BOSL2/debug.scad

452 lines
14 KiB
OpenSCAD
Raw Normal View History

//////////////////////////////////////////////////////////////////////
// LibFile: debug.scad
// Helpers to make debugging OpenScad code easier.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/debug.scad>
// ```
//////////////////////////////////////////////////////////////////////
2020-03-09 21:25:32 +00:00
include <skin.scad>
// Section: Debugging Paths and Polygons
// Module: trace_polyline()
// Description:
// Renders lines between each point of a polyline path.
// Can also optionally show the individual vertex points.
// Arguments:
// pline = The array of points in the polyline.
// closed = If true, draw the segment from the last vertex to the first. Default: false
// showpts = If true, draw vertices and control points.
// N = Mark the first and every Nth vertex after in a different color and shape.
// size = Diameter of the lines drawn.
// color = Color to draw the lines (but not vertices) in.
// Example(FlatSpin):
// polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]];
// trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen");
module trace_polyline(pline, closed=false, showpts=false, N=1, size=1, color="yellow") {
assert(is_path(pline),"Input pline is not a path");
sides = segs(size/2);
pline = closed? close_path(pline) : pline;
if (showpts) {
for (i = [0:1:len(pline)-1]) {
translate(pline[i]) {
if (i%N == 0) {
color("blue") sphere(d=size*2.5, $fn=8);
} else {
color("red") {
cylinder(d=size/2, h=size*3, center=true, $fn=8);
xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8);
}
}
}
}
}
if (N!=3) {
color(color) path_sweep(circle(d=size,$fn=sides), path3d(pline));
} else {
for (i = [0:1:len(pline)-2]) {
if (N!=3 || (i%N) != 1) {
color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides);
}
}
}
}
// Module: debug_polygon()
// Description: A drop-in replacement for `polygon()` that renders and labels the path points.
// Arguments:
// points = The array of 2D polygon vertices.
// paths = The path connections between the vertices.
// convexity = The max number of walls a ray can pass through the given polygon paths.
// Example(Big2D):
// debug_polygon(
// points=concat(
// regular_ngon(or=10, n=8),
// regular_ngon(or=8, n=8)
// ),
// paths=[
// [for (i=[0:7]) i],
// [for (i=[15:-1:8]) i]
// ]
// );
module debug_polygon(points, paths=undef, convexity=2, size=1)
{
pths = is_undef(paths)? [for (i=[0:1:len(points)-1]) i] : is_num(paths[0])? [paths] : paths;
echo(points=points);
echo(paths=paths);
linear_extrude(height=0.01, convexity=convexity, center=true) {
polygon(points=points, paths=paths, convexity=convexity);
}
for (i = [0:1:len(points)-1]) {
color("red") {
up(0.2) {
translate(points[i]) {
linear_extrude(height=0.1, convexity=10, center=true) {
text(text=str(i), size=size, halign="center", valign="center");
}
}
}
}
}
for (j = [0:1:len(paths)-1]) {
path = paths[j];
translate(points[path[0]]) {
color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12);
}
translate(points[path[len(path)-1]]) {
color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4);
}
for (i = [0:1:len(path)-1]) {
midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2;
color("blue") {
up(0.2) {
translate(midpt) {
linear_extrude(height=0.1, convexity=10, center=true) {
text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center");
}
}
}
}
}
}
}
// Section: Debugging Polyhedrons
// Module: debug_vertices()
// Description:
// Draws all the vertices in an array, at their 3D position, numbered by their
// position in the vertex array. Also draws any children of this module with
// transparency.
// Arguments:
2018-11-12 08:47:51 +00:00
// vertices = Array of point vertices.
2018-11-26 02:36:47 +00:00
// size = The size of the text used to label the vertices.
2018-11-12 08:47:51 +00:00
// disabled = If true, don't draw numbers, and draw children without transparency. Default = false.
2018-11-26 02:36:47 +00:00
// Example:
// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
2018-11-26 02:36:47 +00:00
// debug_vertices(vertices=verts, size=2) {
// polyhedron(points=verts, faces=faces);
// }
module debug_vertices(vertices, size=1, disabled=false) {
if (!disabled) {
echo(vertices=vertices);
color("blue") {
for (i = [0:1:len(vertices)-1]) {
v = vertices[i];
translate(v) {
up(size/8) zrot($vpr[2]) xrot(90) {
linear_extrude(height=size/10, center=true, convexity=10) {
text(text=str(i), size=size, halign="center");
}
}
sphere(size/10);
}
}
}
}
if ($children > 0) {
if (!disabled) {
color([0.2, 1.0, 0, 0.5]) children();
} else {
children();
}
}
}
// Module: debug_faces()
// Description:
// Draws all the vertices at their 3D position, numbered in blue by their
// position in the vertex array. Each face will have their face number drawn
// in red, aligned with the center of face. All children of this module are drawn
// with transparency.
// Arguments:
2018-11-12 08:47:51 +00:00
// vertices = Array of point vertices.
// faces = Array of faces by vertex numbers.
2018-11-26 02:36:47 +00:00
// size = The size of the text used to label the faces and vertices.
2018-11-12 08:47:51 +00:00
// disabled = If true, don't draw numbers, and draw children without transparency. Default = false.
2019-05-17 21:41:45 +00:00
// Example(EdgesMed):
// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
2018-11-26 02:36:47 +00:00
// debug_faces(vertices=verts, faces=faces, size=2) {
// polyhedron(points=verts, faces=faces);
// }
module debug_faces(vertices, faces, size=1, disabled=false) {
if (!disabled) {
vlen = len(vertices);
color("red") {
for (i = [0:1:len(faces)-1]) {
face = faces[i];
if (face[0] < 0 || face[1] < 0 || face[2] < 0 || face[0] >= vlen || face[1] >= vlen || face[2] >= vlen) {
echo("BAD FACE: ", vlen=vlen, face=face);
} else {
v0 = vertices[face[0]];
v1 = vertices[face[1]];
v2 = vertices[face[2]];
c = (v0 + v1 + v2) / 3;
2020-03-03 03:30:20 +00:00
dv0 = unit(v1 - v0);
dv1 = unit(v2 - v0);
nrm0 = unit(cross(dv0, dv1));
nrm1 = [0, 0, 1];
2020-03-03 03:30:20 +00:00
axis = unit(cross(nrm0, nrm1));
2019-03-25 10:52:09 +00:00
ang = vector_angle(nrm0, nrm1);
theta = atan2(nrm0[1], nrm0[0]);
translate(c) {
rotate(a=180-ang, v=axis) {
zrot(theta-90)
linear_extrude(height=size/10, center=true, convexity=10) {
union() {
text(text=str(i), size=size, halign="center");
text(text=str("_"), size=size, halign="center");
}
}
}
}
}
}
}
}
debug_vertices(vertices, size=size, disabled=disabled) {
children();
}
if (!disabled) {
echo(faces=faces);
}
}
// Module: debug_polyhedron()
// Description:
// A drop-in module to replace `polyhedron()` and help debug vertices and faces.
// Draws all the vertices at their 3D position, numbered in blue by their
// position in the vertex array. Each face will have their face number drawn
// in red, aligned with the center of face. All given faces are drawn with
// transparency. All children of this module are drawn with transparency.
// Works best with Thrown-Together preview mode, to see reversed faces.
// Arguments:
2018-11-12 08:47:51 +00:00
// vertices = Array of point vertices.
// faces = Array of faces by vertex numbers.
2018-11-26 02:36:47 +00:00
// txtsize = The size of the text used to label the faces and vertices.
2018-11-12 08:47:51 +00:00
// disabled = If true, act exactly like `polyhedron()`. Default = false.
2019-05-17 21:41:45 +00:00
// Example(EdgesMed):
// verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]];
// faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]];
// debug_polyhedron(points=verts, faces=faces, txtsize=1);
2018-11-12 06:38:34 +00:00
module debug_polyhedron(points, faces, convexity=10, txtsize=1, disabled=false) {
debug_faces(vertices=points, faces=faces, size=txtsize, disabled=disabled) {
polyhedron(points=points, faces=faces, convexity=convexity);
}
}
2019-04-23 03:55:03 +00:00
// Function: standard_anchors()
2019-04-17 02:16:50 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Return the vectors for all standard anchors.
function standard_anchors() = [
for (
zv = [TOP, CENTER, BOTTOM],
yv = [FRONT, CENTER, BACK],
xv = [LEFT, CENTER, RIGHT]
) xv+yv+zv
];
2019-04-17 02:16:50 +00:00
2019-04-23 03:55:03 +00:00
// Module: anchor_arrow()
2019-04-17 02:16:50 +00:00
// Usage:
2019-04-23 03:55:03 +00:00
// anchor_arrow([s], [color], [flag]);
2019-04-17 02:16:50 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Show an anchor orientation arrow.
2019-04-17 02:16:50 +00:00
// Arguments:
// s = Length of the arrows.
// color = Color of the arrow.
// flag = If true, draw the orientation flag on the arrowhead.
2019-04-23 20:02:52 +00:00
// Example:
// anchor_arrow(s=20);
2019-04-23 03:55:03 +00:00
module anchor_arrow(s=10, color=[0.333,0.333,1], flag=true, $tags="anchor-arrow") {
2019-04-17 02:16:50 +00:00
$fn=12;
recolor("gray") spheroid(d=s/6) {
attach(CENTER,BOT) recolor(color) cyl(h=s*2/3, d=s/15) {
attach(TOP,BOT) cyl(h=s/3, d1=s/5, d2=0) {
if(flag) {
position(BOT)
recolor([1,0.5,0.5])
cuboid([s/100, s/6, s/4], anchor=FRONT+BOT);
}
children();
}
2019-04-17 02:16:50 +00:00
}
}
}
// Module: show_internal_anchors()
2019-04-23 03:55:03 +00:00
// Usage:
// show_internal_anchors() ...
2019-04-17 02:16:50 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Makes the children transparent gray, while showing any
// anchor arrows that may exist.
2019-04-23 20:02:52 +00:00
// Example(FlatSpin):
// show_internal_anchors() cube(50, center=true) show_anchors();
module show_internal_anchors(opacity=0.2) {
2019-04-23 03:55:03 +00:00
show("anchor-arrow") children() show_anchors();
hide("anchor-arrow") recolor(list_pad(point3d($color),4,fill=opacity)) children();
2019-04-23 03:55:03 +00:00
}
// Module: show_anchors()
// Description:
// Show all standard anchors for the parent object.
2019-04-23 20:02:52 +00:00
// Arguments:
// s = Length of anchor arrows.
// std = If true (default), show standard anchors.
// custom = If true (default), show custom anchors.
// Example(FlatSpin):
// cube(50, center=true) show_anchors();
2019-04-23 03:55:03 +00:00
module show_anchors(s=10, std=true, custom=true) {
if (std) {
for (anchor=standard_anchors()) {
attach(anchor) anchor_arrow(s);
}
}
if (custom) {
for (anchor=select($parent_geom,-1)) {
2019-04-23 03:55:03 +00:00
attach(anchor[0]) {
anchor_arrow(s, color="cyan");
recolor("black")
noop($tags="anchor-arrow") {
xrot(90) {
up(s/10) {
linear_extrude(height=0.01, convexity=12, center=true) {
text(text=anchor[0], size=s/4, halign="center", valign="center");
}
}
}
}
}
}
2019-04-17 02:16:50 +00:00
}
children();
}
// Module: frame_ref()
2019-04-17 02:16:50 +00:00
// Description:
// Displays X,Y,Z axis arrows in red, green, and blue respectively.
// Arguments:
// s = Length of the arrows.
2019-04-23 20:02:52 +00:00
// Examples:
// frame_ref(25);
module frame_ref(s=15) {
2019-04-25 06:12:05 +00:00
cube(0.01, center=true) {
attach(RIGHT) anchor_arrow(s=s, flag=false, color="red");
attach(BACK) anchor_arrow(s=s, flag=false, color="green");
attach(TOP) anchor_arrow(s=s, flag=false, color="blue");
children();
2019-04-17 02:16:50 +00:00
}
}
2019-08-09 03:17:58 +00:00
// Module: ruler()
// Description:
// Creates a ruler for checking dimensions of the model
// Arguments:
// length = length of the ruler. Default 100
// width = width of the ruler. Default: size of the largest unit division
// thickness = thickness of the ruler. Default: 1
// depth = the depth of mark subdivisions. Default: 3
// labels = draw numeric labels for depths where labels are larger than 1. Default: false
// pipscale = width scale of the pips relative to the next size up. Default: 1/3
// maxscale = log10 of the maximum width divisions to display. Default: based on input length
// colors = colors to use for the ruler, a list of two values. Default: `["black","white"]`
// alpha = transparency value. Default: 1.0
// unit = unit to mark. Scales the ruler marks to a different length. Default: 1
// inch = set to true for a ruler scaled to inches (assuming base dimension is mm). Default: false
2019-08-09 04:05:21 +00:00
// Examples(2D,Big):
2019-08-09 03:17:58 +00:00
// ruler(100,depth=3);
// ruler(100,depth=3,labels=true);
// ruler(27);
// ruler(27,maxscale=0);
// ruler(100,pipscale=3/4,depth=2);
// ruler(100,width=2,depth=2);
2019-08-09 04:05:21 +00:00
// Example(2D,Big): Metric vs Imperial
2019-08-09 03:17:58 +00:00
// ruler(12,width=50,inch=true,labels=true,maxscale=0);
// fwd(50)ruler(300,width=50,labels=true);
module ruler(length=100, width=undef, thickness=1, depth=3, labels=false, pipscale=1/3, maxscale=undef, colors=["black","white"], alpha=1.0, unit=1, inch=false, anchor=LEFT+BACK+TOP, spin=0, orient=UP)
2019-08-09 03:17:58 +00:00
{
inchfactor = 25.4;
assert(depth<=5, "Cannot render scales smaller than depth=5");
assert(len(colors)==2, "colors must contain a list of exactly two colors.");
length = inch ? inchfactor * length : length;
unit = inch ? inchfactor*unit : unit;
maxscale = is_def(maxscale)? maxscale : floor(log(length/unit-EPSILON));
scales = unit * [for(logsize = [maxscale:-1:maxscale-depth+1]) pow(10,logsize)];
widthfactor = (1-pipscale) / (1-pow(pipscale,depth));
width = default(width, scales[0]);
widths = width * widthfactor * [for(logsize = [0:-1:-depth+1]) pow(pipscale,-logsize)];
offsets = concat([0],cumsum(widths));
attachable(anchor,spin,orient, size=[length,width,thickness]) {
translate([-length/2, -width/2, 0])
for(i=[0:1:len(scales)-1]) {
count = ceil(length/scales[i]);
fontsize = 0.5*min(widths[i], scales[i]/ceil(log(count*scales[i]/unit)));
back(offsets[i]) {
xspread(scales[i], n=count, sp=[0,0,0]) union() {
actlen = ($idx<count-1) || approx(length%scales[i],0) ? scales[i] : length % scales[i];
color(colors[$idx%2], alpha=alpha) {
w = i>0 ? quantup(widths[i],1/1024) : widths[i]; // What is the i>0 test supposed to do here?
cube([quantup(actlen,1/1024),quantup(w,1/1024),thickness], anchor=FRONT+LEFT);
}
mark =
i == 0 && $idx % 10 == 0 && $idx != 0 ? 0 :
i == 0 && $idx % 10 == 9 && $idx != count-1 ? 1 :
$idx % 10 == 4 ? 1 :
$idx % 10 == 5 ? 0 : -1;
flip = 1-mark*2;
if (mark >= 0) {
marklength = min(widths[i]/2, scales[i]*2);
markwidth = marklength*0.4;
translate([mark*scales[i], widths[i], 0]) {
color(colors[1-$idx%2], alpha=alpha) {
linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true) {
polygon(scale([flip*markwidth, marklength],p=[[0,0], [1, -1], [0,-0.9]]));
}
}
}
}
if (labels && scales[i]/unit+EPSILON >= 1) {
color(colors[($idx+1)%2], alpha=alpha) {
linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true) {
back(scales[i]*.02) {
text(text=str( $idx * scales[i] / unit), size=fontsize, halign="left", valign="baseline");
}
}
}
}
}
}
}
children();
}
2019-08-09 03:17:58 +00:00
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap