2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: vectors.scad
// Vector math functions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Vector Manipulation
2019-05-16 04:07:27 +00:00
// Function: is_vector()
// Usage:
2020-07-07 01:28:35 +00:00
// is_vector(v, [length]);
2019-05-16 04:07:27 +00:00
// Description:
2020-03-02 21:47:43 +00:00
// Returns true if v is a list of finite numbers.
// Arguments:
// v = The value to test to see if it is a vector.
// length = If given, make sure the vector is `length` items long.
2020-09-08 06:10:39 +00:00
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
2020-07-30 04:58:12 +00:00
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
2019-07-05 06:40:24 +00:00
// Example:
2020-07-24 21:54:34 +00:00
// is_vector(4); // Returns false
// is_vector([4,true,false]); // Returns false
// is_vector([3,4,INF,5]); // Returns false
// is_vector([3,4,5,6]); // Returns true
// is_vector([3,4,undef,5]); // Returns false
// is_vector([3,4,5],3); // Returns true
// is_vector([3,4,5],4); // Returns true
// is_vector([]); // Returns false
2020-09-08 06:10:39 +00:00
// is_vector([0,4,0],3,zero=false); // Returns true
// is_vector([0,0,0],zero=false); // Returns false
// is_vector([0,0,1e-12],zero=false); // Returns false
// is_vector([0,1,0],all_nonzero=false); // Returns false
// is_vector([1,1,1],all_nonzero=false); // Returns true
// is_vector([],zero=false); // Returns false
function is_vector ( v , length , zero , all_nonzero = false , eps = EPSILON ) =
2020-07-21 23:15:02 +00:00
is_list ( v ) && is_num ( 0 * ( v * v ) )
&& ( is_undef ( length ) || len ( v ) = = length )
2020-09-08 06:10:39 +00:00
&& ( is_undef ( zero ) || ( ( norm ( v ) >= eps ) = = ! zero ) )
&& ( ! all_nonzero || all_nonzero ( v ) ) ;
2019-05-16 04:07:27 +00:00
2019-07-05 06:40:24 +00:00
2019-12-27 05:42:23 +00:00
// Function: vang()
// Usage:
// theta = vang([X,Y]);
// theta_phi = vang([X,Y,Z]);
// Description:
// Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
// Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane.
function vang ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( v , 2 ) || is_vector ( v , 3 ) , "Invalid vector" )
2020-05-30 02:04:34 +00:00
len ( v ) = = 2 ? atan2 ( v . y , v . x ) :
let ( res = xyz_to_spherical ( v ) ) [ res [ 1 ] , 90 - res [ 2 ] ] ;
2019-12-27 05:42:23 +00:00
2019-04-20 00:02:17 +00:00
// Function: vmul()
// Description:
2020-09-29 00:35:05 +00:00
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
2019-04-20 00:02:17 +00:00
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
2020-07-24 21:54:34 +00:00
function vmul ( v1 , v2 ) =
2020-09-29 00:35:05 +00:00
assert ( is_list ( v1 ) && is_list ( v2 ) && len ( v1 ) = = len ( v2 ) , "Incompatible input" )
2020-07-24 21:54:34 +00:00
[ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] * v2 [ i ] ] ;
2020-07-25 19:27:19 +00:00
2019-04-20 00:02:17 +00:00
// Function: vdiv()
// Description:
// Element-wise vector division. Divides each element of vector `v1` by
// the corresponding element of vector `v2`. Returns a vector of the quotients.
// Arguments:
// v1 = The first vector.
// v2 = The second vector.
// Example:
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
2020-07-24 21:54:34 +00:00
function vdiv ( v1 , v2 ) =
assert ( is_vector ( v1 ) && is_vector ( v2 , len ( v1 ) ) , "Incompatible vectors" )
[ for ( i = [ 0 : 1 : len ( v1 ) - 1 ] ) v1 [ i ] / v2 [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: vabs()
// Description: Returns a vector of the absolute value of each element of vector `v`.
// Arguments:
// v = The vector to get the absolute values of.
2019-07-05 06:40:24 +00:00
// Example:
// vabs([-1,3,-9]); // Returns: [1,3,9]
2020-07-24 21:54:34 +00:00
function vabs ( v ) =
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) abs ( x ) ] ;
2019-04-20 00:02:17 +00:00
2020-03-26 02:50:38 +00:00
// Function: vfloor()
// Description:
// Returns the given vector after performing a `floor()` on all items.
2020-07-24 21:54:34 +00:00
function vfloor ( v ) =
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) floor ( x ) ] ;
2020-03-26 02:50:38 +00:00
// Function: vceil()
// Description:
// Returns the given vector after performing a `ceil()` on all items.
2020-07-24 21:54:34 +00:00
function vceil ( v ) =
assert ( is_vector ( v ) , "Invalid vector" )
[ for ( x = v ) ceil ( x ) ] ;
2020-03-26 02:50:38 +00:00
2020-03-21 05:15:41 +00:00
2020-03-03 03:30:20 +00:00
// Function: unit()
2020-07-10 07:03:55 +00:00
// Usage:
2020-07-12 06:23:12 +00:00
// unit(v, [error]);
2019-04-20 00:02:17 +00:00
// Description:
2020-07-12 06:23:12 +00:00
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
// asserts an error unless `error` is given, in which case the value of `error` is returned.
2019-04-20 00:02:17 +00:00
// Arguments:
// v = The vector to normalize.
2020-07-12 06:23:12 +00:00
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
2019-07-05 06:40:24 +00:00
// Examples:
2020-03-03 03:30:20 +00:00
// unit([10,0,0]); // Returns: [1,0,0]
// unit([0,10,0]); // Returns: [0,1,0]
// unit([0,0,10]); // Returns: [0,0,1]
// unit([0,-10,0]); // Returns: [0,-1,0]
2020-07-10 07:03:55 +00:00
// unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
// unit([0,0,0]); // Asserts an error.
2020-07-12 06:23:12 +00:00
function unit ( v , error = [ [ [ "ASSERT" ] ] ] ) =
2020-07-10 07:03:55 +00:00
assert ( is_vector ( v ) , str ( "Expected a vector. Got: " , v ) )
2020-07-12 06:23:12 +00:00
norm ( v ) < EPSILON ? ( error = = [ [ [ "ASSERT" ] ] ] ? assert ( norm ( v ) >= EPSILON ) : error ) :
2020-07-10 07:03:55 +00:00
v / norm ( v ) ;
2019-04-20 00:02:17 +00:00
// Function: vector_angle()
// Usage:
// vector_angle(v1,v2);
2020-07-24 21:54:34 +00:00
// vector_angle([v1,v2]);
2019-05-15 02:36:32 +00:00
// vector_angle(PT1,PT2,PT3);
2019-05-15 02:44:00 +00:00
// vector_angle([PT1,PT2,PT3]);
2019-04-20 00:02:17 +00:00
// Description:
2019-05-15 02:36:32 +00:00
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
2019-07-05 06:40:24 +00:00
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
2019-05-15 02:36:32 +00:00
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
2019-04-20 00:02:17 +00:00
// Arguments:
2019-05-15 02:36:32 +00:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-05 06:40:24 +00:00
// Examples:
// vector_angle(UP,LEFT); // Returns: 90
// vector_angle(RIGHT,LEFT); // Returns: 180
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
2020-04-03 01:15:43 +00:00
function vector_angle ( v1 , v2 , v3 ) =
2020-07-24 21:54:34 +00:00
assert ( ( is_undef ( v3 ) && ( is_undef ( v2 ) || same_shape ( v1 , v2 ) ) )
|| is_consistent ( [ v1 , v2 , v3 ] ) ,
"Bad arguments." )
assert ( is_vector ( v1 ) || is_consistent ( v1 ) , "Bad arguments." )
let ( vecs = ! is_undef ( v3 ) ? [ v1 - v2 , v3 - v2 ] :
! is_undef ( v2 ) ? [ v1 , v2 ] :
len ( v1 ) = = 3 ? [ v1 [ 0 ] - v1 [ 1 ] , v1 [ 2 ] - v1 [ 1 ] ]
: v1
2020-05-30 02:04:34 +00:00
)
2020-07-24 21:54:34 +00:00
assert ( is_vector ( vecs [ 0 ] , 2 ) || is_vector ( vecs [ 0 ] , 3 ) , "Bad arguments." )
2020-05-30 02:04:34 +00:00
let (
norm0 = norm ( vecs [ 0 ] ) ,
norm1 = norm ( vecs [ 1 ] )
)
2020-07-24 21:54:34 +00:00
assert ( norm0 > 0 && norm1 > 0 , "Zero length vector." )
2020-05-30 02:04:34 +00:00
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
acos ( constrain ( ( vecs [ 0 ] * vecs [ 1 ] ) / ( norm0 * norm1 ) , - 1 , 1 ) ) ;
2020-07-24 21:54:34 +00:00
2019-04-20 00:02:17 +00:00
// Function: vector_axis()
// Usage:
2019-05-15 02:36:32 +00:00
// vector_axis(v1,v2);
2020-07-24 21:54:34 +00:00
// vector_axis([v1,v2]);
2019-05-15 02:44:00 +00:00
// vector_axis(PT1,PT2,PT3);
// vector_axis([PT1,PT2,PT3]);
2019-04-20 00:02:17 +00:00
// Description:
2019-05-15 02:44:00 +00:00
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
2020-07-24 21:54:34 +00:00
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
2019-04-20 00:02:17 +00:00
// Arguments:
2019-05-15 02:44:00 +00:00
// v1 = First vector or point.
// v2 = Second vector or point.
// v3 = Third point in three point mode.
2019-07-05 06:40:24 +00:00
// Examples:
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
2019-05-15 02:36:32 +00:00
function vector_axis ( v1 , v2 = undef , v3 = undef ) =
2020-07-21 23:15:02 +00:00
is_vector ( v3 )
? assert ( is_consistent ( [ v3 , v2 , v1 ] ) , "Bad arguments." )
vector_axis ( v1 - v2 , v3 - v2 )
2020-07-24 21:54:34 +00:00
: assert ( is_undef ( v3 ) , "Bad arguments." )
is_undef ( v2 )
? assert ( is_list ( v1 ) , "Bad arguments." )
len ( v1 ) = = 2
? vector_axis ( v1 [ 0 ] , v1 [ 1 ] )
: vector_axis ( v1 [ 0 ] , v1 [ 1 ] , v1 [ 2 ] )
: assert ( is_vector ( v1 , zero = false ) && is_vector ( v2 , zero = false ) && is_consistent ( [ v1 , v2 ] )
, "Bad arguments." )
let (
eps = 1e-6 ,
w1 = point3d ( v1 / norm ( v1 ) ) ,
w2 = point3d ( v2 / norm ( v2 ) ) ,
w3 = ( norm ( w1 - w2 ) > eps && norm ( w1 + w2 ) > eps ) ? w2
: ( norm ( vabs ( w2 ) - UP ) > eps ) ? UP
: RIGHT
) unit ( cross ( w1 , w3 ) ) ;
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap