2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: vectors.scad
// Vector math functions.
2021-01-05 09:20:01 +00:00
// Includes:
// include <BOSL2/std.scad>
2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// Section: Vector Manipulation
2019-05-16 04:07:27 +00:00
// Function: is_vector()
// Usage:
2021-06-27 03:59:33 +00:00
// is_vector(v, [length], ...);
2019-05-16 04:07:27 +00:00
// Description:
2020-03-02 21:47:43 +00:00
// Returns true if v is a list of finite numbers.
// Arguments:
// v = The value to test to see if it is a vector.
// length = If given, make sure the vector is `length` items long.
2020-09-08 06:10:39 +00:00
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
2020-07-30 04:58:12 +00:00
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
2019-07-05 06:40:24 +00:00
// Example:
2020-07-24 21:54:34 +00:00
// is_vector(4); // Returns false
// is_vector([4,true,false]); // Returns false
// is_vector([3,4,INF,5]); // Returns false
// is_vector([3,4,5,6]); // Returns true
// is_vector([3,4,undef,5]); // Returns false
// is_vector([3,4,5],3); // Returns true
// is_vector([3,4,5],4); // Returns true
// is_vector([]); // Returns false
2020-09-08 06:10:39 +00:00
// is_vector([0,4,0],3,zero=false); // Returns true
// is_vector([0,0,0],zero=false); // Returns false
// is_vector([0,0,1e-12],zero=false); // Returns false
// is_vector([0,1,0],all_nonzero=false); // Returns false
// is_vector([1,1,1],all_nonzero=false); // Returns true
// is_vector([],zero=false); // Returns false
function is_vector ( v , length , zero , all_nonzero = false , eps = EPSILON ) =
2021-03-14 16:08:20 +00:00
is_list ( v ) && len ( v ) > 0 && [ ] = = [ for ( vi = v ) if ( ! is_num ( vi ) ) 0 ]
2020-07-21 23:15:02 +00:00
&& ( is_undef ( length ) || len ( v ) = = length )
2020-09-08 06:10:39 +00:00
&& ( is_undef ( zero ) || ( ( norm ( v ) >= eps ) = = ! zero ) )
&& ( ! all_nonzero || all_nonzero ( v ) ) ;
2019-05-16 04:07:27 +00:00
2019-07-05 06:40:24 +00:00
2021-06-15 03:28:49 +00:00
// Function: v_theta()
2019-12-27 05:42:23 +00:00
// Usage:
2021-06-15 03:28:49 +00:00
// theta = v_theta([X,Y]);
2019-12-27 05:42:23 +00:00
// Description:
2021-06-15 03:28:49 +00:00
// Given a vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
function v_theta ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( v , 2 ) || is_vector ( v , 3 ) , "Invalid vector" )
2021-06-15 03:28:49 +00:00
atan2 ( v . y , v . x ) ;
2019-12-27 05:42:23 +00:00
2021-06-15 03:28:49 +00:00
// Function: v_mul()
2019-04-20 00:02:17 +00:00
// Description:
2020-09-29 00:35:05 +00:00
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
2019-04-20 00:02:17 +00:00
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
2021-06-15 03:28:49 +00:00
// v_mul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
function v_mul ( v1 , v2 ) =
2020-09-29 00:35:05 +00:00
assert ( is_list ( v1 ) && is_list ( v2 ) && len ( v1 ) = = len ( v2 ) , "Incompatible input" )
2020-07-24 21:54:34 +00:00
[ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] * v2 [ i ] ] ;
2020-07-25 19:27:19 +00:00
2019-04-20 00:02:17 +00:00
2021-06-15 03:28:49 +00:00
// Function: v_div()
2019-04-20 00:02:17 +00:00
// Description:
// Element-wise vector division. Divides each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the quotients.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
2021-06-15 03:28:49 +00:00
// v_div([24,28,30], [8,7,6]); // Returns [3, 4, 5]
function v_div ( v1 , v2 ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( v1 ) && is_vector ( v2 , len ( v1 ) ) , "Incompatible vectors" )
[ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] / v2 [ i ] ] ;
2019-04-20 00:02:17 +00:00
2021-06-15 03:28:49 +00:00
// Function: v_abs()
2019-04-20 00:02:17 +00:00
// Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments:
// v = The vector to get the absolute values of.
2019-07-05 06:40:24 +00:00
// Example:
2021-06-15 03:28:49 +00:00
// v_abs([-1,3,-9]); // Returns: [1,3,9]
function v_abs ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) abs ( x ) ] ;
2019-04-20 00:02:17 +00:00
2021-06-15 03:28:49 +00:00
// Function: v_floor()
2020-03-26 02:50:38 +00:00
// Description:
// Returns the given vector after performing a `floor()` on all items.
2021-06-15 03:28:49 +00:00
function v_floor ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) floor ( x ) ] ;
2020-03-26 02:50:38 +00:00
2021-06-15 03:28:49 +00:00
// Function: v_ceil()
2020-03-26 02:50:38 +00:00
// Description:
// Returns the given vector after performing a `ceil()` on all items.
2021-06-15 03:28:49 +00:00
function v_ceil ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) ceil ( x ) ] ;
2020-03-26 02:50:38 +00:00
2020-03-21 05:15:41 +00:00
2021-07-30 21:41:06 +00:00
// Function: v_lookup()
// Description:
// Works just like the built-in function [`lookup()`](https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Mathematical_Functions#lookup), except that it can also interpolate between vector result values of the same length.
// Arguments:
// x = The scalar value to look up.
// v = A list of [KEY,VAL] pairs. KEYs are scalars. VALs should either all be scalar, or all be vectors of the same length.
// Example:
// x = v_lookup(4.5, [[4, [3,4,5]], [5, [5,6,7]]]); // Returns: [4,5,6]
function v_lookup ( x , v ) =
is_num ( v [ 0 ] [ 1 ] ) ? lookup ( x , v ) :
let (
i = lookup ( x , [ for ( i = idx ( v ) ) [ v [ i ] . x , i ] ] ) ,
vlo = v [ floor ( i ) ] ,
vhi = v [ ceil ( i ) ] ,
lo = vlo [ 1 ] ,
hi = vhi [ 1 ]
)
assert ( is_vector ( lo ) && is_vector ( hi ) ,
"Result values must all be numbers, or all be vectors." )
assert ( len ( lo ) = = len ( hi ) , "Vector result values must be the same length" )
vlo . x = = vhi . x ? vlo [ 1 ] :
let ( u = ( x - vlo . x ) / ( vhi . x - vlo . x ) )
lerp ( lo , hi , u ) ;
2020-03-03 03:30:20 +00:00
// Function: unit()
2020-07-10 07:03:55 +00:00
// Usage:
2020-07-12 06:23:12 +00:00
// unit(v, [error]);
2019-04-20 00:02:17 +00:00
// Description:
2020-07-12 06:23:12 +00:00
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
// asserts an error unless `error` is given, in which case the value of `error` is returned.
2019-04-20 00:02:17 +00:00
// Arguments:
// v = The vector to normalize.
2020-07-12 06:23:12 +00:00
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
2019-07-05 06:40:24 +00:00
// Examples:
2020-03-03 03:30:20 +00:00
// unit([10,0,0]); // Returns: [1,0,0]
// unit([0,10,0]); // Returns: [0,1,0]
// unit([0,0,10]); // Returns: [0,0,1]
// unit([0,-10,0]); // Returns: [0,-1,0]
2020-07-10 07:03:55 +00:00
// unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
// unit([0,0,0]); // Asserts an error.
2020-07-12 06:23:12 +00:00
function unit ( v , error = [ [ [ "ASSERT" ] ] ] ) =
2020-07-10 07:03:55 +00:00
assert ( is_vector ( v ) , str ( "Expected a vector. Got: " , v ) )
2021-02-24 21:56:21 +00:00
norm ( v ) < EPSILON ? ( error = = [ [ [ "ASSERT" ] ] ] ? assert ( norm ( v ) >= EPSILON , "Tried to normalize a zero vector" ) : error ) :
2020-07-10 07:03:55 +00:00
v / norm ( v ) ;
2019-04-20 00:02:17 +00:00
// Function: vector_angle()
// Usage:
// vector_angle(v1,v2);
2020-07-24 21:54:34 +00:00
// vector_angle([v1,v2]);
2019-05-15 02:36:32 +00:00
// vector_angle(PT1,PT2,PT3);
2019-05-15 02:44:00 +00:00
// vector_angle([PT1,PT2,PT3]);
2019-04-20 00:02:17 +00:00
// Description:
2019-05-15 02:36:32 +00:00
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
2019-07-05 06:40:24 +00:00
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
2019-05-15 02:36:32 +00:00
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
2019-04-20 00:02:17 +00:00
// Arguments:
2019-05-15 02:36:32 +00:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-05 06:40:24 +00:00
// Examples:
// vector_angle(UP,LEFT); // Returns: 90
// vector_angle(RIGHT,LEFT); // Returns: 180
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
2020-04-03 01:15:43 +00:00
function vector_angle ( v1 , v2 , v3 ) =
2020-07-24 21:54:34 +00:00
assert ( ( is_undef ( v3 ) && ( is_undef ( v2 ) || same_shape ( v1 , v2 ) ) )
|| is_consistent ( [ v1 , v2 , v3 ] ) ,
"Bad arguments." )
assert ( is_vector ( v1 ) || is_consistent ( v1 ) , "Bad arguments." )
let ( vecs = ! is_undef ( v3 ) ? [ v1 - v2 , v3 - v2 ] :
! is_undef ( v2 ) ? [ v1 , v2 ] :
len ( v1 ) = = 3 ? [ v1 [ 0 ] - v1 [ 1 ] , v1 [ 2 ] - v1 [ 1 ] ]
: v1
2020-05-30 02:04:34 +00:00
)
2020-07-24 21:54:34 +00:00
assert ( is_vector ( vecs [ 0 ] , 2 ) || is_vector ( vecs [ 0 ] , 3 ) , "Bad arguments." )
2020-05-30 02:04:34 +00:00
let (
norm0 = norm ( vecs [ 0 ] ) ,
norm1 = norm ( vecs [ 1 ] )
)
2020-07-24 21:54:34 +00:00
assert ( norm0 > 0 && norm1 > 0 , "Zero length vector." )
2020-05-30 02:04:34 +00:00
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
acos ( constrain ( ( vecs [ 0 ] * vecs [ 1 ] ) / ( norm0 * norm1 ) , - 1 , 1 ) ) ;
2020-07-24 21:54:34 +00:00
2019-04-20 00:02:17 +00:00
// Function: vector_axis()
// Usage:
2019-05-15 02:36:32 +00:00
// vector_axis(v1,v2);
2020-07-24 21:54:34 +00:00
// vector_axis([v1,v2]);
2019-05-15 02:44:00 +00:00
// vector_axis(PT1,PT2,PT3);
// vector_axis([PT1,PT2,PT3]);
2019-04-20 00:02:17 +00:00
// Description:
2019-05-15 02:44:00 +00:00
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
2020-07-24 21:54:34 +00:00
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
2019-04-20 00:02:17 +00:00
// Arguments:
2019-05-15 02:44:00 +00:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-05 06:40:24 +00:00
// Examples:
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
2019-05-15 02:36:32 +00:00
function vector_axis ( v1 , v2 = undef , v3 = undef ) =
2020-07-21 23:15:02 +00:00
is_vector ( v3 )
? assert ( is_consistent ( [ v3 , v2 , v1 ] ) , "Bad arguments." )
vector_axis ( v1 - v2 , v3 - v2 )
2020-07-24 21:54:34 +00:00
: assert ( is_undef ( v3 ) , "Bad arguments." )
is_undef ( v2 )
? assert ( is_list ( v1 ) , "Bad arguments." )
len ( v1 ) = = 2
? vector_axis ( v1 [ 0 ] , v1 [ 1 ] )
: vector_axis ( v1 [ 0 ] , v1 [ 1 ] , v1 [ 2 ] )
: assert ( is_vector ( v1 , zero = false ) && is_vector ( v2 , zero = false ) && is_consistent ( [ v1 , v2 ] )
, "Bad arguments." )
let (
eps = 1e-6 ,
w1 = point3d ( v1 / norm ( v1 ) ) ,
w2 = point3d ( v2 / norm ( v2 ) ) ,
w3 = ( norm ( w1 - w2 ) > eps && norm ( w1 + w2 ) > eps ) ? w2
2021-06-15 03:28:49 +00:00
: ( norm ( v_abs ( w2 ) - UP ) > eps ) ? UP
2020-07-24 21:54:34 +00:00
: RIGHT
) unit ( cross ( w1 , w3 ) ) ;
2021-06-30 09:55:47 +00:00
2021-05-12 00:51:09 +00:00
// Section: Vector Searching
2021-06-30 09:55:47 +00:00
// Function: vector_search()
2021-05-12 00:51:09 +00:00
// Usage:
2021-06-30 09:55:47 +00:00
// indices = vector_search(query, r, target);
2021-07-01 00:31:00 +00:00
// See Also: vector_search_tree(), vector_nearest()
2021-06-30 09:55:47 +00:00
// Topics: Search, Points, Closest
2021-05-12 00:51:09 +00:00
// Description:
2021-06-30 09:55:47 +00:00
// Given a list of query points `query` and a `target` to search,
// finds the points in `target` that match each query point. A match holds when the
// distance between a point in `target` and a query point is less than or equal to `r`.
// The returned list will have a list for each query point containing, in arbitrary
// order, the indices of all points that match that query point.
// The `target` may be a simple list of points or a search tree.
// When `target` is a large list of points, a search tree is constructed to
// speed up the search with an order around O(log n) per query point.
// For small point lists, a direct search is done dispensing a tree construction.
// Alternatively, `target` may be a search tree built with `vector_tree_search()`.
// In that case, that tree is parsed looking for matches.
2021-05-12 00:51:09 +00:00
// Arguments:
2021-06-30 09:55:47 +00:00
// query = list of points to find matches for.
// r = the search radius.
// target = list of the points to search for matches or a search tree.
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
// $fn=32;
// k = 2000;
// points = array_group(rands(0,10,k*2,seed=13333),2);
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
// search_ind = vector_search(queries, points, 1);
// move_copies(points) circle(r=.08);
// for(i=idx(queries)){
// color("blue")stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
// }
// Example: when a series of search with different radius are needed, its is faster to pre-compute the tree
// $fn=32;
// k = 2000;
// points = array_group(rands(0,10,k*2),2,seed=13333);
// queries1 = [for(i=[3,7]) [i,i]];
// queries2 = [for(i=[3,7]) [10-i,i]];
// r1 = 1;
// r2 = .7;
// search_tree = vector_search_tree(points);
// search_1 = vector_search(queries1, r1, search_tree);
// search_2 = vector_search(queries2, r2, search_tree);
// move_copies(points) circle(r=.08);
// for(i=idx(queries1)){
// color("blue")stroke(move(queries1[i],circle(r=r1)), closed=true, width=.08);
// color("red") move_copies(select(points, search_1[i])) circle(r=.08);
// }
// for(i=idx(queries2)){
// color("green")stroke(move(queries2[i],circle(r=r2)), closed=true, width=.08);
// color("red") move_copies(select(points, search_2[i])) circle(r=.08);
// }
function vector_search ( query , r , target ) =
assert ( is_finite ( r ) && r >= 0 ,
"The query radius should be a positive number." )
let (
tgpts = is_matrix ( target ) , // target is a point list
tgtree = is_list ( target ) // target is a tree
&& ( len ( target ) = = 2 )
&& is_matrix ( target [ 0 ] )
&& is_list ( target [ 1 ] )
&& ( len ( target [ 1 ] ) = = 4 || ( len ( target [ 1 ] ) = = 1 && is_list ( target [ 1 ] [ 0 ] ) ) )
)
assert ( tgpts || tgtree ,
"The target should be a list of points or a search tree compatible with the query." )
let (
dim = tgpts ? len ( target [ 0 ] ) : len ( target [ 0 ] [ 0 ] ) ,
simple = is_vector ( query , dim ) ,
mult = ! simple && is_matrix ( query , undef , dim )
)
assert ( simple || mult ,
"The query points should be a list of points compatible with the target point list." )
tgpts
? len ( target ) < 200
? simple ? [ for ( i = idx ( target ) ) if ( norm ( target [ i ] - query ) < r ) i ] :
[ for ( q = query ) [ for ( i = idx ( target ) ) if ( norm ( target [ i ] - q ) < r ) i ] ]
: let ( tree = _bt_tree ( target , count ( len ( target ) ) , leafsize = 25 ) )
simple ? _bt_search ( query , r , target , tree ) :
[ for ( q = query ) _bt_search ( q , r , target , tree ) ]
: simple ? _bt_search ( query , r , target [ 0 ] , target [ 1 ] ) :
[ for ( q = query ) _bt_search ( q , r , target [ 0 ] , target [ 1 ] ) ] ;
//Ball tree search
function _bt_search ( query , r , points , tree ) = //echo(tree)
assert ( is_list ( tree )
&& ( ( len ( tree ) = = 1 && is_list ( tree [ 0 ] ) )
|| ( len ( tree ) = = 4 && is_num ( tree [ 0 ] ) && is_num ( tree [ 1 ] ) ) ) ,
"The tree is invalid." )
len ( tree ) = = 1
? assert ( tree [ 0 ] = = [ ] || is_vector ( tree [ 0 ] ) , "The tree is invalid." )
[ for ( i = tree [ 0 ] ) if ( norm ( points [ i ] - query ) < = r ) i ]
: norm ( query - points [ tree [ 0 ] ] ) > r + tree [ 1 ] ? [ ] :
concat (
[ if ( norm ( query - points [ tree [ 0 ] ] ) < = r ) tree [ 0 ] ] ,
_bt_search ( query , r , points , tree [ 2 ] ) ,
_bt_search ( query , r , points , tree [ 3 ] ) ) ;
// Function: vector_search_tree()
2021-05-12 00:51:09 +00:00
// Usage:
2021-06-30 09:55:47 +00:00
// tree = vector_search_tree(points,leafsize);
// See Also: vector_nearest(), vector_search()
// Topics: Search, Points, Closest
2021-05-12 00:51:09 +00:00
// Description:
2021-06-30 09:55:47 +00:00
// Construct a search tree for the given list of points to be used as input
// to the function `vector_search()`. The use of a tree speeds up the
// search process. The tree construction stops branching when
// a tree node represents a number of points less or equal to `leafsize`.
// Search trees are ball trees. Constructing the
// tree should be O(n log n) and searches should be O(log n), though real life
// performance depends on how the data is distributed, and it will deteriorate
// for high data dimensions. This data structure is useful when you will be
// performing many searches of the same data, so that the cost of constructing
// the tree is justified. (See https://en.wikipedia.org/wiki/Ball_tree)
2021-05-12 00:51:09 +00:00
// Arguments:
2021-06-30 09:55:47 +00:00
// points = list of points to store in the search tree.
// leafsize = the size of the tree leaves. Default: 25
2021-05-31 00:32:56 +00:00
// Example: A set of four queries to find points within 1 unit of the query. The circles show the search region and all have radius 1.
// $fn=32;
// k = 2000;
// points = array_group(rands(0,10,k*2,seed=13333),2);
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
2021-06-30 09:55:47 +00:00
// search_tree = vector_search_tree(points);
// search_ind = vector_tree_search(search_tree, queries, 1);
2021-05-31 00:32:56 +00:00
// move_copies(points) circle(r=.08);
// for(i=idx(queries)){
2021-06-30 09:55:47 +00:00
// color("blue") stroke(move(queries[i],circle(r=1)), closed=true, width=.08);
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08); }
2021-05-31 00:32:56 +00:00
// }
2021-06-30 09:55:47 +00:00
function vector_search_tree ( points , leafsize = 25 ) =
assert ( is_matrix ( points ) , "The input list entries should be points." )
assert ( is_int ( leafsize ) && leafsize >= 1 ,
"The tree leaf size should be an integer greater than zero." )
[ points , _bt_tree ( points , count ( len ( points ) ) , leafsize ) ] ;
//Ball tree construction
function _bt_tree ( points , ind , leafsize = 25 ) =
len ( ind ) < = leafsize ? [ ind ] :
let (
bounds = pointlist_bounds ( select ( points , ind ) ) ,
coord = max_index ( bounds [ 1 ] - bounds [ 0 ] ) ,
projc = [ for ( i = ind ) points [ i ] [ coord ] ] ,
pmc = mean ( projc ) ,
pivot = min_index ( [ for ( p = projc ) abs ( p - pmc ) ] ) ,
radius = max ( [ for ( i = ind ) norm ( points [ ind [ pivot ] ] - points [ i ] ) ] ) ,
median = ninther ( projc ) ,
Lind = [ for ( i = idx ( ind ) ) if ( projc [ i ] < = median && i ! = pivot ) ind [ i ] ] ,
Rind = [ for ( i = idx ( ind ) ) if ( projc [ i ] > median && i ! = pivot ) ind [ i ] ]
)
[ ind [ pivot ] , radius , _bt_tree ( points , Lind , leafsize ) , _bt_tree ( points , Rind , leafsize ) ] ;
// Function: vector_nearest()
2021-05-12 00:51:09 +00:00
// Usage:
2021-06-30 09:55:47 +00:00
// indices = vector_nearest(query, k, target)
// See Also: vector_search(), vector_search_tree()
2021-05-12 00:51:09 +00:00
// Description:
2021-06-30 09:55:47 +00:00
// Search `target` for the `k` points closest to point `query`.
// The input `target` is either a list of points to search or a search tree
// pre-computed by `vector_search_tree(). A list is returned containing the indices
// of the points found in sorted order, closest point first.
2021-05-12 00:51:09 +00:00
// Arguments:
2021-06-30 09:55:47 +00:00
// query = point to search for
2021-05-12 00:51:09 +00:00
// k = number of neighbors to return
2021-06-30 09:55:47 +00:00
// target = a list of points or a search tree to search in
2021-05-31 00:32:56 +00:00
// Example: Four queries to find the 15 nearest points. The circles show the radius defined by the most distant query result. Note they are different for each query.
// $fn=32;
2021-06-30 09:55:47 +00:00
// k = 1000;
2021-05-31 00:32:56 +00:00
// points = array_group(rands(0,10,k*2,seed=13333),2);
2021-06-30 09:55:47 +00:00
// tree = vector_search_tree(points);
2021-05-31 00:32:56 +00:00
// queries = [for(i=[3,7],j=[3,7]) [i,j]];
2021-06-30 09:55:47 +00:00
// search_ind = [for(q=queries) vector_nearest(q, 15, tree)];
2021-05-31 00:32:56 +00:00
// move_copies(points) circle(r=.08);
// for(i=idx(queries)){
2021-06-30 09:55:47 +00:00
// circle = circle(r=norm(points[last(search_ind[i])]-queries[i]));
// color("red") move_copies(select(points, search_ind[i])) circle(r=.08);
// color("blue") stroke(move(queries[i], circle), closed=true, width=.08);
2021-05-31 00:32:56 +00:00
// }
2021-06-30 09:55:47 +00:00
function vector_nearest ( query , k , target ) =
assert ( is_int ( k ) && k > 0 )
assert ( is_vector ( query ) , "Query must be a vector." )
let (
tgpts = is_matrix ( target , undef , len ( query ) ) , // target is a point list
tgtree = is_list ( target ) // target is a tree
&& ( len ( target ) = = 2 )
&& is_matrix ( target [ 0 ] , undef , len ( query ) )
&& ( len ( target [ 1 ] ) = = 4 || ( len ( target [ 1 ] ) = = 1 && is_list ( target [ 1 ] [ 0 ] ) ) )
)
assert ( tgpts || tgtree ,
"The target should be a list of points or a search tree compatible with the query." )
assert ( ( tgpts && ( k < = len ( target ) ) ) || ( tgtree && ( k < = len ( target [ 0 ] ) ) ) ,
"More results are requested than the number of points." )
tgpts
? let ( tree = _bt_tree ( target , count ( len ( target ) ) ) )
subindex ( _bt_nearest ( query , k , target , tree ) , 0 )
: subindex ( _bt_nearest ( query , k , target [ 0 ] , target [ 1 ] ) , 0 ) ;
//Ball tree nearest
function _bt_nearest ( p , k , points , tree , answers = [ ] ) =
assert ( is_list ( tree )
&& ( ( len ( tree ) = = 1 && is_list ( tree [ 0 ] ) )
|| ( len ( tree ) = = 4 && is_num ( tree [ 0 ] ) && is_num ( tree [ 1 ] ) ) ) ,
"The tree is invalid." )
len ( tree ) = = 1
? _insert_many ( answers , k , [ for ( entry = tree [ 0 ] ) [ entry , norm ( points [ entry ] - p ) ] ] )
: let ( d = norm ( p - points [ tree [ 0 ] ] ) )
len ( answers ) = = k && ( d > last ( answers ) [ 1 ] + tree [ 1 ] ) ? answers :
let (
answers1 = _insert_sorted ( answers , k , [ tree [ 0 ] , d ] ) ,
answers2 = _bt_nearest ( p , k , points , tree [ 2 ] , answers1 ) ,
answers3 = _bt_nearest ( p , k , points , tree [ 3 ] , answers2 )
)
answers3 ;
2021-05-12 00:51:09 +00:00
function _insert_sorted ( list , k , new ) =
2021-06-30 09:55:47 +00:00
( len ( list ) = = k && new [ 1 ] >= last ( list ) [ 1 ] ) ? list
2021-05-12 00:51:09 +00:00
: [
for ( entry = list ) if ( entry [ 1 ] < = new [ 1 ] ) entry ,
new ,
for ( i = [ 0 : 1 : min ( k - 1 , len ( list ) ) - 1 ] ) if ( list [ i ] [ 1 ] > new [ 1 ] ) list [ i ]
] ;
2021-06-30 09:55:47 +00:00
2021-05-12 00:51:09 +00:00
function _insert_many ( list , k , newlist , i = 0 ) =
2021-06-30 09:55:47 +00:00
i = = len ( newlist )
? list
: assert ( is_vector ( newlist [ i ] , 2 ) , "The tree is invalid." )
_insert_many ( _insert_sorted ( list , k , newlist [ i ] ) , k , newlist , i + 1 ) ;
2021-05-14 10:23:33 +00:00
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap