - ( e . y * c . x ) ) / denom
) [ a1 + t * ( a2 - a1 ) , t , u ]
) if (
isect ! = undef &&
isect [ 1 ] > eps && isect [ 1 ] < = 1 + eps &&
isect [ 2 ] > eps && isect [ 2 ] < = 1 + eps
) [ isect [ 0 ] , i , isect [ 1 ] , j , isect [ 2 ] ]
2019-09-19 09:44:28 +00:00
] ;
2019-09-24 10:58:45 +00:00
function _tag_self_crossing_subpaths ( path , closed = true , eps = EPSILON ) =
let (
subpaths = split_path_at_self_crossings (
path , closed = closed , eps = eps
)
) [
for ( subpath = subpaths ) let (
seg = select ( subpath , 0 , 1 ) ,
mp = mean ( seg ) ,
n = line_normal ( seg ) / 2048 ,
p1 = mp + n ,
p2 = mp - n ,
p1in = point_in_polygon ( p1 , path ) >= 0 ,
p2in = point_in_polygon ( p2 , path ) >= 0 ,
tag = ( p1in && p2in ) ? "I" : "O"
) [ tag , subpath ]
] ;
2019-09-19 09:44:28 +00:00
// Function: decompose_path()
// Usage:
// splitpaths = decompose_path(path, [closed], [eps]);
// Description:
2019-09-24 10:58:45 +00:00
// Given a possibly self-crossing path, decompose it into non-crossing paths that are on the perimeter
// of the areas bounded by that path.
2019-09-19 09:44:28 +00:00
// Arguments:
// path = The path to split up.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// splitpaths = decompose_path(path, closed=true);
// rainbow(splitpaths) stroke($item, closed=true, width=3);
function decompose_path ( path , closed = true , eps = EPSILON ) =
let (
path = cleanup_path ( path , eps = eps ) ,
2019-09-24 10:58:45 +00:00
tagged = _tag_self_crossing_subpaths ( path , closed = closed , eps = eps ) ,
kept = [ for ( sub = tagged ) if ( sub [ 0 ] = = "O" ) sub [ 1 ] ] ,
outregion = assemble_path_fragments ( kept , eps = eps )
) outregion ;
2019-09-19 09:44:28 +00:00
2019-07-19 04:48:32 +00:00
// Function: path_subselect()
2019-06-17 07:10:01 +00:00
// Usage:
2019-09-21 08:57:50 +00:00
// path_subselect(path,s1,u1,s2,u2,[closed]):
2019-06-17 07:10:01 +00:00
// Description:
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
// Arguments:
2019-09-21 08:57:50 +00:00
// path = The path to get a section of.
2019-06-17 07:10:01 +00:00
// s1 = The number of the starting segment.
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
// s2 = The number of the ending segment.
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
2019-09-21 08:57:50 +00:00
// closed = If true, treat path as a closed polygon.
function path_subselect ( path , s1 , u1 , s2 , u2 , closed = false ) =
2019-06-17 07:10:01 +00:00
let (
2019-09-21 08:57:50 +00:00
lp = len ( path ) ,
l = lp - ( closed ? 0 : 1 ) ,
2019-06-17 07:10:01 +00:00
u1 = s1 < 0 ? 0 : s1 > l ? 1 : u1 ,
u2 = s2 < 0 ? 0 : s2 > l ? 1 : u2 ,
s1 = constrain ( s1 , 0 , l ) ,
s2 = constrain ( s2 , 0 , l ) ,
pathout = concat (
2019-09-21 08:57:50 +00:00
( s1 < l && u1 < 1 ) ? [ lerp ( path [ s1 ] , path [ ( s1 + 1 ) % lp ] , u1 ) ] : [ ] ,
2019-06-17 07:10:01 +00:00
[ for ( i = [ s1 + 1 : 1 : s2 ] ) path [ i ] ] ,
2019-09-21 08:57:50 +00:00
( s2 < l && u2 > 0 ) ? [ lerp ( path [ s2 ] , path [ ( s2 + 1 ) % lp ] , u2 ) ] : [ ]
2019-06-17 07:10:01 +00:00
)
) pathout ;
2019-07-10 20:37:23 +00:00
// Function: polygon_area()
// Usage:
// area = polygon_area(vertices);
// Description:
// Given a polygon, returns the area of that polygon. If the polygon is self-crossing, the results are undefined.
function polygon_area ( vertices ) =
0.5 * sum ( [ for ( i = [ 0 : len ( vertices ) - 1 ] ) det2 ( select ( vertices , i , i + 1 ) ) ] ) ;
2019-08-22 06:52:03 +00:00
// Function: polygon_shift()
// Usage:
// polygon_shift(poly, i);
// Description:
// Given a polygon `poly`, rotates the point ordering so that the first point in the polygon path is the one at index `i`.
// Arguments:
// poly = The list of points in the polygon path.
// i = The index of the point to shift to the front of the path.
// Example:
// polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]]
2019-09-19 09:44:28 +00:00
function polygon_shift ( poly , i ) =
2019-10-30 08:19:34 +00:00
list_rotate ( cleanup_path ( poly ) , i ) ;
2019-08-22 06:52:03 +00:00
2019-08-21 03:47:29 +00:00
// Function: polygon_shift_to_closest_point()
// Usage:
// polygon_shift_to_closest_point(path, pt);
// Description:
// Given a polygon `path`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
function polygon_shift_to_closest_point ( path , pt ) =
let (
path = cleanup_path ( path ) ,
closest = path_closest_point ( path , pt ) ,
seg = select ( path , closest [ 0 ] , closest [ 0 ] + 1 ) ,
u = norm ( closest [ 1 ] - seg [ 0 ] ) / norm ( seg [ 1 ] - seg [ 0 ] ) ,
segnum = closest [ 0 ] + ( u > 0.5 ? 1 : 0 )
) select ( path , segnum , segnum + len ( path ) - 1 ) ;
2019-11-20 02:03:47 +00:00
// Function: reindex_polygon()
// Usage:
// newpoly = reindex_polygon(reference, poly);
2019-11-19 22:42:11 +00:00
// Description:
// Rotates the point order and possibly reverses the point order of a polygon path to optimize its pairwise its
// point association with a reference polygon. The two polygons must have the same number of vertices.
// The optimization is done by computing the distance, norm(reference[i]-poly[i]), between corresponding pairs of
// vertices of the two polygons and choosing the polygon point order that makes the total sum over all pairs as
// small as possible. Returns the reindexed polygon. Note that the geometry of the polygon is not changed by
// this operation, just the labeling of its vertices. If the input polygon is oriented opposite
// the reference then its point order is flipped.
// Arguments:
// reference = reference polygon path
// poly = input polygon to reindex
// Example(2D): The red dots show the 0th entry in the two input path lists. Note that the red dots are not near each other. The blue dot shows the 0th entry in the output polygon
// pent = subdivide_path([for(i=[0:4])[sin(72*i),cos(72*i)]],30);
// circ = circle($fn=30,r=2.2);
// reindexed = reindex_polygon(circ,pent);
// place_copies(concat(circ,pent)) circle(r=.1,$fn=32);
// color("red") place_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
// Example(2D): The indexing that minimizes the total distance will not necessarily associate the nearest point of `poly` with the reference, as in this example where again the blue dot indicates the 0th entry in the reindexed result.
// pent = move([3.5,-1],p=subdivide_path([for(i=[0:4])[sin(72*i),cos(72*i)]],30));
// circ = circle($fn=30,r=2.2);
// reindexed = reindex_polygon(circ,pent);
// place_copies(concat(circ,pent)) circle(r=.1,$fn=32);
// color("red") place_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
function reindex_polygon ( reference , poly , return_error = false ) =
assert ( is_path ( reference ) && is_path ( poly ) )
assert ( len ( reference ) = = len ( poly ) , "Polygons must be the same length in reindex_polygon" )
let (
N = len ( reference ) ,
fixpoly = polygon_is_clockwise ( reference ) ? clockwise_polygon ( poly ) : ccw_polygon ( poly ) ,
dist = [ for ( p1 = reference ) [ for ( p2 = fixpoly ) norm ( p1 - p2 ) ] ] , // Matrix of all pairwise distances
// Compute the sum of all distance pairs for a each shift
sums = [ for ( shift = [ 0 : N - 1 ] )
sum ( [ for ( i = [ 0 : N - 1 ] ) dist [ i ] [ ( i + shift ) % N ] ] ) ] ,
optimal_poly = polygon_shift ( fixpoly , min_index ( sums ) )
)
return_error ? [ optimal_poly , min ( sums ) ] : optimal_poly ;
2019-11-20 02:03:47 +00:00
// Function: align_polygon()
// Usage:
// newpoly = align_polygon(reference, poly, angles, [cp]);
2019-11-19 22:42:11 +00:00
// Description:
// Tries the list or range of angles to find a rotation of the specified polygon that best aligns
// with the reference polygon. For each angle, the polygon is reindexed, which is a costly operation
// so if run time is a problem, use a smaller sampling of angles. Returns the rotated and reindexed
// polygon.
// Arguments:
// reference = reference polygon
// poly = polygon to rotate into alignment with the reference
// angles = list or range of angles to test
// cp = centerpoint for rotations
// Example(2D): The original hexagon in yellow is not well aligned with the pentagon. Turning it so the faces line up gives an optimal alignment, shown in red.
// $fn=32;
// pentagon = subdivide_path(pentagon(side=2),60);
// hexagon = subdivide_path(hexagon(side=2.7),60);
2019-11-20 02:19:11 +00:00
// color("red") place_copies(scale(1.4,p=align_polygon(pentagon,hexagon,[0:10:359]))) circle(r=.1);
2019-11-19 22:42:11 +00:00
// place_copies(concat(pentagon,hexagon))circle(r=.1);
function align_polygon ( reference , poly , angles , cp ) =
assert ( is_path ( reference ) && is_path ( poly ) )
assert ( len ( reference ) = = len ( poly ) , "Polygons must be the same length to be aligned in align_polygon" )
assert ( is_num ( angles [ 0 ] ) , "The `angle` parameter to align_polygon must be a range or vector" )
let ( // alignments is a vector of entries of the form: [polygon, error]
alignments = [ for ( angle = angles ) reindex_polygon ( reference , zrot ( angle , p = poly , cp = cp ) , return_error = true ) ] ,
best = min_index ( subindex ( alignments , 1 ) )
)
alignments [ best ] [ 0 ] ;
2019-08-20 04:11:19 +00:00
// Function: first_noncollinear()
// Usage:
// first_noncollinear(i1, i2, points);
// Description:
2019-10-31 00:44:03 +00:00
// Returns index of the first point in `points` that is not collinear with the points indexed by `i1` and `i2`.
2019-08-20 04:11:19 +00:00
// Arguments:
// i1 = The first point.
// i2 = The second point.
// points = The list of points to find a non-collinear point from.
2019-10-25 22:16:48 +00:00
function first_noncollinear ( i1 , i2 , points ) =
[ for ( j = idx ( points ) ) if ( j ! = i1 && j ! = i2 && ! collinear_indexed ( points , i1 , i2 , j ) ) j ] [ 0 ] ;
2019-08-20 04:11:19 +00:00
2019-10-25 22:16:48 +00:00
// Function: find_noncollinear_points()
2019-08-20 04:11:19 +00:00
// Usage:
// find_noncollinear_points(points);
// Description:
2019-10-22 01:59:35 +00:00
// Finds the indices of three good non-collinear points from the points list `points`.
2019-08-20 04:11:19 +00:00
function find_noncollinear_points ( points ) =
let (
a = 0 ,
2019-10-25 22:16:48 +00:00
b = furthest_point ( points [ a ] , points ) ,
2019-10-31 00:44:03 +00:00
c = max_index ( [
for ( p = points )
sin ( vector_angle ( points [ a ] - p , points [ b ] - p ) ) *
norm ( p - points [ a ] ) * norm ( p - points [ b ] )
] )
2019-08-20 04:11:19 +00:00
) [ a , b , c ] ;
2019-07-16 00:14:29 +00:00
// Function: centroid()
// Usage:
// centroid(vertices)
// Description:
2019-08-20 04:11:19 +00:00
// Given a simple 2D polygon, returns the coordinates of the polygon's centroid.
2019-07-16 00:14:29 +00:00
// If the polygon is self-intersecting, the results are undefined.
function centroid ( vertices ) =
2019-07-17 08:49:51 +00:00
sum ( [
for ( i = [ 0 : len ( vertices ) - 1 ] )
let ( segment = select ( vertices , i , i + 1 ) )
det2 ( segment ) * sum ( segment )
] ) / 6 / polygon_area ( vertices ) ;
2019-07-16 00:14:29 +00:00
2019-09-24 10:58:45 +00:00
function _extreme_angle_fragment ( seg , fragments , rightmost = true , eps = EPSILON ) =
! fragments ? [ undef , [ ] ] :
let (
delta = seg [ 1 ] - seg [ 0 ] ,
segang = atan2 ( delta . y , delta . x ) ,
frags = [
for ( i = idx ( fragments ) ) let (
fragment = fragments [ i ] ,
fwdmatch = approx ( seg [ 1 ] , fragment [ 0 ] , eps = eps ) ,
bakmatch = approx ( seg [ 1 ] , select ( fragment , - 1 ) , eps = eps )
) [
fwdmatch ,
bakmatch ,
bakmatch ? reverse ( fragment ) : fragment
]
] ,
angs = [
for ( frag = frags )
( frag [ 0 ] || frag [ 1 ] ) ? let (
delta2 = frag [ 2 ] [ 1 ] - frag [ 2 ] [ 0 ] ,
segang2 = atan2 ( delta2 . y , delta2 . x )
) modang ( segang2 - segang ) : (
rightmost ? 999 : - 999
)
] ,
fi = rightmost ? min_index ( angs ) : max_index ( angs )
) abs ( angs [ fi ] ) > 360 ? [ undef , fragments ] : let (
remainder = [ for ( i = idx ( fragments ) ) if ( i ! = fi ) fragments [ i ] ] ,
frag = frags [ fi ] ,
foundfrag = frag [ 2 ]
) [ foundfrag , remainder ] ;
2019-09-25 06:32:30 +00:00
// Function: assemble_a_path_from_fragments()
2019-06-17 07:10:01 +00:00
// Usage:
2019-09-25 06:32:30 +00:00
// assemble_a_path_from_fragments(subpaths);
2019-06-17 07:10:01 +00:00
// Description:
2019-09-25 06:32:30 +00:00
// Given a list of incomplete paths, assembles them together into one complete closed path, and
// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
// polyline path fragments.
// Arguments:
// fragments = List of polylines to be assembled into complete polygons.
// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
function assemble_a_path_from_fragments ( fragments , rightmost = true , eps = EPSILON ) =
2019-09-24 10:58:45 +00:00
len ( fragments ) = = 0 ? _finished :
2019-06-17 07:10:01 +00:00
let (
2019-09-24 10:58:45 +00:00
path = fragments [ 0 ] ,
2019-09-25 06:32:30 +00:00
newfrags = slice ( fragments , 1 , - 1 )
2019-06-27 01:56:33 +00:00
) is_closed_path ( path , eps = eps ) ? (
2019-09-24 10:58:45 +00:00
// starting fragment is already closed
2019-09-25 06:32:30 +00:00
[ path , newfrags ]
2019-06-27 01:56:33 +00:00
) : let (
2019-09-24 10:58:45 +00:00
// Find rightmost/leftmost continuation fragment
2019-09-25 06:32:30 +00:00
seg = select ( path , - 2 , - 1 ) ,
frags = slice ( fragments , 1 , - 1 ) ,
extrema = _extreme_angle_fragment ( seg = seg , fragments = frags , rightmost = rightmost , eps = eps ) ,
2019-09-24 10:58:45 +00:00
foundfrag = extrema [ 0 ] ,
remainder = extrema [ 1 ] ,
2019-09-25 06:32:30 +00:00
newfrags = remainder
2019-09-24 10:58:45 +00:00
) is_undef ( foundfrag ) ? (
// No remaining fragments connect! INCOMPLETE PATH!
// Treat it as complete.
2019-09-25 06:32:30 +00:00
[ path , newfrags ]
2019-09-24 10:58:45 +00:00
) : is_closed_path ( foundfrag , eps = eps ) ? (
let (
2019-09-25 06:32:30 +00:00
newfrags = concat ( [ path ] , remainder )
2019-06-17 07:10:01 +00:00
)
2019-09-24 10:58:45 +00:00
// Found fragment is already closed
2019-09-25 06:32:30 +00:00
[ foundfrag , newfrags ]
2019-07-05 06:47:42 +00:00
) : let (
2019-09-24 10:58:45 +00:00
fragend = select ( foundfrag , - 1 ) ,
hits = [ for ( i = idx ( path , end = - 2 ) ) if ( approx ( path [ i ] , fragend , eps = eps ) ) i ]
) hits ? (
let (
// Found fragment intersects with initial path
hitidx = select ( hits , - 1 ) ,
newpath = slice ( path , 0 , hitidx + 1 ) ,
newfrags = concat ( len ( newpath ) > 1 ? [ newpath ] : [ ] , remainder ) ,
2019-09-25 06:32:30 +00:00
outpath = concat ( slice ( path , hitidx , - 2 ) , foundfrag )
2019-06-17 07:10:01 +00:00
)
2019-09-25 06:32:30 +00:00
[ outpath , newfrags ]
2019-09-24 10:58:45 +00:00
) : let (
// Path still incomplete. Continue building it.
newpath = concat ( path , slice ( foundfrag , 1 , - 1 ) ) ,
newfrags = concat ( [ newpath ] , remainder )
)
2019-09-25 06:32:30 +00:00
assemble_a_path_from_fragments (
fragments = newfrags ,
rightmost = rightmost ,
eps = eps
) ;
// Function: assemble_path_fragments()
// Usage:
// assemble_path_fragments(subpaths);
// Description:
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
// Arguments:
// fragments = List of polylines to be assembled into complete polygons.
// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
function assemble_path_fragments ( fragments , rightmost = true , eps = EPSILON , _finished = [ ] ) =
len ( fragments ) = = 0 ? _finished :
let (
result = assemble_a_path_from_fragments (
fragments = fragments ,
rightmost = rightmost ,
eps = eps
) ,
newpath = result [ 0 ] ,
remainder = result [ 1 ] ,
finished = concat ( _finished , [ newpath ] )
) assemble_path_fragments (
fragments = remainder ,
rightmost = rightmost , eps = eps ,
_finished = finished
) ;
2019-06-17 07:10:01 +00:00
2019-04-20 00:02:17 +00:00
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Usage:
// simplify_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
2019-05-02 02:28:02 +00:00
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path ( path , eps = EPSILON ) =
len ( path ) < = 2 ? path : let (
2019-05-27 05:34:46 +00:00
indices = concat ( [ 0 ] , [ for ( i = [ 1 : 1 : len ( path ) - 2 ] ) if ( ! collinear_indexed ( path , i - 1 , i , i + 1 , eps = eps ) ) i ] , [ len ( path ) - 1 ] )
2019-05-02 02:28:02 +00:00
) [ for ( i = indices ) path [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: simplify_path_indexed()
// Description:
2019-10-22 01:59:35 +00:00
// Takes a list of points, and a path as a list of indices into `points`,
2019-04-20 00:02:17 +00:00
// and removes all path points that are unecessarily collinear.
// Usage:
// simplify_path_indexed(path, eps)
// Arguments:
// points = A list of points.
2019-10-22 01:59:35 +00:00
// path = A list of indices into `points` that forms a path.
2019-04-20 00:02:17 +00:00
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
2019-05-02 02:28:02 +00:00
function simplify_path_indexed ( points , path , eps = EPSILON ) =
len ( path ) < = 2 ? path : let (
2019-05-27 05:34:46 +00:00
indices = concat ( [ 0 ] , [ for ( i = [ 1 : 1 : len ( path ) - 2 ] ) if ( ! collinear_indexed ( points , path [ i - 1 ] , path [ i ] , path [ i + 1 ] , eps = eps ) ) i ] , [ len ( path ) - 1 ] )
2019-05-02 02:28:02 +00:00
) [ for ( i = indices ) path [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: point_in_polygon()
// Usage:
// point_in_polygon(point, path)
// Description:
// This function tests whether the given point is inside, outside or on the boundary of
2019-05-29 01:44:41 +00:00
// the specified 2D polygon using the Winding Number method.
// The polygon is given as a list of 2D points, not including the repeated end point.
2019-04-20 00:02:17 +00:00
// Returns -1 if the point is outside the polyon.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies in the interior.
// The polygon does not need to be simple: it can have self-intersections.
// But the polygon cannot have holes (it must be simply connected).
// Rounding error may give mixed results for points on or near the boundary.
// Arguments:
// point = The point to check position of.
// path = The list of 2D path points forming the perimeter of the polygon.
2019-06-18 01:55:10 +00:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_polygon ( point , path , eps = EPSILON ) =
2019-07-05 06:47:42 +00:00
// Original algorithm from http://geomalgorithms.com/a03-_inclusion.html
2019-06-26 00:57:03 +00:00
// Does the point lie on any edges? If so return 0.
2019-07-05 06:47:42 +00:00
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 1 ] ) let ( seg = select ( path , i , i + 1 ) ) if ( ! approx ( seg [ 0 ] , seg [ 1 ] , eps = eps ) ) point_on_segment2d ( point , seg , eps = eps ) ? 1 : 0 ] ) > 0 ? 0 :
2019-04-20 00:02:17 +00:00
// Otherwise compute winding number and return 1 for interior, -1 for exterior
2019-07-05 06:47:42 +00:00
sum ( [ for ( i = [ 0 : 1 : len ( path ) - 1 ] ) let ( seg = select ( path , i , i + 1 ) ) if ( ! approx ( seg [ 0 ] , seg [ 1 ] , eps = eps ) ) _point_above_below_segment ( point , seg ) ] ) ! = 0 ? 1 : - 1 ;
2019-04-20 00:02:17 +00:00
// Function: pointlist_bounds()
// Usage:
// pointlist_bounds(pts);
// Description:
2019-05-29 01:44:41 +00:00
// Finds the bounds containing all the 2D or 3D points in `pts`.
2019-08-16 09:06:04 +00:00
// Returns `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`
2019-04-20 00:02:17 +00:00
// Arguments:
// pts = List of points.
function pointlist_bounds ( pts ) = [
[ for ( a = [ 0 : 2 ] ) min ( [ for ( x = pts ) point3d ( x ) [ a ] ] ) ] ,
[ for ( a = [ 0 : 2 ] ) max ( [ for ( x = pts ) point3d ( x ) [ a ] ] ) ]
] ;
2019-08-20 04:11:19 +00:00
// Function: closest_point()
// Usage:
// closest_point(pt, points);
// Description:
2019-10-25 22:16:48 +00:00
// Given a list of `points`, finds the index of the closest point to `pt`.
2019-08-20 04:11:19 +00:00
// Arguments:
// pt = The point to find the closest point to.
// points = The list of points to search.
function closest_point ( pt , points ) =
2019-10-25 22:16:48 +00:00
min_index ( [ for ( p = points ) norm ( p - pt ) ] ) ;
2019-08-20 04:11:19 +00:00
// Function: furthest_point()
// Usage:
// furthest_point(pt, points);
// Description:
2019-10-25 22:16:48 +00:00
// Given a list of `points`, finds the index of the furthest point from `pt`.
2019-08-20 04:11:19 +00:00
// Arguments:
// pt = The point to find the farthest point from.
// points = The list of points to search.
2019-10-25 22:16:48 +00:00
// Example:
2019-08-20 04:11:19 +00:00
function furthest_point ( pt , points ) =
2019-10-25 22:16:48 +00:00
max_index ( [ for ( p = points ) norm ( p - pt ) ] ) ;
2019-08-20 04:11:19 +00:00
2019-08-21 03:47:29 +00:00
// Function: polygon_is_clockwise()
2019-05-29 01:44:41 +00:00
// Usage:
2019-08-21 03:47:29 +00:00
// polygon_is_clockwise(path);
2019-05-29 01:44:41 +00:00
// Description:
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
// Results for complex (self-intersecting) polygon are indeterminate.
// Arguments:
// path = The list of 2D path points for the perimeter of the polygon.
2019-08-21 03:47:29 +00:00
function polygon_is_clockwise ( path ) =
2019-09-19 09:44:28 +00:00
let (
2019-06-26 00:57:03 +00:00
minx = min ( subindex ( path , 0 ) ) ,
lowind = search ( minx , path , 0 , 0 ) ,
lowpts = select ( path , lowind ) ,
miny = min ( subindex ( lowpts , 1 ) ) ,
extreme_sub = search ( miny , lowpts , 1 , 1 ) [ 0 ] ,
extreme = select ( lowind , extreme_sub )
) det2 ( [ select ( path , extreme + 1 ) - path [ extreme ] , select ( path , extreme - 1 ) - path [ extreme ] ] ) < 0 ;
2019-05-29 01:44:41 +00:00
2019-08-21 03:47:29 +00:00
// Function: clockwise_polygon()
// Usage:
// clockwise_polygon(path);
// Description:
// Given a polygon path, returns the clockwise winding version of that path.
function clockwise_polygon ( path ) =
2019-11-18 02:19:55 +00:00
polygon_is_clockwise ( path ) ? path : reverse_polygon ( path ) ;
2019-08-21 03:47:29 +00:00
// Function: ccw_polygon()
// Usage:
// ccw_polygon(path);
// Description:
// Given a polygon path, returns the counter-clockwise winding version of that path.
function ccw_polygon ( path ) =
2019-11-18 02:19:55 +00:00
polygon_is_clockwise ( path ) ? reverse_polygon ( path ) : path ;
// Function: reverse_polygon()
// Usage:
// reverse_polygon(poly)
// Description:
// Reverses a polygon's winding direction, while still using the same start point.
function reverse_polygon ( poly ) =
let ( lp = len ( poly ) ) [ for ( i = idx ( poly ) ) poly [ ( lp - i ) % lp ] ] ;
2019-08-21 03:47:29 +00:00
2019-06-17 06:57:05 +00:00
// Section: Regions and Boolean 2D Geometry
// Function: is_region()
// Usage:
// is_region(x);
// Description:
2019-07-10 20:12:32 +00:00
// Returns true if the given item looks like a region. A region is defined as a list of zero or more paths.
2019-06-17 06:57:05 +00:00
function is_region ( x ) = is_list ( x ) && is_path ( x . x ) ;
2019-07-19 04:48:32 +00:00
// Function: close_region()
2019-06-17 06:57:05 +00:00
// Usage:
// close_region(region);
// Description:
// Closes all paths within a given region.
2019-06-18 01:55:10 +00:00
function close_region ( region , eps = EPSILON ) = [ for ( path = region ) close_path ( path , eps = eps ) ] ;
2019-06-17 06:57:05 +00:00
2019-07-19 01:27:57 +00:00
// Function: check_and_fix_path()
2019-07-18 23:21:08 +00:00
// Usage:
2019-07-23 02:40:49 +00:00
// check_and_fix_path(path, [valid_dim], [closed])
2019-07-18 23:21:08 +00:00
// Description:
// Checks that the input is a path. If it is a region with one component, converts it to a path.
// valid_dim specfies the allowed dimension of the points in the path.
2019-07-19 01:27:57 +00:00
// If the path is closed, removed duplicate endpoint if present.
// Arguments:
// path = path to process
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
// closed = set to true if the path is closed, which enables a check for endpoint duplication
2019-09-21 08:57:50 +00:00
function check_and_fix_path ( path , valid_dim = undef , closed = false ) =
let (
path = is_region ( path ) ? (
assert ( len ( path ) = = 1 , "Region supplied as path does not have exactly one component" )
path [ 0 ]
) : (
assert ( is_path ( path ) , "Input is not a path" )
path
) ,
dim = array_dim ( path )
)
assert ( dim [ 0 ] > 1 , "Path must have at least 2 points" )
assert ( len ( dim ) = = 2 , "Invalid path: path is either a list of scalars or a list of matrices" )
assert ( is_def ( dim [ 1 ] ) , "Invalid path: entries in the path have variable length" )
let ( valid = is_undef ( valid_dim ) || in_list ( dim [ 1 ] , valid_dim ) )
assert (
valid , str (
"The points on the path have length " ,
dim [ 1 ] , " but length must be " ,
len ( valid_dim ) = = 1 ? valid_dim [ 0 ] : str ( "one of " , valid_dim )
)
)
closed && approx ( path [ 0 ] , select ( path , - 1 ) ) ? slice ( path , 0 , - 2 ) : path ;
2019-07-18 23:21:08 +00:00
2019-06-17 06:57:05 +00:00
2019-07-19 04:48:32 +00:00
// Function: cleanup_region()
// Usage:
// cleanup_region(region);
// Description:
// For all paths in the given region, if the last point coincides with the first point, removes the last point.
2019-09-21 08:57:50 +00:00
// Arguments:
// region = The region to clean up. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function cleanup_region ( region , eps = EPSILON ) =
[ for ( path = region ) cleanup_path ( path , eps = eps ) ] ;
2019-07-19 04:48:32 +00:00
2019-08-21 03:47:29 +00:00
// Function: point_in_region()
// Usage:
// point_in_region(point, region);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_region ( point , region , eps = EPSILON , _i = 0 , _cnt = 0 ) =
( _i >= len ( region ) ) ? ( ( _cnt % 2 = = 1 ) ? 1 : - 1 ) : let (
pip = point_in_polygon ( point , region [ _i ] , eps = eps )
) pip = = 0 ? 0 : point_in_region ( point , region , eps = eps , _i = _i + 1 , _cnt = _cnt + ( pip > 0 ? 1 : 0 ) ) ;
2019-06-17 06:57:05 +00:00
// Function: region_path_crossings()
// Usage:
// region_path_crossings(path, region);
// Description:
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
// Arguments:
// path = The path to find crossings on.
// region = Region to test for crossings of.
2019-09-21 08:57:50 +00:00
// closed = If true, treat path as a closed polygon. Default: true
2019-06-18 01:55:10 +00:00
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
2019-09-21 08:57:50 +00:00
function region_path_crossings ( path , region , closed = true , eps = EPSILON ) = sort ( [
let (
segs = pair ( closed ? close_path ( path ) : cleanup_path ( path ) )
) for (
si = idx ( segs ) ,
p = close_region ( region ) ,
s2 = pair ( p )
) let (
isect = _general_line_intersection ( segs [ si ] , s2 , eps = eps )
2019-06-17 06:57:05 +00:00
) if (
! is_undef ( isect ) &&
2019-06-18 04:44:50 +00:00
isect [ 1 ] >= 0 - eps && isect [ 1 ] < 1 + eps &&
isect [ 2 ] >= 0 - eps && isect [ 2 ] < 1 + eps
)
2019-09-21 08:57:50 +00:00
[ si , isect [ 1 ] ]
2019-06-17 06:57:05 +00:00
] ) ;
2019-06-26 00:57:03 +00:00
function _offset_chamfer ( center , points , delta ) =
let (
dist = sign ( delta ) * norm ( center - line_intersection ( select ( points , [ 0 , 2 ] ) , [ center , points [ 1 ] ] ) ) ,
endline = _shift_segment ( select ( points , [ 0 , 2 ] ) , delta - dist )
) [
line_intersection ( endline , select ( points , [ 0 , 1 ] ) ) ,
line_intersection ( endline , select ( points , [ 1 , 2 ] ) )
] ;
2019-06-27 01:56:33 +00:00
2019-06-26 00:57:03 +00:00
function _shift_segment ( segment , d ) =
move ( d * line_normal ( segment ) , segment ) ;
2019-06-27 01:56:33 +00:00
2019-06-26 00:57:03 +00:00
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension ( s1 , s2 ) =
norm ( s1 [ 1 ] - s2 [ 0 ] ) < 1e-6 ? s1 [ 1 ] : line_intersection ( s1 , s2 ) ;
2019-06-27 01:56:33 +00:00
2019-06-26 00:57:03 +00:00
function _makefaces ( direction , startind , good , pointcount , closed ) =
let (
lenlist = list_bset ( good , pointcount ) ,
numfirst = len ( lenlist ) ,
numsecond = sum ( lenlist ) ,
prelim_faces = _makefaces_recurse ( startind , startind + len ( lenlist ) , numfirst , numsecond , lenlist , closed )
)
direction ? [ for ( entry = prelim_faces ) reverse ( entry ) ] : prelim_faces ;
function _makefaces_recurse ( startind1 , startind2 , numfirst , numsecond , lenlist , closed , firstind = 0 , secondind = 0 , faces = [ ] ) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
( ( firstind = = numfirst - ( closed ? 0 : 1 ) ) && ( secondind = = numsecond - ( closed ? 0 : 1 ) ) ) ? faces :
_makefaces_recurse (
startind1 , startind2 , numfirst , numsecond , lenlist , closed , firstind + 1 , secondind + lenlist [ firstind ] ,
lenlist [ firstind ] = = 0 ? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat ( faces , [ [ secondind % numsecond + startind2 , firstind + startind1 , ( firstind + 1 ) % numfirst + startind1 ] ] )
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat ( faces ,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[ for ( i = [ 0 : 1 : lenlist [ firstind ] - 2 ] ) [ firstind + startind1 , secondind + i + 1 + startind2 , secondind + i + startind2 ] ] ,
// Finish (unconditionally) with a quadrilateral face
[
[
firstind + startind1 ,
( firstind + 1 ) % numfirst + startind1 ,
( secondind + lenlist [ firstind ] ) % numsecond + startind2 ,
( secondind + lenlist [ firstind ] - 1 ) % numsecond + startind2
]
]
)
)
) ;
2019-06-27 01:56:33 +00:00
2019-06-26 00:57:03 +00:00
// Determine which of the shifted segments are good
function _good_segments ( path , d , shiftsegs , closed , quality ) =
let (
maxind = len ( path ) - ( closed ? 1 : 2 ) ,
pathseg = [ for ( i = [ 0 : maxind ] ) select ( path , i + 1 ) - path [ i ] ] ,
pathseg_len = [ for ( seg = pathseg ) norm ( seg ) ] ,
pathseg_unit = [ for ( i = [ 0 : maxind ] ) pathseg [ i ] / pathseg_len [ i ] ] ,
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat ( [ for ( i = [ 1 : 1 : quality ] ) i / ( quality + 1 ) ] , [ 0 , 1 ] )
) [
for ( i = [ 0 : len ( shiftsegs ) - 1 ] )
( i > maxind ) ? true :
2019-08-29 01:15:41 +00:00
_segment_good ( path , pathseg_unit , pathseg_len , d - 1e-7 , shiftsegs [ i ] , alpha )
2019-06-26 00:57:03 +00:00
] ;
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good ( path , pathseg_unit , pathseg_len , d , seg , alpha , index = 0 ) =
index = = len ( alpha ) ? false :
_point_dist ( path , pathseg_unit , pathseg_len , alpha [ index ] * seg [ 0 ] + ( 1 - alpha [ index ] ) * seg [ 1 ] ) > d ? true :
_segment_good ( path , pathseg_unit , pathseg_len , d , seg , alpha , index + 1 ) ;
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist ( path , pathseg_unit , pathseg_len , pt ) =
min ( [
for ( i = [ 0 : len ( pathseg_unit ) - 1 ] ) let (
v = pt - path [ i ] ,
projection = v * pathseg_unit [ i ] ,
segdist = projection < 0 ? norm ( pt - path [ i ] ) :
projection > pathseg_len [ i ] ? norm ( pt - select ( path , i + 1 ) ) :
norm ( v - projection * pathseg_unit [ i ] )
) segdist
] ) ;
2019-06-27 01:56:33 +00:00
function _offset_region (
paths , r , delta , chamfer , closed ,
maxstep , check_valid , quality ,
return_faces , firstface_index ,
flip_faces , _acc = [ ] , _i = 0
) =
_i >= len ( paths ) ? _acc :
_offset_region (
paths , _i = _i + 1 ,
_acc = ( paths [ _i ] . x % 2 = = 0 ) ? (
union ( _acc , [
offset (
paths [ _i ] . y ,
r = r , delta = delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
] )
) : (
difference ( _acc , [
offset (
paths [ _i ] . y ,
r = - r , delta = - delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
] )
) ,
r = r , delta = delta , chamfer = chamfer , closed = closed ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index , flip_faces = flip_faces
) ;
2019-06-26 00:57:03 +00:00
// Function: offset()
//
// Description:
2019-07-16 22:18:00 +00:00
// Takes an input path and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. Positive offsets shift the path to the left (relative to the direction of the path).
2019-07-16 21:17:32 +00:00
//
2019-07-16 22:18:00 +00:00
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
// increases the number of samples on the segment that are checked.) Run time will increase. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
2019-07-16 21:17:32 +00:00
//
2019-07-16 22:18:00 +00:00
// For construction of polyhedra `offset()` can also return face lists. These list faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
2019-06-26 00:57:03 +00:00
// Arguments:
// path = the path to process. A list of 2d points.
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = path is a closed curve. Default: False.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 20:11:13 +00:00
// #stroke(closed=true, star);
2019-07-18 23:21:08 +00:00
// stroke(closed=true, offset(star, delta=10, closed=true));
2019-06-26 00:57:03 +00:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 20:11:13 +00:00
// #stroke(closed=true, star);
2019-07-18 23:21:08 +00:00
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
2019-06-26 00:57:03 +00:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 20:11:13 +00:00
// #stroke(closed=true, star);
2019-07-18 23:21:08 +00:00
// stroke(closed=true, offset(star, r=10, closed=true));
2019-06-26 00:57:03 +00:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 20:11:13 +00:00
// #stroke(closed=true, star);
2019-07-18 23:21:08 +00:00
// stroke(closed=true, offset(star, delta=-10, closed=true));
2019-06-26 00:57:03 +00:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 20:11:13 +00:00
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
2019-06-26 00:57:03 +00:00
// Example(2D):
// star = star(5, r=100, ir=30);
2019-07-12 20:11:13 +00:00
// #stroke(closed=true, star);
2019-07-18 23:21:08 +00:00
// stroke(closed=true, offset(star, r=-10, closed=true));
2019-07-16 20:51:53 +00:00
// Example(2D): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
2019-07-18 23:21:08 +00:00
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
2019-07-16 20:51:53 +00:00
// %down(.1)polygon(test);
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
2019-07-18 23:21:08 +00:00
// stroke(star,width=.2,closed=true);
2019-07-16 20:51:53 +00:00
// color("green")
2019-07-18 23:21:08 +00:00
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
2019-07-16 20:51:53 +00:00
// color("red")
2019-07-18 23:21:08 +00:00
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.2,closed=true);
2019-07-16 20:51:53 +00:00
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
2019-07-18 23:21:08 +00:00
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
2019-07-16 20:51:53 +00:00
// color("red")
2019-07-18 23:21:08 +00:00
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
2019-07-16 20:51:53 +00:00
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
2019-07-18 23:21:08 +00:00
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
2019-07-16 20:51:53 +00:00
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
// Example(2D): The triangles are removed by the validity check
2019-07-18 23:21:08 +00:00
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
2019-07-16 20:51:53 +00:00
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
2019-07-18 23:21:08 +00:00
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
2019-06-26 00:57:03 +00:00
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath);
// stroke(offset(sinpath, r=17.5));
2019-06-27 01:56:33 +00:00
// Example(2D): Region
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
2019-07-12 20:11:13 +00:00
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
2019-06-27 01:56:33 +00:00
// region(offset(rgn, r=-5));
2019-06-26 00:57:03 +00:00
function offset (
path , r = undef , delta = undef , chamfer = false ,
maxstep = 0.1 , closed = false , check_valid = true ,
quality = 1 , return_faces = false , firstface_index = 0 ,
flip_faces = false
) =
2019-06-27 01:56:33 +00:00
is_region ( path ) ? (
2019-08-09 04:10:41 +00:00
assert ( ! return_faces , "return_faces not supported for regions." )
2019-06-27 01:56:33 +00:00
let (
2019-08-21 03:47:29 +00:00
path = [ for ( p = path ) polygon_is_clockwise ( p ) ? p : reverse ( p ) ] ,
2019-06-27 01:56:33 +00:00
rgn = exclusive_or ( [ for ( p = path ) [ p ] ] ) ,
pathlist = sort ( idx = 0 , [
for ( i = [ 0 : 1 : len ( rgn ) - 1 ] ) [
2019-07-17 23:33:08 +00:00
sum ( concat ( [ 0 ] , [
2019-06-27 01:56:33 +00:00
for ( j = [ 0 : 1 : len ( rgn ) - 1 ] ) if ( i ! = j )
point_in_polygon ( rgn [ i ] [ 0 ] , rgn [ j ] ) >= 0 ? 1 : 0
2019-07-17 23:33:08 +00:00
] ) ) ,
2019-06-27 01:56:33 +00:00
rgn [ i ]
]
] )
) _offset_region (
pathlist , r = r , delta = delta , chamfer = chamfer , closed = true ,
maxstep = maxstep , check_valid = check_valid , quality = quality ,
return_faces = return_faces , firstface_index = firstface_index ,
flip_faces = flip_faces
)
) : let ( rcount = num_defined ( [ r , delta ] ) )
2019-06-26 00:57:03 +00:00
assert ( rcount = = 1 , "Must define exactly one of 'delta' and 'r'" )
let (
chamfer = is_def ( r ) ? false : chamfer ,
quality = max ( 0 , round ( quality ) ) ,
2019-09-21 08:57:50 +00:00
flip_dir = closed && ! polygon_is_clockwise ( path ) ? - 1 : 1 ,
2019-07-18 23:21:08 +00:00
d = flip_dir * ( is_def ( r ) ? r : delta ) ,
2019-06-26 00:57:03 +00:00
shiftsegs = [ for ( i = [ 0 : len ( path ) - 1 ] ) _shift_segment ( select ( path , i , i + 1 ) , d ) ] ,
// good segments are ones where no point on the segment is less than distance d from any point on the path
good = check_valid ? _good_segments ( path , abs ( d ) , shiftsegs , closed , quality ) : replist ( true , len ( shiftsegs ) ) ,
goodsegs = bselect ( shiftsegs , good ) ,
goodpath = bselect ( path , good )
)
assert ( len ( goodsegs ) > 0 , "Offset of path is degenerate" )
let (
// Extend the shifted segments to their intersection points
sharpcorners = [ for ( i = [ 0 : len ( goodsegs ) - 1 ] ) _segment_extension ( select ( goodsegs , i - 1 ) , select ( goodsegs , i ) ) ] ,
// If some segments are parallel then the extended segments are undefined. This case is not handled
// Note if !closed the last corner doesn't matter, so exclude it
parallelcheck =
( len ( sharpcorners ) = = 2 && ! closed ) ||
all_defined ( select ( sharpcorners , closed ? 0 : 1 , - 1 ) )
)
assert ( parallelcheck , "Path turns back on itself (180 deg turn)" )
let (
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = [
for ( i = [ 0 : len ( goodsegs ) - 1 ] ) let (
prevseg = select ( goodsegs , i - 1 )
) (
( goodsegs [ i ] [ 1 ] - goodsegs [ i ] [ 0 ] ) *
( goodsegs [ i ] [ 0 ] - sharpcorners [ i ] ) > 0
) && (
( prevseg [ 1 ] - prevseg [ 0 ] ) *
( sharpcorners [ i ] - prevseg [ 1 ] ) > 0
)
] ,
steps = is_def ( delta ) ? [ ] : [
for ( i = [ 0 : len ( goodsegs ) - 1 ] )
ceil (
abs ( r ) * vector_angle (
select ( goodsegs , i - 1 ) [ 1 ] - goodpath [ i ] ,
goodsegs [ i ] [ 0 ] - goodpath [ i ]
) * PI / 180 / maxstep
)
] ,
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
// Otherwise it's the same as sharpcorners
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
// plain sharpcorners back.
newcorners = is_def ( delta ) && ! chamfer ? [ sharpcorners ] : [
for ( i = [ 0 : len ( goodsegs ) - 1 ] ) (
( ! chamfer && steps [ i ] < = 2 ) //Chamfer all points but only round if steps is 3 or more
|| ! outsidecorner [ i ] // Don't round inside corners
|| ( ! closed && ( i = = 0 || i = = len ( goodsegs ) - 1 ) ) // Don't round ends of an open path
) ? [ sharpcorners [ i ] ] : (
chamfer ?
_offset_chamfer (
goodpath [ i ] , [
select ( goodsegs , i - 1 ) [ 1 ] ,
sharpcorners [ i ] ,
goodsegs [ i ] [ 0 ]
] , d
) :
arc (
cp = goodpath [ i ] ,
points = [
select ( goodsegs , i - 1 ) [ 1 ] ,
goodsegs [ i ] [ 0 ]
] ,
N = steps [ i ]
)
)
] ,
pointcount = ( is_def ( delta ) && ! chamfer ) ?
replist ( 1 , len ( sharpcorners ) ) :
[ for ( i = [ 0 : len ( goodsegs ) - 1 ] ) len ( newcorners [ i ] ) ] ,
start = [ goodsegs [ 0 ] [ 0 ] ] ,
end = [ goodsegs [ len ( goodsegs ) - 2 ] [ 1 ] ] ,
edges = closed ?
flatten ( newcorners ) :
concat ( start , slice ( flatten ( newcorners ) , 1 , - 2 ) , end ) ,
faces = ! return_faces ? [ ] :
_makefaces (
flip_faces , firstface_index , good ,
pointcount , closed
)
) return_faces ? [ edges , faces ] : edges ;
2019-09-21 08:57:50 +00:00
// Function: split_path_at_self_crossings()
// Usage:
// polylines = split_path_at_self_crossings(path, [closed], [eps]);
// Description:
// Splits a path into polyline sections wherever the path crosses itself.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Arguments:
// path = The path to split up.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
// polylines = split_path_at_self_crossings(path);
// rainbow(polylines) stroke($item, closed=false, width=2);
function split_path_at_self_crossings ( path , closed = true , eps = EPSILON ) =
let (
path = cleanup_path ( path , eps = eps ) ,
isects = deduplicate (
eps = eps ,
concat (
[ [ 0 , 0 ] ] ,
sort ( [
for (
a = path_self_intersections ( path , closed = closed , eps = eps ) ,
ss = [ [ a [ 1 ] , a [ 2 ] ] , [ a [ 3 ] , a [ 4 ] ] ]
) if ( ss [ 0 ] ! = undef ) ss
] ) ,
[ [ len ( path ) - ( closed ? 1 : 2 ) , 1 ] ]
)
)
) [
for ( p = pair ( isects ) )
let (
s1 = p [ 0 ] [ 0 ] ,
u1 = p [ 0 ] [ 1 ] ,
s2 = p [ 1 ] [ 0 ] ,
u2 = p [ 1 ] [ 1 ] ,
section = path_subselect ( path , s1 , u1 , s2 , u2 , closed = closed ) ,
outpath = deduplicate ( eps = eps , section )
)
outpath
] ;
// Function: split_path_at_region_crossings()
// Usage:
// polylines = split_path_at_region_crossings(path, region, [eps]);
// Description:
// Splits a path into polyline sections wherever the path crosses the perimeter of a region.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Arguments:
// path = The path to split up.
// region = The region to check for perimeter crossings of.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = square(50,center=false);
// region = [circle(d=80), circle(d=40)];
// polylines = split_path_at_region_crossings(path, region);
// color("#aaa") region(region);
// rainbow(polylines) stroke($item, closed=false, width=2);
function split_path_at_region_crossings ( path , region , closed = true , eps = EPSILON ) =
2019-06-17 06:57:05 +00:00
let (
path = deduplicate ( path , eps = eps ) ,
region = [ for ( path = region ) deduplicate ( path , eps = eps ) ] ,
2019-09-21 08:57:50 +00:00
xings = region_path_crossings ( path , region , closed = closed , eps = eps ) ,
2019-06-18 01:55:10 +00:00
crossings = deduplicate (
2019-09-21 08:57:50 +00:00
concat ( [ [ 0 , 0 ] ] , xings , [ [ len ( path ) - 1 , 1 ] ] ) ,
2019-06-18 01:55:10 +00:00
eps = eps
2019-06-18 04:44:50 +00:00
) ,
subpaths = [
for ( p = pair ( crossings ) )
deduplicate ( eps = eps ,
2019-09-21 08:57:50 +00:00
path_subselect ( path , p [ 0 ] [ 0 ] , p [ 0 ] [ 1 ] , p [ 1 ] [ 0 ] , p [ 1 ] [ 1 ] , closed = closed )
2019-06-18 04:44:50 +00:00
)
]
)
subpaths ;
2019-06-17 06:57:05 +00:00
2019-06-18 01:55:10 +00:00
function _tag_subpaths ( path , region , eps = EPSILON ) =
2019-06-17 06:57:05 +00:00
let (
2019-09-21 08:57:50 +00:00
subpaths = split_path_at_region_crossings ( path , region , eps = eps ) ,
2019-06-17 06:57:05 +00:00
tagged = [
2019-06-18 01:55:10 +00:00
for ( sub = subpaths ) let (
subpath = deduplicate ( sub )
) if ( len ( sub ) > 1 ) let (
2019-06-17 06:57:05 +00:00
midpt = lerp ( subpath [ 0 ] , subpath [ 1 ] , 0.5 ) ,
2019-06-18 01:55:10 +00:00
rel = point_in_region ( midpt , region , eps = eps )
2019-06-17 06:57:05 +00:00
) rel < 0 ? [ "O" , subpath ] : rel > 0 ? [ "I" , subpath ] : let (
2019-06-18 01:55:10 +00:00
vec = normalize ( subpath [ 1 ] - subpath [ 0 ] ) ,
perp = rot ( 90 , planar = true , p = vec ) ,
sidept = midpt + perp * 0.01 ,
rel1 = point_in_polygon ( sidept , path , eps = eps ) > 0 ,
rel2 = point_in_region ( sidept , region , eps = eps ) > 0
) rel1 = = rel2 ? [ "S" , subpath ] : [ "U" , subpath ]
2019-06-17 06:57:05 +00:00
]
) tagged ;
2019-06-18 01:55:10 +00:00
function _tag_region_subpaths ( region1 , region2 , eps = EPSILON ) =
[ for ( path = region1 ) each _tag_subpaths ( path , region2 , eps = eps ) ] ;
2019-06-17 06:57:05 +00:00
2019-06-18 01:55:10 +00:00
function _tagged_region ( region1 , region2 , keep1 , keep2 , eps = EPSILON ) =
2019-06-17 06:57:05 +00:00
let (
2019-06-18 01:55:10 +00:00
region1 = close_region ( region1 , eps = eps ) ,
region2 = close_region ( region2 , eps = eps ) ,
tagged1 = _tag_region_subpaths ( region1 , region2 , eps = eps ) ,
tagged2 = _tag_region_subpaths ( region2 , region1 , eps = eps ) ,
2019-06-17 06:57:05 +00:00
tagged = concat (
[ for ( tagpath = tagged1 ) if ( in_list ( tagpath [ 0 ] , keep1 ) ) tagpath [ 1 ] ] ,
[ for ( tagpath = tagged2 ) if ( in_list ( tagpath [ 0 ] , keep2 ) ) tagpath [ 1 ] ]
) ,
2019-06-18 01:55:10 +00:00
outregion = assemble_path_fragments ( tagged , eps = eps )
2019-06-17 06:57:05 +00:00
) outregion ;
2019-06-18 07:46:05 +00:00
// Function&Module: union()
2019-06-17 06:57:05 +00:00
// Usage:
2019-06-18 07:46:05 +00:00
// union() {...}
// region = union(regions);
// region = union(REGION1,REGION2);
// region = union(REGION1,REGION2,REGION3);
2019-06-17 06:57:05 +00:00
// Description:
2019-06-18 07:46:05 +00:00
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean union of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean union of the given children.
2019-06-17 06:57:05 +00:00
// Arguments:
// regions = List of regions to union. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-07-12 20:11:13 +00:00
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
2019-06-17 06:57:05 +00:00
// color("green") region(union(shape1,shape2));
2019-06-18 01:55:10 +00:00
function union ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? union ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-17 06:57:05 +00:00
len ( regions ) < = 1 ? regions [ 0 ] :
union (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
2019-06-18 01:55:10 +00:00
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "O" , "S" ] , [ "O" ] , eps = eps ) ] ,
2019-06-17 06:57:05 +00:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-18 01:55:10 +00:00
) ,
eps = eps
2019-06-17 06:57:05 +00:00
) ;
2019-06-18 07:46:05 +00:00
// Function&Module: difference()
2019-06-17 06:57:05 +00:00
// Usage:
2019-06-18 07:46:05 +00:00
// difference() {...}
// region = difference(regions);
// region = difference(REGION1,REGION2);
// region = difference(REGION1,REGION2,REGION3);
2019-06-17 06:57:05 +00:00
// Description:
2019-06-18 07:46:05 +00:00
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, takes the first region and differences away all other regions from it. The resulting
// region is returned.
// When called as the built-in module, makes the boolean difference of the given children.
2019-06-17 06:57:05 +00:00
// Arguments:
// regions = List of regions to difference. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-07-12 20:11:13 +00:00
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
2019-06-17 06:57:05 +00:00
// color("green") region(difference(shape1,shape2));
2019-06-18 01:55:10 +00:00
function difference ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? difference ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-17 06:57:05 +00:00
len ( regions ) < = 1 ? regions [ 0 ] :
difference (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
2019-06-18 01:55:10 +00:00
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "O" , "U" ] , [ "I" ] , eps = eps ) ] ,
2019-06-17 06:57:05 +00:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-18 01:55:10 +00:00
) ,
eps = eps
2019-06-17 06:57:05 +00:00
) ;
2019-06-18 07:46:05 +00:00
// Function&Module: intersection()
2019-06-17 06:57:05 +00:00
// Usage:
2019-06-18 07:46:05 +00:00
// intersection() {...}
// region = intersection(regions);
// region = intersection(REGION1,REGION2);
// region = intersection(REGION1,REGION2,REGION3);
2019-06-17 06:57:05 +00:00
// Description:
2019-06-18 07:46:05 +00:00
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean intersection of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean intersection of all the given children.
2019-06-17 06:57:05 +00:00
// Arguments:
// regions = List of regions to intersection. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-07-12 20:11:13 +00:00
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
2019-06-17 06:57:05 +00:00
// color("green") region(intersection(shape1,shape2));
2019-06-18 01:55:10 +00:00
function intersection ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? intersection ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-17 06:57:05 +00:00
len ( regions ) < = 1 ? regions [ 0 ] :
intersection (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
2019-06-18 01:55:10 +00:00
[ _tagged_region ( regions [ 0 ] , regions [ 1 ] , [ "I" , "S" ] , [ "I" ] , eps = eps ) ] ,
2019-06-17 06:57:05 +00:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-18 01:55:10 +00:00
) ,
eps = eps
2019-06-17 06:57:05 +00:00
) ;
2019-06-18 07:09:51 +00:00
// Function&Module: exclusive_or()
2019-06-17 06:57:05 +00:00
// Usage:
2019-06-18 07:09:51 +00:00
// exclusive_or() {...}
2019-06-18 07:46:05 +00:00
// region = exclusive_or(regions);
// region = exclusive_or(REGION1,REGION2);
// region = exclusive_or(REGION1,REGION2,REGION3);
2019-06-17 06:57:05 +00:00
// Description:
2019-06-18 07:09:51 +00:00
// When called as a function and given a list of regions, where each region is a list of closed
2019-06-18 07:46:05 +00:00
// 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region.
2019-06-18 07:09:51 +00:00
// When called as a module, performs a boolean exclusive-or of up to 10 children.
2019-06-17 06:57:05 +00:00
// Arguments:
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
2019-06-18 07:46:05 +00:00
// Example(2D): As Function
2019-06-17 06:57:05 +00:00
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
2019-06-18 07:46:05 +00:00
// for (shape = [shape1,shape2])
2019-07-12 20:11:13 +00:00
// color("red") stroke(shape, width=0.5, closed=true);
2019-06-17 06:57:05 +00:00
// color("green") region(exclusive_or(shape1,shape2));
2019-06-18 07:46:05 +00:00
// Example(2D): As Module
// exclusive_or() {
// square(40,center=false);
// circle(d=40);
// }
2019-06-18 01:55:10 +00:00
function exclusive_or ( regions = [ ] , b = undef , c = undef , eps = EPSILON ) =
b ! = undef ? exclusive_or ( concat ( [ regions ] , [ b ] , c = = undef ? [ ] : [ c ] ) , eps = eps ) :
2019-06-17 06:57:05 +00:00
len ( regions ) < = 1 ? regions [ 0 ] :
exclusive_or (
let ( regions = [ for ( r = regions ) is_path ( r ) ? [ r ] : r ] )
concat (
[ union ( [
2019-06-18 01:55:10 +00:00
difference ( [ regions [ 0 ] , regions [ 1 ] ] , eps = eps ) ,
difference ( [ regions [ 1 ] , regions [ 0 ] ] , eps = eps )
] , eps = eps ) ] ,
2019-06-17 06:57:05 +00:00
[ for ( i = [ 2 : 1 : len ( regions ) - 1 ] ) regions [ i ] ]
2019-06-18 01:55:10 +00:00
) ,
eps = eps
2019-06-17 06:57:05 +00:00
) ;
2019-06-18 07:09:51 +00:00
module exclusive_or ( ) {
if ( $children = = 1 ) {
children ( ) ;
} else if ( $children = = 2 ) {
difference ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
difference ( ) {
children ( 1 ) ;
children ( 0 ) ;
}
} else if ( $children = = 3 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
children ( 2 ) ;
}
} else if ( $children = = 4 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
}
exclusive_or ( ) {
children ( 2 ) ;
children ( 3 ) ;
}
}
} else if ( $children = = 5 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
}
} else if ( $children = = 6 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
children ( 5 ) ;
}
} else if ( $children = = 7 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
}
} else if ( $children = = 8 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
}
} else if ( $children = = 9 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
children ( 8 ) ;
}
} else if ( $children = = 10 ) {
exclusive_or ( ) {
exclusive_or ( ) {
children ( 0 ) ;
children ( 1 ) ;
children ( 2 ) ;
children ( 3 ) ;
}
exclusive_or ( ) {
children ( 4 ) ;
children ( 5 ) ;
children ( 6 ) ;
children ( 7 ) ;
}
children ( 8 ) ;
children ( 9 ) ;
}
2019-08-12 05:15:37 +00:00
} else {
assert ( $children < = 10 , "exclusive_or() can only handle up to 10 children." ) ;
2019-06-18 07:09:51 +00:00
}
}
2019-06-17 06:57:05 +00:00
// Module: region()
// Usage:
// region(r);
// Description:
2019-06-18 07:46:05 +00:00
// Creates 2D polygons for the given region. The region given is a list of closed 2D paths.
// Each path will be effectively exclusive-ORed from all other paths in the region, so if a
// path is inside another path, it will be effectively subtracted from it.
// Example(2D):
// region([circle(d=50), square(25,center=true)]);
2019-06-17 06:57:05 +00:00
// Example(2D):
2019-06-18 07:46:05 +00:00
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
2019-06-17 06:57:05 +00:00
module region ( r )
{
points = flatten ( r ) ;
paths = [
for ( i = [ 0 : 1 : len ( r ) - 1 ] ) let (
start = default ( sum ( [ for ( j = [ 0 : 1 : i - 1 ] ) len ( r [ j ] ) ] ) , 0 )
) [ for ( k = [ 0 : 1 : len ( r [ i ] ) - 1 ] ) start + k ]
] ;
polygon ( points = points , paths = paths ) ;
}
2019-04-20 00:02:17 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap