mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
201 lines
6.7 KiB
OpenSCAD
201 lines
6.7 KiB
OpenSCAD
|
//////////////////////////////////////////////////////////////////////
|
||
|
// LibFile: convex_hull.scad
|
||
|
// Functions to create 2D and 3D convex hulls.
|
||
|
// To use, add the following line to the beginning of your file:
|
||
|
// ```
|
||
|
// include <BOSL/convex_hull.scad>
|
||
|
// ```
|
||
|
// Derived from Linde's Hull:
|
||
|
// - https://github.com/openscad/scad-utils
|
||
|
//////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
include <BOSL/math.scad>
|
||
|
|
||
|
|
||
|
|
||
|
// Section: Generalized Hull
|
||
|
|
||
|
// Function: convex_hull()
|
||
|
// Usage:
|
||
|
// convex_hull(points)
|
||
|
// Description:
|
||
|
// When given a list of 3D points, returns a list of faces for
|
||
|
// the minimal convex hull polyhedron of those points. Each face
|
||
|
// is a list of indexes into `points`.
|
||
|
// When given a list of 2D points, or 3D points that are all
|
||
|
// coplanar, returns a list of indices into `points` for the path
|
||
|
// that forms the minimal convex hull polygon of those points.
|
||
|
// Arguments:
|
||
|
// points = The list of points to find the minimal convex hull of.
|
||
|
function convex_hull(points) =
|
||
|
!(len(points) > 0) ? [] :
|
||
|
len(points[0]) == 2 ? convex_hull2d(points) :
|
||
|
len(points[0]) == 3 ? convex_hull3d(points) : [];
|
||
|
|
||
|
|
||
|
|
||
|
// Section: 2D Hull
|
||
|
|
||
|
// Function: convex_hull2d()
|
||
|
// Usage:
|
||
|
// convex_hull2d(points)
|
||
|
// Description:
|
||
|
// Takes a list of arbitrary 2D points, and finds the minimal convex
|
||
|
// hull polygon to enclose them. Returns a path as a list of indices
|
||
|
// into `points`.
|
||
|
function convex_hull2d(points) =
|
||
|
(len(points) < 3)? [] : let(
|
||
|
a=0, b=1,
|
||
|
c = _find_first_noncollinear([a,b], points, 2)
|
||
|
) (c == len(points))? _convex_hull_collinear(points) : let(
|
||
|
remaining = [ for (i = [2:len(points)-1]) if (i != c) i ],
|
||
|
ccw = triangle_area2d(points[a], points[b], points[c]) > 0,
|
||
|
polygon = ccw? [a,b,c] : [a,c,b]
|
||
|
) _convex_hull_iterative_2d(points, polygon, remaining);
|
||
|
|
||
|
|
||
|
// Adds the remaining points one by one to the convex hull
|
||
|
function _convex_hull_iterative_2d(points, polygon, remaining, _i=0) =
|
||
|
(_i >= len(remaining))? polygon : let (
|
||
|
// pick a point
|
||
|
i = remaining[_i],
|
||
|
// find the segments that are in conflict with the point (point not inside)
|
||
|
conflicts = _find_conflicting_segments(points, polygon, points[i])
|
||
|
// no conflicts, skip point and move on
|
||
|
) (len(conflicts) == 0)? _convex_hull_iterative_2d(points, polygon, remaining, _i+1) : let(
|
||
|
// find the first conflicting segment and the first not conflicting
|
||
|
// conflict will be sorted, if not wrapping around, do it the easy way
|
||
|
polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i)
|
||
|
) _convex_hull_iterative_2d(points, polygon, remaining, _i+1);
|
||
|
|
||
|
|
||
|
function _find_first_noncollinear(line, points, i) =
|
||
|
(i>=len(points) || !collinear_indexed(points, line[0], line[1], i))? i :
|
||
|
_find_first_noncollinear(line, points, i+1);
|
||
|
|
||
|
|
||
|
function _find_conflicting_segments(points, polygon, point) = [
|
||
|
for (i = [0:len(polygon)-1]) let(
|
||
|
j = (i+1) % len(polygon),
|
||
|
p1 = points[polygon[i]],
|
||
|
p2 = points[polygon[j]],
|
||
|
area = triangle_area2d(p1, p2, point)
|
||
|
) if (area < 0) i
|
||
|
];
|
||
|
|
||
|
|
||
|
// remove the conflicting segments from the polygon
|
||
|
function _remove_conflicts_and_insert_point(polygon, conflicts, point) =
|
||
|
(conflicts[0] == 0)? let(
|
||
|
nonconflicting = [ for(i = [0:len(polygon)-1]) if (!in_list(i, conflicts)) i ],
|
||
|
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
|
||
|
polygon = concat([ for (i = new_indices) polygon[i] ], point)
|
||
|
) polygon : let(
|
||
|
before_conflicts = [ for(i = [0:min(conflicts)]) polygon[i] ],
|
||
|
after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:len(polygon)-1]) polygon[i] ],
|
||
|
polygon = concat(before_conflicts, point, after_conflicts)
|
||
|
) polygon;
|
||
|
|
||
|
|
||
|
|
||
|
// Section: 3D Hull
|
||
|
|
||
|
// Function: convex_hull3d()
|
||
|
// Usage:
|
||
|
// convex_hull3d(points)
|
||
|
// Description:
|
||
|
// Takes a list of arbitrary 3D points, and finds the minimal convex
|
||
|
// hull polyhedron to enclose them. Returns a list of faces, where
|
||
|
// each face is a list of indexes into the given `points` list.
|
||
|
// If all points passed to it are coplanar, then the return is the
|
||
|
// list of indices of points forming the minimal convex hull polygon.
|
||
|
function convex_hull3d(points) =
|
||
|
(len(points) < 3)? list_range(len(points)) : let (
|
||
|
// start with a single triangle
|
||
|
a=0, b=1, c=2,
|
||
|
plane = plane3pt_indexed(points, a, b, c),
|
||
|
d = _find_first_noncoplanar(plane, points, 3)
|
||
|
) (d == len(points))? /* all coplanar*/ let (
|
||
|
pts2d = [ for (p = points) xyz_to_planar(p, points[a], points[b], points[c]) ],
|
||
|
hull2d = convex_hull2d(pts2d)
|
||
|
) hull2d : let(
|
||
|
remaining = [for (i = [3:len(points)-1]) if (i != d) i],
|
||
|
// Build an initial tetrahedron.
|
||
|
// Swap b, c if d is in front of triangle t.
|
||
|
ifop = in_front_of_plane(plane, points[d]),
|
||
|
bc = ifop? [c,b] : [b,c],
|
||
|
b = bc[0],
|
||
|
c = bc[1],
|
||
|
triangles = [
|
||
|
[a,b,c],
|
||
|
[d,b,a],
|
||
|
[c,d,a],
|
||
|
[b,d,c]
|
||
|
],
|
||
|
// calculate the plane equations
|
||
|
planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
|
||
|
) _convex_hull_iterative(points, triangles, planes, remaining);
|
||
|
|
||
|
|
||
|
// Adds the remaining points one by one to the convex hull
|
||
|
function _convex_hull_iterative(points, triangles, planes, remaining, _i=0) =
|
||
|
_i >= len(remaining) ? triangles :
|
||
|
let (
|
||
|
// pick a point
|
||
|
i = remaining[_i],
|
||
|
// find the triangles that are in conflict with the point (point not inside)
|
||
|
conflicts = _find_conflicts(points[i], planes),
|
||
|
// for all triangles that are in conflict, collect their halfedges
|
||
|
halfedges = [
|
||
|
for(c = conflicts, i = [0:2]) let(
|
||
|
j = (i+1)%3
|
||
|
) [triangles[c][i], triangles[c][j]]
|
||
|
],
|
||
|
// find the outer perimeter of the set of conflicting triangles
|
||
|
horizon = _remove_internal_edges(halfedges),
|
||
|
// generate a new triangle for each horizon halfedge together with the picked point i
|
||
|
new_triangles = [ for (h = horizon) concat(h,i) ],
|
||
|
// calculate the corresponding plane equations
|
||
|
new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
|
||
|
) _convex_hull_iterative(
|
||
|
points,
|
||
|
// remove the conflicting triangles and add the new ones
|
||
|
concat(list_remove(triangles, conflicts), new_triangles),
|
||
|
concat(list_remove(planes, conflicts), new_planes),
|
||
|
remaining,
|
||
|
_i+1
|
||
|
);
|
||
|
|
||
|
|
||
|
function _convex_hull_collinear(points) =
|
||
|
let(
|
||
|
a = points[0],
|
||
|
n = points[1] - a,
|
||
|
points1d = [ for(p = points) (p-a)*n ],
|
||
|
min_i = min_index(points1d),
|
||
|
max_i = max_index(points1d)
|
||
|
) [min_i, max_i];
|
||
|
|
||
|
|
||
|
|
||
|
function _remove_internal_edges(halfedges) = [
|
||
|
for (h = halfedges)
|
||
|
if (!in_list(reverse(h), halfedges))
|
||
|
h
|
||
|
];
|
||
|
|
||
|
|
||
|
function _find_conflicts(point, planes) = [
|
||
|
for (i = [0:len(planes)-1])
|
||
|
if (in_front_of_plane(planes[i], point))
|
||
|
i
|
||
|
];
|
||
|
|
||
|
|
||
|
function _find_first_noncoplanar(plane, points, i) =
|
||
|
(i >= len(points) || !coplanar(plane, points[i]))? i :
|
||
|
_find_first_noncoplanar(plane, points, i+1);
|
||
|
|
||
|
|
||
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|