BOSL2/constants.scad

214 lines
7.3 KiB
OpenSCAD
Raw Normal View History

2019-02-12 02:24:41 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: constants.scad
// Useful Constants.
// Includes:
// include <BOSL2/std.scad>
2019-02-12 02:24:41 +00:00
//////////////////////////////////////////////////////////////////////
// a value that the user should never enter randomly;
// result of `dd if=/dev/random bs=32 count=1 |base64` :
_UNDEF="LRG+HX7dy89RyHvDlAKvb9Y04OTuaikpx205CTh8BSI";
2019-02-12 02:24:41 +00:00
// Section: General Constants
2019-07-18 01:57:23 +00:00
// Constant: $slop
// Description:
// A number of printers, particularly FDM/FFF printers, tend to be a bit sloppy in their printing.
// This has made it so that some parts won't fit together without adding a bit of extra slop space.
// That is what the `$slop` value is for. The value for this will vary from printer to printer.
// By default, we use a value of 0.00 so that parts should fit exactly for resin and other precision
// printers. This value is measured in millimeters. When making your own parts, you should add
// `$slop` to both sides of a hole that another part is to fit snugly into. For a loose fit, add
// `2*$slop` to each side. This should be done for both X and Y axes. The Z axis will require a
// slop that depends on your layer height and bridging settings, and hole sizes. We leave that as
// a more complicated exercise for the user.
// DefineHeader(NumList): Calibration
// Calibration: To calibrate the `$slop` value for your printer, follow this procedure:
// Print the Slop Calibration part from the example below.
// Take the long block and orient it so the numbers are upright, facing you.
// Take the plug and orient it so that the arrow points down, facing you.
// Starting with the hole with the largest number in front of it, insert the small end of the plug into the hole.
// If you can insert and remove the small end of the plug from the hole without much force, then try again with the hole with the next smaller number.
// Repeat step 5 until you have found the hole with the smallest number that the plug fits into without much force.
// The correct hole should hold the plug when the long block is turned upside-down.
// The number in front of that hole will indicate the `$slop` value that is ideal for your printer.
// Remember to set that slop value in your scripts after you include the BOSL2 library: ie: `$slop = 0.15;`
2021-02-23 03:48:03 +00:00
// Example(3D,Med): Slop Calibration Part.
// min_slop = 0.00;
// slop_step = 0.05;
// holes = 8;
// holesize = [15,15,15];
// height = 20;
// gap = 5;
// l = holes * (holesize.x + gap) + gap;
// w = holesize.y + 2*gap;
// h = holesize.z + 5;
// diff("holes")
// cuboid([l, w, h], anchor=BOT) {
// for (i=[0:holes-1]) {
// right((i-holes/2+0.5)*(holesize.x+gap)) {
// s = min_slop + slop_step * i;
// tags("holes") {
// cuboid([holesize.x + 2*s, holesize.y + 2*s, h+0.2]);
// fwd(w/2-1) xrot(90) linear_extrude(1.1) {
// text(
2022-01-11 01:22:11 +00:00
// text=format_fixed(s,2),
// size=0.4*holesize.x,
// halign="center",
2021-02-23 03:48:03 +00:00
// valign="center"
// );
// }
// }
// }
// }
// }
// back(holesize.y*2.5) {
// difference() {
// union() {
// cuboid([holesize.x+10, holesize.y+10, 15], anchor=BOT);
// cuboid([holesize.x, holesize.y, 15+holesize.z], anchor=BOT);
// }
// up(3) fwd((holesize.y+10)/2) {
// prismoid([holesize.x/2,1], [0,1], h=holesize.y-6);
// }
// }
// }
// Example(2D): Where to add `$slop` gaps.
// $slop = 0.2;
// difference() {
// square([20,12],center=true);
// back(3) square([10+2*$slop,11],center=true);
// }
// back(8) {
// rect([15,5],anchor=FWD);
// rect([10,8],anchor=BACK);
// }
// color("#000") {
2021-02-23 03:40:08 +00:00
// arrow_path = [[5.1,6.1], [6.0,7.1], [8,7.1], [10.5,10]];
// xflip_copy()
2021-02-23 03:48:03 +00:00
// stroke(arrow_path, width=0.3, endcap1="arrow2");
// xcopies(21) back(10.5) {
// back(1.8) text("$slop", size=1.5, halign="center");
// text("gap", size=1.5, halign="center");
// }
// }
$slop = 0.0;
2021-02-07 06:36:16 +00:00
// Constant: INCH
// Description:
// The number of millimeters in an inch.
INCH = 25.4;
// Section: Directional Vectors
2019-04-23 03:55:03 +00:00
// Vectors useful for `rotate()`, `mirror()`, and `anchor` arguments for `cuboid()`, `cyl()`, etc.
// Constant: LEFT
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: RIGHT, FRONT, BACK, UP, DOWN, CENTER
// Description: Vector pointing left. [-1,0,0]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
// cuboid(20, anchor=LEFT);
LEFT = [-1, 0, 0];
// Constant: RIGHT
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: LEFT, FRONT, BACK, UP, DOWN, CENTER
// Description: Vector pointing right. [1,0,0]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
// cuboid(20, anchor=RIGHT);
RIGHT = [ 1, 0, 0];
2019-05-08 05:42:44 +00:00
// Constant: FRONT
// Aliases: FWD, FORWARD
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: LEFT, RIGHT, BACK, UP, DOWN, CENTER
// Description: Vector pointing forward. [0,-1,0]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
2019-05-08 05:42:44 +00:00
// cuboid(20, anchor=FRONT);
FRONT = [ 0, -1, 0];
FWD = FRONT;
FORWARD = FRONT;
// Constant: BACK
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: LEFT, RIGHT, FRONT, UP, DOWN, CENTER
// Description: Vector pointing back. [0,1,0]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
// cuboid(20, anchor=BACK);
BACK = [ 0, 1, 0];
2019-05-08 05:42:44 +00:00
// Constant: BOTTOM
2021-11-11 04:12:14 +00:00
// Aliases: BOT, DOWN
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: LEFT, RIGHT, FRONT, BACK, UP, CENTER
// Description: Vector pointing down. [0,0,-1]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
2019-05-08 05:42:44 +00:00
// cuboid(20, anchor=BOTTOM);
BOTTOM = [ 0, 0, -1];
BOT = BOTTOM;
DOWN = BOTTOM;
2019-05-08 05:42:44 +00:00
// Constant: TOP
// Aliases: UP
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: LEFT, RIGHT, FRONT, BACK, DOWN, CENTER
// Description: Vector pointing up. [0,0,1]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
2019-05-08 05:42:44 +00:00
// cuboid(20, anchor=TOP);
TOP = [ 0, 0, 1];
UP = TOP;
// Constant: CENTER
// Aliases: CTR
// Topics: Constants, Vectors
2021-11-12 03:46:39 +00:00
// See Also: LEFT, RIGHT, FRONT, BACK, UP, DOWN
// Description: Zero vector. Centered. [0,0,0]
2019-04-23 03:55:03 +00:00
// Example(3D): Usage with `anchor`
2019-05-10 11:02:58 +00:00
// cuboid(20, anchor=CENTER);
CENTER = [ 0, 0, 0]; // Centered zero vector.
CTR = CENTER;
// Section: Line specifiers
// Used by functions in geometry.scad for specifying whether two points
// are treated as an unbounded line, a ray with one endpoint, or a segment
// with two endpoints.
// Constant: SEGMENT
// Topics: Constants, Lines
// See Also: RAY, LINE
// Description: Treat a line as a segment. [true, true]
// Example: Usage with line_intersection:
// line1 = 10*[[9, 4], [5, 7]];
// line2 = 10*[[2, 3], [6, 5]];
// isect = line_intersection(line1, line2, SEGMENT, SEGMENT);
SEGMENT = [true,true];
// Constant: RAY
// Topics: Constants, Lines
// See Also: SEGMENT, LINE
// Description: Treat a line as a ray, based at the first point. [true, false]
// Example: Usage with line_intersection:
// line = [[-30,0],[30,30]];
// pt = [40,25];
// closest = line_closest_point(line,pt,RAY);
RAY = [true, false];
// Constant: LINE
// Topics: Constants, Lines
// See Also: RAY, SEGMENT
// Description: Treat a line as an unbounded line. [false, false]
// Example: Usage with line_intersection:
// line1 = 10*[[9, 4], [5, 7]];
// line2 = 10*[[2, 3], [6, 5]];
// isect = line_intersection(line1, line2, LINE, SEGMENT);
LINE = [false, false];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap