2019-05-16 04:07:27 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: common.scad
// Common functions used in argument processing.
// To use, include this line at the top of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
2019-10-31 02:52:53 +00:00
// Section: Type handling helpers.
// Function: typeof()
// Usage:
// typ = typeof(x);
// Description:
2020-07-24 21:54:34 +00:00
// Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid".
// Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid".
2019-10-31 02:52:53 +00:00
function typeof ( x ) =
2020-05-30 02:04:34 +00:00
is_undef ( x ) ? "undef" :
is_bool ( x ) ? "boolean" :
is_num ( x ) ? "number" :
2020-06-21 02:51:58 +00:00
is_nan ( x ) ? "nan" :
2020-05-30 02:04:34 +00:00
is_string ( x ) ? "string" :
is_list ( x ) ? "list" :
2020-07-24 21:54:34 +00:00
is_range ( x ) ? "range" :
"invalid" ;
2019-10-31 02:52:53 +00:00
2020-07-28 20:51:45 +00:00
2019-10-31 02:52:53 +00:00
// Function: is_type()
// Usage:
// b = is_type(x, types);
// Description:
// Returns true if the type of the value `x` is one of those given as strings in the list `types`.
2020-06-21 02:51:58 +00:00
// Valid types are "undef", "boolean", "number", "nan", "string", "list", or "range"
2019-10-31 02:52:53 +00:00
// Arguments:
// x = The value to check the type of.
// types = A list of types to check
// Example:
// is_str_or_list = is_type("foo", ["string","list"]); // Returns: true
// is_str_or_list2 = is_type([1,2,3], ["string","list"]); // Returns: true
// is_str_or_list3 = is_type(2, ["string","list"]); // Returns: false
// is_str = is_type("foo", "string"); // Returns: true
// is_str2 = is_type([3,4], "string"); // Returns: false
// is_str3 = is_type(["foo"], "string"); // Returns: false
// is_str4 = is_type(3, "string"); // Returns: false
function is_type ( x , types ) =
2020-05-30 02:04:34 +00:00
is_list ( types ) ? in_list ( typeof ( x ) , types ) :
is_string ( types ) ? typeof ( x ) = = types :
assert ( is_list ( types ) || is_string ( types ) ) ;
2019-05-16 04:07:27 +00:00
// Function: is_def()
// Usage:
2019-10-31 02:52:53 +00:00
// is_def(x)
2019-05-16 04:07:27 +00:00
// Description:
2019-10-31 02:52:53 +00:00
// Returns true if `x` is not `undef`. False if `x==undef`.
function is_def ( x ) = ! is_undef ( x ) ;
// Function: is_str()
// Usage:
// is_str(x)
// Description:
// Returns true if `x` is a string. A shortcut for `is_string()`.
function is_str ( x ) = is_string ( x ) ;
2020-01-09 04:43:19 +00:00
// Function: is_int()
// Usage:
// is_int(n)
// Description:
// Returns true if the given value is an integer (it is a number and it rounds to itself).
2020-07-24 21:54:34 +00:00
function is_int ( n ) = is_finite ( n ) && n = = round ( n ) ;
function is_integer ( n ) = is_finite ( n ) && n = = round ( n ) ;
2020-01-09 04:43:19 +00:00
2020-02-07 06:51:16 +00:00
// Function: is_nan()
// Usage:
// is_nan(x);
// Description:
// Returns true if a given value `x` is nan, a floating point value representing "not a number".
2020-02-07 09:58:45 +00:00
function is_nan ( x ) = ( x ! = x ) ;
2020-02-07 06:51:16 +00:00
2020-07-07 01:28:35 +00:00
// Function: is_finite()
// Usage:
// is_finite(x);
// Description:
// Returns true if a given value `x` is a finite number.
2020-10-04 02:50:29 +00:00
function is_finite ( x ) = is_num ( x ) && ! is_nan ( 0 * x ) ;
2020-07-07 01:28:35 +00:00
2020-03-21 13:18:22 +00:00
// Function: is_range()
// Description:
// Returns true if its argument is a range
2020-10-04 02:50:29 +00:00
function is_range ( x ) = ! is_list ( x ) && is_finite ( x [ 0 ] ) && is_finite ( x [ 1 ] ) && is_finite ( x [ 2 ] ) ;
2020-03-21 13:18:22 +00:00
2020-06-21 02:51:58 +00:00
2020-07-29 21:41:02 +00:00
// Function: valid_range()
// Description:
// Returns true if its argument is a valid range (deprecated ranges excluded).
function valid_range ( x ) =
is_range ( x )
&& ( x [ 1 ] > 0
? x [ 0 ] < = x [ 2 ]
: ( x [ 1 ] < 0 && x [ 0 ] >= x [ 2 ] ) ) ;
2020-03-02 21:47:43 +00:00
// Function: is_list_of()
// Usage:
// is_list_of(list, pattern)
// Description:
// Tests whether the input is a list whose entries are all numeric lists that have the same
// list shape as the pattern.
// Example:
// is_list_of([3,4,5], 0); // Returns true
// is_list_of([3,4,undef], 0); // Returns false
// is_list_of([[3,4],[4,5]], [1,1]); // Returns true
2020-07-24 21:54:34 +00:00
// is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true
2020-03-02 21:47:43 +00:00
// is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false
2020-07-24 21:54:34 +00:00
// is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true
// is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false
// is_list_of([], [1,[2,3]]); // Returns true
2020-03-02 21:47:43 +00:00
function is_list_of ( list , pattern ) =
2020-05-30 02:04:34 +00:00
let ( pattern = 0 * pattern )
is_list ( list ) &&
2020-07-24 21:54:34 +00:00
[ ] = = [ for ( entry = 0 * list ) if ( entry ! = pattern ) entry ] ;
2020-03-02 21:47:43 +00:00
2020-03-03 02:39:57 +00:00
// Function: is_consistent()
// Usage:
// is_consistent(list)
// Description:
// Tests whether input is a list of entries which all have the same list structure
2020-07-31 14:53:06 +00:00
// and are filled with finite numerical data. It returns `true`for the empty list.
2020-03-03 02:39:57 +00:00
// Example:
// is_consistent([3,4,5]); // Returns true
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true
// is_consistent([[3,4,5],[3,4]]); // Returns false
// is_consistent([[3,[3,4,[5]]], [5,[2,9,[9]]]]); // Returns true
// is_consistent([[3,[3,4,[5]]], [5,[2,9,9]]]); // Returns false
function is_consistent ( list ) =
2020-08-01 19:54:58 +00:00
/*is_list(list) &&*/ is_list_of ( list , _list_pattern ( list [ 0 ] ) ) ;
2020-07-29 20:50:22 +00:00
2020-07-29 21:41:02 +00:00
//Internal function
//Creates a list with the same structure of `list` with each of its elements substituted by 0.
function _list_pattern ( list ) =
is_list ( list )
? [ for ( entry = list ) is_list ( entry ) ? _list_pattern ( entry ) : 0 ]
: 0 ;
2020-07-29 20:50:22 +00:00
2020-07-28 18:02:35 +00:00
2020-03-17 11:11:25 +00:00
// Function: same_shape()
// Usage:
// same_shape(a,b)
// Description:
// Tests whether the inputs `a` and `b` are both numeric and are the same shaped list.
// Example:
// same_shape([3,[4,5]],[7,[3,4]]); // Returns true
// same_shape([3,4,5], [7,[3,4]]); // Returns false
2020-07-29 21:41:02 +00:00
function same_shape ( a , b ) = _list_pattern ( a ) = = b * 0 ;
2020-03-17 11:11:25 +00:00
2019-10-31 02:52:53 +00:00
// Section: Handling `undef`s.
2019-05-16 04:07:27 +00:00
// Function: default()
// Description:
// Returns the value given as `v` if it is not `undef`.
// Otherwise, returns the value of `dflt`.
// Arguments:
// v = Value to pass through if not `undef`.
// dflt = Value to return if `v` *is* `undef`.
function default ( v , dflt = undef ) = is_undef ( v ) ? dflt : v ;
// Function: first_defined()
// Description:
// Returns the first item in the list that is not `undef`.
// If all items are `undef`, or list is empty, returns `undef`.
2019-07-11 04:52:47 +00:00
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
function first_defined ( v , recursive = false , _i = 0 ) =
2020-05-30 02:04:34 +00:00
_i < len ( v ) && (
is_undef ( v [ _i ] ) || (
recursive &&
is_list ( v [ _i ] ) &&
is_undef ( first_defined ( v [ _i ] , recursive = recursive ) )
)
) ? first_defined ( v , recursive = recursive , _i = _i + 1 ) : v [ _i ] ;
2020-08-20 21:42:24 +00:00
2019-05-16 04:07:27 +00:00
2020-03-21 13:18:22 +00:00
// Function: one_defined()
// Usage:
2020-08-20 21:42:24 +00:00
// one_defined(vars, names, <required>)
2020-03-21 13:18:22 +00:00
// Description:
// Examines the input list `vars` and returns the entry which is not `undef`. If more
// than one entry is `undef` then issues an assertion specifying "Must define exactly one of" followed
// by the defined items from the `names` parameter. If `required` is set to false then it is OK if all of the
// entries of `vars` are undefined, and in this case, `undef` is returned.
// Example:
// length = one_defined([length,L,l], ["length","L","l"]);
function one_defined ( vars , names , required = true ) =
assert ( len ( vars ) = = len ( names ) )
let (
ok = num_defined ( vars ) = = 1 || ( ! required && num_defined ( vars ) = = 0 )
)
2020-05-21 20:49:06 +00:00
assert ( ok , str ( "Must define " , required ? "exactly" : "at most" , " one of " , num_defined ( vars ) = = 0 ? names : [ for ( i = [ 0 : len ( vars ) ] ) if ( is_def ( vars [ i ] ) ) names [ i ] ] ) )
2020-03-21 13:18:22 +00:00
first_defined ( vars ) ;
2019-05-16 04:07:27 +00:00
// Function: num_defined()
// Description: Counts how many items in list `v` are not `undef`.
2020-08-20 21:42:24 +00:00
function num_defined ( v ) = len ( [ for ( vi = v ) if ( ! is_undef ( vi ) ) 1 ] ) ;
2019-05-16 04:07:27 +00:00
// Function: any_defined()
// Description:
// Returns true if any item in the given array is not `undef`.
2019-07-11 04:52:47 +00:00
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, any sublists are evaluated recursively.
function any_defined ( v , recursive = false ) = first_defined ( v , recursive = recursive ) ! = undef ;
2019-05-16 04:07:27 +00:00
// Function: all_defined()
// Description:
// Returns true if all items in the given array are not `undef`.
2019-07-11 04:52:47 +00:00
// Arguments:
// v = The list whose items are being checked.
// recursive = If true, any sublists are evaluated recursively.
2020-08-20 21:42:24 +00:00
function all_defined ( v , recursive = false ) =
[ ] = = [ for ( x = v ) if ( is_undef ( x ) || ( recursive && is_list ( x ) && ! all_defined ( x , recursive ) ) ) 0 ] ;
2019-05-16 04:07:27 +00:00
2020-03-21 13:18:22 +00:00
2019-05-16 04:07:27 +00:00
// Section: Argument Helpers
2020-02-29 05:34:58 +00:00
// Function: get_anchor()
// Usage:
2020-08-20 21:42:24 +00:00
// get_anchor(anchor,center,<uncentered>,<dflt>);
2020-02-29 05:34:58 +00:00
// Description:
// Calculated the correct anchor from `anchor` and `center`. In order:
// - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned.
// - Otherwise, if `center` is not `undef` and `center` evaluates as false, then the value of `uncentered` is returned.
// - Otherwise, if `anchor` is not `undef`, then the value of `anchor` is returned.
// - Otherwise, the value of `dflt` is returned.
// This ordering ensures that `center` will override `anchor`.
// Arguments:
// anchor = The anchor name or vector.
// center = If not `undef`, this overrides the value of `anchor`.
// uncentered = The value to return if `center` is not `undef` and evaluates as false. Default: ALLNEG
// dflt = The default value to return if both `anchor` and `center` are `undef`. Default: `CENTER`
function get_anchor ( anchor , center , uncentered = BOT , dflt = CENTER ) =
2020-05-30 02:04:34 +00:00
! is_undef ( center ) ? ( center ? CENTER : uncentered ) :
! is_undef ( anchor ) ? anchor :
dflt ;
2020-02-29 05:34:58 +00:00
2019-05-16 04:07:27 +00:00
// Function: get_radius()
// Usage:
2020-08-20 21:42:24 +00:00
// get_radius(<r1>, <r2>, <r>, <d1>, <d2>, <d>, <dflt>);
2019-05-16 04:07:27 +00:00
// Description:
// Given various radii and diameters, returns the most specific radius.
// If a diameter is most specific, returns half its value, giving the radius.
// If no radii or diameters are defined, returns the value of dflt.
2019-09-19 02:29:38 +00:00
// Value specificity order is r1, r2, d1, d2, r, d, then dflt
// Only one of `r1`, `r2`, `d1`, or `d2` can be defined at once, or else it
// errors out, complaining about conflicting radius/diameter values.
// Only one of `r` or `d` can be defined at once, or else it errors out,
// complaining about conflicting radius/diameter values.
2019-05-16 04:07:27 +00:00
// Arguments:
// r1 = Most specific radius.
// d1 = Most specific diameter.
2019-08-03 09:18:40 +00:00
// r2 = Second most specific radius.
// d2 = Second most specific diameter.
2019-05-16 04:07:27 +00:00
// r = Most general radius.
// d = Most general diameter.
// dflt = Value to return if all other values given are `undef`.
2020-08-20 21:42:24 +00:00
function get_radius ( r1 = undef , r2 = undef , r = undef , d1 = undef , d2 = undef , d = undef , dflt = undef ) =
assert ( num_defined ( [ r1 , d1 , r2 , d2 ] ) < 2 , "Conflicting or redundant radius/diameter arguments given." )
! is_undef ( r1 ) ? assert ( is_finite ( r1 ) , "Invalid radius r1." ) r1
: ! is_undef ( r2 ) ? assert ( is_finite ( r2 ) , "Invalid radius r2." ) r2
: ! is_undef ( d1 ) ? assert ( is_finite ( d1 ) , "Invalid diameter d1." ) d1 / 2
: ! is_undef ( d2 ) ? assert ( is_finite ( d2 ) , "Invalid diameter d2." ) d2 / 2
: ! is_undef ( r )
? assert ( is_undef ( d ) , "Conflicting or redundant radius/diameter arguments given." )
assert ( is_finite ( r ) || is_vector ( r , 1 ) || is_vector ( r , 2 ) , "Invalid radius r." )
r
: ! is_undef ( d ) ? assert ( is_finite ( d ) || is_vector ( d , 1 ) || is_vector ( d , 2 ) , "Invalid diameter d." ) d / 2
: dflt ;
2019-05-16 04:07:27 +00:00
2019-08-29 01:15:41 +00:00
// Function: get_height()
// Usage:
2020-08-20 21:42:24 +00:00
// get_height(<h>,<l>,<height>,<dflt>)
2019-08-29 01:15:41 +00:00
// Description:
// Given several different parameters for height check that height is not multiply defined
// and return a single value. If the three values `l`, `h`, and `height` are all undefined
// then return the value `dflt`, if given, or undef otherwise.
// Arguments:
// l = l.
// h = h.
// height = height.
// dflt = Value to return if other values are `undef`.
function get_height ( h = undef , l = undef , height = undef , dflt = undef ) =
assert ( num_defined ( [ h , l , height ] ) < = 1 , "You must specify only one of `l`, `h`, and `height`" )
first_defined ( [ h , l , height , dflt ] ) ;
2020-12-03 20:21:05 +00:00
// Function: get_named_args(positional, named, _undef)
2020-12-03 16:45:20 +00:00
// Usage:
2020-12-03 20:48:43 +00:00
// function f(pos1=_undef, pos2=_undef,...,named1=_undef, named2=_undef, ...) = let(args = get_named_args([pos1, pos2, ...], [[named1, default1], [named2, default2], ...]), named1=args[0], named2=args[1], ...)
2020-12-03 16:45:20 +00:00
// Description:
2020-12-03 20:21:05 +00:00
// Given the values of some positional and named arguments,
// returns a list of the values assigned to named arguments,
// in the following way:
// - All named arguments which were explicitly assigned in the
// function call take the value provided.
2020-12-03 16:45:20 +00:00
// - All named arguments which were not provided by the user are
2020-12-03 20:21:05 +00:00
// affected from positional arguments; the priority order in which
// these are assigned is given by the `priority` argument, while the
// positional assignation is done in the order of the named arguments.
2020-12-03 16:45:20 +00:00
// - Any remaining named arguments take the provided default values.
2020-12-03 20:21:05 +00:00
// If only k positional arguments are used, then the k named values
// with lowest 'priority' value (among the unassigned ones) will get them.
// The arguments will be assigned in the order of the named values.
// By default these two orders coincide.
2020-12-03 20:48:43 +00:00
// Arguments:
// positional = the list of values of positional arguments.
// named = the list of named arguments; each entry of the list has the form [passed-value, default-value, priority], where passed-value is the value that was passed at function call; default-value is the value that will be used if nothing is read from either named or positional arguments; priority is the priority assigned to this argument.
// _undef = the default value used by the calling function for all arguments (default is some random string that you will never use). (this is *not* undef, or any value that the user might purposely want to use as an argument value).
//
2020-12-03 20:21:05 +00:00
//
//
2020-12-03 16:45:20 +00:00
// Examples:
2020-12-03 20:36:35 +00:00
// function f(arg1=_undef, arg2=_undef, arg3=_undef, named1=_undef, named2=_undef, named3=_undef) = let(named = get_named_args([arg1, arg2, arg3], [[named1, "default1"], [named2, "default2"], [named3, "default3"]])) named;
// echo(f()); // ["default1", "default2", "default3"]
// echo(f("given2", "given3", named1="given1")); // ["given1", "given2", "given3"]
// echo(f("given1")); // ["given1", "default2", "default3"]
// echo(f(named1="given1", "given2")); // ["given1", "given2", "default3"]
// echo(f(undef, named1="given1", undef)); // ["given1", undef, undef]
2020-12-03 16:45:20 +00:00
// a value that the user should never enter randomly;
// result of `dd if=/dev/random bs=32 count=1 |base64` :
_undef = "LRG+HX7dy89RyHvDlAKvb9Y04OTuaikpx205CTh8BSI" ;
2020-12-03 20:21:05 +00:00
/* Note: however tempting it might be, it is *not* possible to accept
* named argument as a list [ named1 , named2 , . . . ] ( without default
* values ) , because the values [ named1 , named2 . . . ] themselves might be
* lists , and we will not be able to distinguish the two cases . * /
function get_named_args ( positional , named , _undef = _undef ) =
let ( deft = [ for ( p = named ) p [ 1 ] ] , // default is undef
// indices of the values to fetch from positional args:
unknown = [ for ( x = enumerate ( named ) ) if ( x [ 1 ] [ 0 ] = = _undef ) x [ 0 ] ] ,
// number of values given to positional arguments:
n_positional = count_true ( [ for ( p = positional ) p ! = _undef ] ) )
assert ( n_positional < = len ( unknown ) ,
str ( "too many positional arguments (" , n_positional , " given, " ,
len ( unknown ) , " required)" ) )
let (
// those elements which have no priority assigned go last (prio=+∞):
prio = sortidx ( [ for ( u = unknown ) default ( named [ u ] [ 2 ] , 1 / 0 ) ] ) ,
// list of indices of values assigned from positional arguments:
assigned = sort ( [ for ( i = [ 0 : 1 : n_positional - 1 ] ) prio [ i ] ] ) )
2020-12-03 16:45:20 +00:00
[ for ( e = enumerate ( named ) )
2020-12-03 20:21:05 +00:00
let ( idx = e [ 0 ] , val = e [ 1 ] [ 0 ] , ass = search ( idx , assigned ) )
val ! = _undef ? val :
ass ! = [ ] ? positional [ ass [ 0 ] ] :
deft [ idx ] ] ;
2019-05-16 04:07:27 +00:00
// Function: scalar_vec3()
// Usage:
2020-08-20 21:42:24 +00:00
// scalar_vec3(v, <dflt>);
2019-05-16 04:07:27 +00:00
// Description:
// If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`.
// If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`.
// If `v` is a vector, returns the first 3 items, with any missing values replaced by `dflt`.
// If `v` is `undef`, returns `undef`.
// Arguments:
// v = Value to return vector from.
// dflt = Default value to set empty vector parts from.
function scalar_vec3 ( v , dflt = undef ) =
2020-05-30 02:04:34 +00:00
is_undef ( v ) ? undef :
is_list ( v ) ? [ for ( i = [ 0 : 2 ] ) default ( v [ i ] , default ( dflt , 0 ) ) ] :
! is_undef ( dflt ) ? [ v , dflt , dflt ] : [ v , v , v ] ;
2019-05-16 04:07:27 +00:00
2020-01-09 04:43:19 +00:00
// Function: segs()
// Usage:
// sides = segs(r);
// Description:
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
// Arguments:
// r = Radius of circle to get the number of segments for.
2020-07-24 21:54:34 +00:00
function segs ( r ) =
2020-05-30 02:04:34 +00:00
$fn > 0 ? ( $fn > 3 ? $fn : 3 ) :
2020-07-24 21:54:34 +00:00
let ( r = is_finite ( r ) ? r : 0 )
ceil ( max ( 5 , min ( 360 / $fa , abs ( r ) * 2 * PI / $fs ) ) ) ;
2020-01-09 04:43:19 +00:00
2020-06-21 02:51:58 +00:00
2020-08-01 19:54:58 +00:00
// Module: no_children()
// Usage:
// no_children($children);
// Description:
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
// as indicated by its argument.
// Arguments:
// $children = number of children the module has.
module no_children ( count ) {
2020-08-27 23:25:41 +00:00
assert ( $children = = 0 , "Module no_children() does not support child modules" ) ;
2020-08-01 19:54:58 +00:00
assert ( count = = 0 , str ( "Module " , parent_module ( 1 ) , "() does not support child modules" ) ) ;
}
2020-06-21 02:51:58 +00:00
// Section: Testing Helpers
function _valstr ( x ) =
is_list ( x ) ? str ( "[" , str_join ( [ for ( xx = x ) _valstr ( xx ) ] , "," ) , "]" ) :
2020-07-24 21:54:34 +00:00
is_finite ( x ) ? fmt_float ( x , 12 ) : x ;
2020-06-21 02:51:58 +00:00
// Module: assert_approx()
// Usage:
2020-08-20 21:42:24 +00:00
// assert_approx(got, expected, <info>);
2020-06-21 02:51:58 +00:00
// Description:
// Tests if the value gotten is what was expected. If not, then
// the expected and received values are printed to the console and
// an assertion is thrown to stop execution.
// Arguments:
// got = The value actually received.
// expected = The value that was expected.
// info = Extra info to print out to make the error clearer.
module assert_approx ( got , expected , info ) {
2020-08-27 23:25:41 +00:00
no_children ( $children ) ;
2020-06-21 02:51:58 +00:00
if ( ! approx ( got , expected ) ) {
echo ( ) ;
echo ( str ( "EXPECT: " , _valstr ( expected ) ) ) ;
echo ( str ( "GOT : " , _valstr ( got ) ) ) ;
if ( same_shape ( got , expected ) ) {
echo ( str ( "DELTA : " , _valstr ( got - expected ) ) ) ;
}
if ( is_def ( info ) ) {
echo ( str ( "INFO : " , _valstr ( info ) ) ) ;
}
assert ( approx ( got , expected ) ) ;
}
}
// Module: assert_equal()
// Usage:
2020-08-20 21:42:24 +00:00
// assert_equal(got, expected, <info>);
2020-06-21 02:51:58 +00:00
// Description:
// Tests if the value gotten is what was expected. If not, then
// the expected and received values are printed to the console and
// an assertion is thrown to stop execution.
// Arguments:
// got = The value actually received.
// expected = The value that was expected.
// info = Extra info to print out to make the error clearer.
module assert_equal ( got , expected , info ) {
2020-08-27 23:25:41 +00:00
no_children ( $children ) ;
2020-06-21 02:51:58 +00:00
if ( got ! = expected || ( is_nan ( got ) && is_nan ( expected ) ) ) {
echo ( ) ;
echo ( str ( "EXPECT: " , _valstr ( expected ) ) ) ;
echo ( str ( "GOT : " , _valstr ( got ) ) ) ;
if ( same_shape ( got , expected ) ) {
echo ( str ( "DELTA : " , _valstr ( got - expected ) ) ) ;
}
if ( is_def ( info ) ) {
echo ( str ( "INFO : " , _valstr ( info ) ) ) ;
}
assert ( got = = expected ) ;
}
}
2020-07-21 23:54:59 +00:00
// Module: shape_compare()
// Usage:
2020-08-20 21:42:24 +00:00
// shape_compare(<eps>) {test_shape(); expected_shape();}
2020-07-21 23:54:59 +00:00
// Description:
// Compares two child shapes, returning empty geometry if they are very nearly the same shape and size.
// Returns the differential geometry if they are not nearly the same shape and size.
// Arguments:
// eps = The surface of the two shapes must be within this size of each other. Default: 1/1024
module shape_compare ( eps = 1 / 1024 ) {
union ( ) {
difference ( ) {
children ( 0 ) ;
if ( eps = = 0 ) {
children ( 1 ) ;
} else {
minkowski ( ) {
children ( 1 ) ;
cube ( eps , center = true ) ;
}
}
}
difference ( ) {
children ( 1 ) ;
if ( eps = = 0 ) {
children ( 0 ) ;
} else {
minkowski ( ) {
children ( 0 ) ;
cube ( eps , center = true ) ;
}
}
}
}
}
2020-10-06 08:41:39 +00:00
// Section: Looping Helpers
// You can use a list comprehension with a C-style for loop to iteratively make a calculation.
2020-10-06 20:48:14 +00:00
// .
2020-10-06 08:41:39 +00:00
// The syntax is: `[for (INIT; CONDITION; NEXT) RETVAL]` where:
// - INIT is zero or more `let()` style assignments that are evaluated exactly one time, before the first loop.
// - CONDITION is an expression evaluated at the start of each loop. If true, continues with the loop.
// - RETVAL is an expression that returns a list item for each loop.
// - NEXT is one or more `let()` style assignments that is evaluated at the end of each loop.
2020-10-06 20:48:14 +00:00
// .
2020-10-06 08:41:39 +00:00
// Since the INIT phase is only run once, and the CONDITION and RETVAL expressions cannot update
// variables, that means that only the NEXT phase can be used for iterative calculations.
// Unfortunately, the NEXT phase runs *after* the RETVAL expression, which means that you need
// to run the loop one extra time to return the final value. This tends to make the loop code
2020-10-07 01:48:39 +00:00
// look rather ugly. The `looping()`, `loop_while()` and `loop_done()` functions
2020-10-06 08:41:39 +00:00
// can make this somewhat more legible.
2020-10-06 20:48:14 +00:00
// ```openscad
2020-10-06 08:41:39 +00:00
// function flat_sum(l) = [
// for (
// i = 0,
// total = 0,
// state = 0;
//
// looping(state);
//
2020-10-07 01:48:39 +00:00
// state = loop_while(state, i < len(l)),
2020-10-06 08:41:39 +00:00
// total = total +
2020-10-07 01:48:39 +00:00
// loop_done(state) ? 0 :
2020-10-06 08:41:39 +00:00
// let( x = l[i] )
// is_list(x) ? flat_sum(x) : x,
// i = i + 1
// ) if (loop_done(state)) total;
// ].x;
2020-10-06 20:48:14 +00:00
// ```
2020-10-06 08:41:39 +00:00
// Function: looping()
// Usage:
// looping(state)
// Description:
2020-10-07 01:48:39 +00:00
// Returns true if the `state` value indicates the current loop should continue.
2020-10-06 08:41:39 +00:00
// This is useful when using C-style for loops to iteratively calculate a value.
2020-10-07 01:48:39 +00:00
// Used with `loop_while()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example.
2020-10-06 08:41:39 +00:00
// Arguments:
// state = The loop state value.
2020-10-07 01:48:39 +00:00
function looping ( state ) = state < 2 ;
2020-10-06 08:41:39 +00:00
2020-10-07 01:48:39 +00:00
// Function: loop_while()
2020-10-06 08:41:39 +00:00
// Usage:
2020-10-07 01:48:39 +00:00
// state = loop_while(state, continue)
2020-10-06 08:41:39 +00:00
// Description:
// Given the current `state`, and a boolean `continue` that indicates if the loop should still be
// continuing, returns the updated state value for the the next loop.
// This is useful when using C-style for loops to iteratively calculate a value.
2020-10-07 01:48:39 +00:00
// Used with `looping()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example.
2020-10-06 08:41:39 +00:00
// Arguments:
// state = The loop state value.
// continue = A boolean value indicating whether the current loop should progress.
2020-10-07 01:48:39 +00:00
function loop_while ( state , continue ) =
state > 0 ? 2 :
continue ? 0 : 1 ;
2020-10-06 08:41:39 +00:00
// Function: loop_done()
// Usage:
// loop_done(state)
// Description:
// Returns true if the `state` value indicates the loop is finishing.
// This is useful when using C-style for loops to iteratively calculate a value.
2020-10-07 01:48:39 +00:00
// Used with `looping()` and `loop_while()`. See [Looping Helpers](#5-looping-helpers) for an example.
2020-10-06 08:41:39 +00:00
// Arguments:
// state = The loop state value.
2020-10-07 01:48:39 +00:00
function loop_done ( state ) = state > 0 ;
2020-10-04 02:50:29 +00:00
2020-06-21 02:51:58 +00:00
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap