mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-06 04:09:47 +00:00
Merge pull request #636 from adrianVmariano/master
transform new section
This commit is contained in:
commit
2a625d5589
12 changed files with 268 additions and 212 deletions
58
affine.scad
58
affine.scad
|
@ -882,64 +882,6 @@ function affine3d_rot_from_to(from, to) =
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
// Function: affine3d_frame_map()
|
|
||||||
// Usage:
|
|
||||||
// map = affine3d_frame_map(v1, v2, v3, [reverse=]);
|
|
||||||
// map = affine3d_frame_map(x=VECTOR1, y=VECTOR2, [reverse=]);
|
|
||||||
// map = affine3d_frame_map(x=VECTOR1, z=VECTOR2, [reverse=]);
|
|
||||||
// map = affine3d_frame_map(y=VECTOR1, z=VECTOR2, [reverse=]);
|
|
||||||
// Topics: Affine, Matrices, Transforms, Rotation
|
|
||||||
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
|
||||||
// Description:
|
|
||||||
// Returns a transformation that maps one coordinate frame to another. You must specify two or
|
|
||||||
// three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied. If you
|
|
||||||
// give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand
|
|
||||||
// coordinate system. If the vectors you give are orthogonal the result will be a rotation and the
|
|
||||||
// `reverse` parameter will supply the inverse map, which enables you to map two arbitrary
|
|
||||||
// coordinate systems to each other by using the canonical coordinate system as an intermediary.
|
|
||||||
// You cannot use the `reverse` option with non-orthogonal inputs.
|
|
||||||
// Arguments:
|
|
||||||
// x = Destination 3D vector for x axis.
|
|
||||||
// y = Destination 3D vector for y axis.
|
|
||||||
// z = Destination 3D vector for z axis.
|
|
||||||
// reverse = reverse direction of the map for orthogonal inputs. Default: false
|
|
||||||
// Example:
|
|
||||||
// T = affine3d_frame_map(x=[1,1,0], y=[-1,1,0]); // This map is just a rotation around the z axis
|
|
||||||
// Example:
|
|
||||||
// T = affine3d_frame_map(x=[1,0,0], y=[1,1,0]); // This map is not a rotation because x and y aren't orthogonal
|
|
||||||
// Example:
|
|
||||||
// // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]
|
|
||||||
// T = affine3d_frame_map(x=[0,1,1], y=[0,-1,1]) * affine3d_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
|
|
||||||
function affine3d_frame_map(x,y,z, reverse=false) =
|
|
||||||
assert(num_defined([x,y,z])>=2, "Must define at least two inputs")
|
|
||||||
let(
|
|
||||||
xvalid = is_undef(x) || (is_vector(x) && len(x)==3),
|
|
||||||
yvalid = is_undef(y) || (is_vector(y) && len(y)==3),
|
|
||||||
zvalid = is_undef(z) || (is_vector(z) && len(z)==3)
|
|
||||||
)
|
|
||||||
assert(xvalid,"Input x must be a length 3 vector")
|
|
||||||
assert(yvalid,"Input y must be a length 3 vector")
|
|
||||||
assert(zvalid,"Input z must be a length 3 vector")
|
|
||||||
let(
|
|
||||||
x = is_undef(x)? undef : unit(x,RIGHT),
|
|
||||||
y = is_undef(y)? undef : unit(y,BACK),
|
|
||||||
z = is_undef(z)? undef : unit(z,UP),
|
|
||||||
map = is_undef(x)? [cross(y,z), y, z] :
|
|
||||||
is_undef(y)? [x, cross(z,x), z] :
|
|
||||||
is_undef(z)? [x, y, cross(x,y)] :
|
|
||||||
[x, y, z]
|
|
||||||
)
|
|
||||||
reverse? (
|
|
||||||
let(
|
|
||||||
ocheck = (
|
|
||||||
approx(map[0]*map[1],0) &&
|
|
||||||
approx(map[0]*map[2],0) &&
|
|
||||||
approx(map[1]*map[2],0)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
assert(ocheck, "Inputs must be orthogonal when reverse==true")
|
|
||||||
[for (r=map) [for (c=r) c, 0], [0,0,0,1]]
|
|
||||||
) : [for (r=transpose(map)) [for (c=r) c, 0], [0,0,0,1]];
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -566,7 +566,7 @@ function no_function(name) =
|
||||||
// Description:
|
// Description:
|
||||||
// Asserts that the called module exists only as a function.
|
// Asserts that the called module exists only as a function.
|
||||||
// Example:
|
// Example:
|
||||||
// function foo() = no_module();
|
// module foo() { no_module(); }
|
||||||
module no_module() {
|
module no_module() {
|
||||||
assert(false, str("You called ",parent_module(1),"() as a module but it is available only as a function"));
|
assert(false, str("You called ",parent_module(1),"() as a module but it is available only as a function"));
|
||||||
}
|
}
|
||||||
|
|
|
@ -224,7 +224,7 @@ function project_plane(plane,p) =
|
||||||
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
||||||
x = unit(v-(v*y)*y) // x axis
|
x = unit(v-(v*y)*y) // x axis
|
||||||
)
|
)
|
||||||
affine3d_frame_map(x,y) * move(-plane[0])
|
frame_map(x,y) * move(-plane[0])
|
||||||
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
|
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
|
||||||
assert(_valid_plane(plane), "Plane is not valid")
|
assert(_valid_plane(plane), "Plane is not valid")
|
||||||
let(
|
let(
|
||||||
|
@ -280,7 +280,7 @@ function lift_plane(plane, p) =
|
||||||
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
y = unit(plane[1]-plane[0]), // y axis goes to point b
|
||||||
x = unit(v-(v*y)*y) // x axis
|
x = unit(v-(v*y)*y) // x axis
|
||||||
)
|
)
|
||||||
move(plane[0]) * affine3d_frame_map(x,y,reverse=true)
|
move(plane[0]) * frame_map(x,y,reverse=true)
|
||||||
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
|
: is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane"
|
||||||
assert(_valid_plane(plane), "Plane is not valid")
|
assert(_valid_plane(plane), "Plane is not valid")
|
||||||
let(
|
let(
|
||||||
|
|
|
@ -1630,7 +1630,7 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals
|
||||||
if(planar) {
|
if(planar) {
|
||||||
rot(from=[0,1],to=cutlist[i][3]) children();
|
rot(from=[0,1],to=cutlist[i][3]) children();
|
||||||
} else {
|
} else {
|
||||||
multmatrix(affine3d_frame_map(x=cutlist[i][2], z=cutlist[i][3]))
|
frame_map(x=cutlist[i][2], z=cutlist[i][3])
|
||||||
children();
|
children();
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
@ -1777,9 +1777,9 @@ module path_text(path, text, font, size, thickness=1, lettersize, offset=0, reve
|
||||||
|
|
||||||
)
|
)
|
||||||
move(pts[i][0])
|
move(pts[i][0])
|
||||||
multmatrix(affine3d_frame_map(x=pts[i][2]-adjustment,
|
frame_map(x=pts[i][2]-adjustment,
|
||||||
z=usetop ? undef : normpts[i],
|
z=usetop ? undef : normpts[i],
|
||||||
y=usetop ? toppts[i] : undef))
|
y=usetop ? toppts[i] : undef)
|
||||||
up(offset-thickness/2)
|
up(offset-thickness/2)
|
||||||
linear_extrude(height=thickness)
|
linear_extrude(height=thickness)
|
||||||
left(lsize[0]/2)text(text[i], font=font, size=size);
|
left(lsize[0]/2)text(text[i], font=font, size=size);
|
||||||
|
|
|
@ -482,6 +482,7 @@ function _offset_chamfer(center, points, delta) =
|
||||||
|
|
||||||
|
|
||||||
function _shift_segment(segment, d) =
|
function _shift_segment(segment, d) =
|
||||||
|
assert(!approx(segment[0],segment[1]),"Path has repeated points")
|
||||||
move(d*line_normal(segment),segment);
|
move(d*line_normal(segment),segment);
|
||||||
|
|
||||||
|
|
||||||
|
|
288
shapes2d.scad
288
shapes2d.scad
|
@ -1,11 +1,22 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// LibFile: shapes2d.scad
|
// LibFile: shapes2d.scad
|
||||||
// Common useful 2D shapes.
|
// This file includes stroke(), which converts a path into a
|
||||||
|
// geometric object, like drawing with a pen. It even works on
|
||||||
|
// three-dimensional paths. You can make a dashed line or add arrow
|
||||||
|
// heads. The turtle() function provides a turtle graphics style
|
||||||
|
// approach for producing paths. You can create regular polygons
|
||||||
|
// with optional rounded corners and alignment features not
|
||||||
|
// available with circle(). The file also provides teardrop2d,
|
||||||
|
// which is useful for 3d printable holes. Lastly you can use the
|
||||||
|
// masks to produce edge treatments common in furniture from the
|
||||||
|
// simple roundover or cove molding to the more elaborate ogee.
|
||||||
|
// Many of the commands have module forms that produce geometry and
|
||||||
|
// function forms that produce a path.
|
||||||
// Includes:
|
// Includes:
|
||||||
// include <BOSL2/std.scad>
|
// include <BOSL2/std.scad>
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
// Section: 2D Drawing Helpers
|
// Section: Line Drawing
|
||||||
|
|
||||||
// Module: stroke()
|
// Module: stroke()
|
||||||
// Usage:
|
// Usage:
|
||||||
|
@ -109,6 +120,16 @@
|
||||||
// Example: 3D Path with Joints and Endcaps
|
// Example: 3D Path with Joints and Endcaps
|
||||||
// path = [for (i=[0:10:360]) [(i-180)/2,20*cos(3*i),20*sin(3*i)]];
|
// path = [for (i=[0:10:360]) [(i-180)/2,20*cos(3*i),20*sin(3*i)]];
|
||||||
// stroke(path, width=2, joints="dot", endcap1="round", endcap2="arrow2", joint_width=2.0, endcap_width2=3, $fn=18);
|
// stroke(path, width=2, joints="dot", endcap1="round", endcap2="arrow2", joint_width=2.0, endcap_width2=3, $fn=18);
|
||||||
|
function stroke(
|
||||||
|
path, width=1, closed=false,
|
||||||
|
endcaps, endcap1, endcap2, joints, plots,
|
||||||
|
endcap_width, endcap_width1, endcap_width2, joint_width, plot_width,
|
||||||
|
endcap_length, endcap_length1, endcap_length2, joint_length, plot_length,
|
||||||
|
endcap_extent, endcap_extent1, endcap_extent2, joint_extent, plot_extent,
|
||||||
|
endcap_angle, endcap_angle1, endcap_angle2, joint_angle, plot_angle,
|
||||||
|
trim, trim1, trim2,
|
||||||
|
convexity=10, hull=true
|
||||||
|
) = no_function("stroke");
|
||||||
module stroke(
|
module stroke(
|
||||||
path, width=1, closed=false,
|
path, width=1, closed=false,
|
||||||
endcaps, endcap1, endcap2, joints, plots,
|
endcaps, endcap1, endcap2, joints, plots,
|
||||||
|
@ -743,6 +764,7 @@ function _normal_segment(p1,p2) =
|
||||||
// );
|
// );
|
||||||
// koch=concat(["angle",60,"repeat",3],[concat(koch_unit(3),["left","left"])]);
|
// koch=concat(["angle",60,"repeat",3],[concat(koch_unit(3),["left","left"])]);
|
||||||
// polygon(turtle(koch));
|
// polygon(turtle(koch));
|
||||||
|
module turtle(commands, state=[[[0,0]],[1,0],90,0], full_state=false, repeat=1) {no_module();}
|
||||||
function turtle(commands, state=[[[0,0]],[1,0],90,0], full_state=false, repeat=1) =
|
function turtle(commands, state=[[[0,0]],[1,0],90,0], full_state=false, repeat=1) =
|
||||||
let( state = is_vector(state) ? [[state],[1,0],90,0] : state )
|
let( state = is_vector(state) ? [[state],[1,0],90,0] : state )
|
||||||
repeat == 1?
|
repeat == 1?
|
||||||
|
@ -1055,8 +1077,7 @@ function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
||||||
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts);
|
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts);
|
||||||
|
|
||||||
|
|
||||||
|
// Section: Polygons
|
||||||
// Section: 2D N-Gons
|
|
||||||
|
|
||||||
// Function&Module: regular_ngon()
|
// Function&Module: regular_ngon()
|
||||||
// Usage:
|
// Usage:
|
||||||
|
@ -1377,10 +1398,6 @@ module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip,
|
||||||
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
|
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: Other 2D Shapes
|
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: trapezoid()
|
// Function&Module: trapezoid()
|
||||||
// Usage: As Module
|
// Usage: As Module
|
||||||
// trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...);
|
// trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...);
|
||||||
|
@ -1486,6 +1503,136 @@ module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function&Module: star()
|
||||||
|
// Usage: As Module
|
||||||
|
// star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
||||||
|
// star(n, r/or, step=, ...);
|
||||||
|
// Usage: With Attachments
|
||||||
|
// star(n, r/or, ir, ...) { attachments }
|
||||||
|
// Usage: As Function
|
||||||
|
// path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
||||||
|
// path = star(n, r/or, step=, ...);
|
||||||
|
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
|
||||||
|
// See Also: circle(), oval()
|
||||||
|
// Description:
|
||||||
|
// When called as a function, returns the path needed to create a star polygon with N points.
|
||||||
|
// When called as a module, creates a star polygon with N points.
|
||||||
|
// Arguments:
|
||||||
|
// n = The number of stellate tips on the star.
|
||||||
|
// r/or = The radius to the tips of the star.
|
||||||
|
// ir = The radius to the inner corners of the star.
|
||||||
|
// ---
|
||||||
|
// d/od = The diameter to the tips of the star.
|
||||||
|
// id = The diameter to the inner corners of the star.
|
||||||
|
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
|
||||||
|
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
|
||||||
|
// align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin.
|
||||||
|
// align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin.
|
||||||
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||||
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||||
|
// Extra Anchors:
|
||||||
|
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
|
||||||
|
// "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards.
|
||||||
|
// "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards.
|
||||||
|
// Examples(2D):
|
||||||
|
// star(n=5, r=50, ir=25);
|
||||||
|
// star(n=5, r=50, step=2);
|
||||||
|
// star(n=7, r=50, step=2);
|
||||||
|
// star(n=7, r=50, step=3);
|
||||||
|
// Example(2D): Realigned
|
||||||
|
// star(n=7, r=50, step=3, realign=true);
|
||||||
|
// Example(2D): Alignment by Tip
|
||||||
|
// star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
|
||||||
|
// attach("tip0", FWD) color("blue")
|
||||||
|
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||||
|
// Example(2D): Alignment by Pit
|
||||||
|
// star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
|
||||||
|
// attach("pit0", FWD) color("blue")
|
||||||
|
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||||
|
// Example(2D): Called as Function
|
||||||
|
// stroke(closed=true, star(n=5, r=50, ir=25));
|
||||||
|
function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) =
|
||||||
|
assert(is_undef(align_tip) || is_vector(align_tip))
|
||||||
|
assert(is_undef(align_pit) || is_vector(align_pit))
|
||||||
|
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit")
|
||||||
|
let(
|
||||||
|
r = get_radius(r1=or, d1=od, r=r, d=d),
|
||||||
|
count = num_defined([ir,id,step]),
|
||||||
|
stepOK = is_undef(step) || (step>1 && step<n/2)
|
||||||
|
)
|
||||||
|
assert(is_def(n), "Must specify number of points, n")
|
||||||
|
assert(count==1, "Must specify exactly one of ir, id, step")
|
||||||
|
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
|
||||||
|
let(
|
||||||
|
mat = !is_undef(_mat) ? _mat :
|
||||||
|
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||||
|
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||||
|
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||||
|
affine2d_identity()
|
||||||
|
),
|
||||||
|
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
|
||||||
|
ir = get_radius(r=ir, d=id, dflt=stepr),
|
||||||
|
offset = realign? 180/n : 0,
|
||||||
|
path1 = [for(i=[2*n:-1:1]) let(theta=180*i/n, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
|
||||||
|
path = apply(mat, path1),
|
||||||
|
anchors = !is_undef(_anchs) ? _anchs :
|
||||||
|
!is_string(anchor)? [] : [
|
||||||
|
for (i = [0:1:n-1]) let(
|
||||||
|
a1 = 360 - i*360/n,
|
||||||
|
a2 = a1 - 180/n,
|
||||||
|
a3 = a1 - 360/n,
|
||||||
|
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||||
|
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||||
|
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||||
|
pos = (p1+p3)/2
|
||||||
|
) each [
|
||||||
|
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||||
|
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||||
|
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||||
|
]
|
||||||
|
]
|
||||||
|
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors);
|
||||||
|
|
||||||
|
|
||||||
|
module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0) {
|
||||||
|
assert(is_undef(align_tip) || is_vector(align_tip));
|
||||||
|
assert(is_undef(align_pit) || is_vector(align_pit));
|
||||||
|
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit");
|
||||||
|
r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef);
|
||||||
|
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n);
|
||||||
|
ir = get_radius(r=ir, d=id, dflt=stepr);
|
||||||
|
mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||||
|
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||||
|
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||||
|
affine2d_identity()
|
||||||
|
);
|
||||||
|
anchors = [
|
||||||
|
for (i = [0:1:n-1]) let(
|
||||||
|
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||||
|
a2 = a1 - 180/n,
|
||||||
|
a3 = a1 - 360/n,
|
||||||
|
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||||
|
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||||
|
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||||
|
pos = (p1+p3)/2
|
||||||
|
) each [
|
||||||
|
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||||
|
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||||
|
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||||
|
]
|
||||||
|
];
|
||||||
|
path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors);
|
||||||
|
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) {
|
||||||
|
polygon(path);
|
||||||
|
children();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// Section: Curved 2D Shapes
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: teardrop2d()
|
// Function&Module: teardrop2d()
|
||||||
//
|
//
|
||||||
// Description:
|
// Description:
|
||||||
|
@ -1616,131 +1763,6 @@ module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: star()
|
|
||||||
// Usage: As Module
|
|
||||||
// star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
|
||||||
// star(n, r/or, step=, ...);
|
|
||||||
// Usage: With Attachments
|
|
||||||
// star(n, r/or, ir, ...) { attachments }
|
|
||||||
// Usage: As Function
|
|
||||||
// path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...);
|
|
||||||
// path = star(n, r/or, step=, ...);
|
|
||||||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
|
|
||||||
// See Also: circle(), oval()
|
|
||||||
// Description:
|
|
||||||
// When called as a function, returns the path needed to create a star polygon with N points.
|
|
||||||
// When called as a module, creates a star polygon with N points.
|
|
||||||
// Arguments:
|
|
||||||
// n = The number of stellate tips on the star.
|
|
||||||
// r/or = The radius to the tips of the star.
|
|
||||||
// ir = The radius to the inner corners of the star.
|
|
||||||
// ---
|
|
||||||
// d/od = The diameter to the tips of the star.
|
|
||||||
// id = The diameter to the inner corners of the star.
|
|
||||||
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
|
|
||||||
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
|
|
||||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin.
|
|
||||||
// align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin.
|
|
||||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
||||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
||||||
// Extra Anchors:
|
|
||||||
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
|
|
||||||
// "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards.
|
|
||||||
// "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards.
|
|
||||||
// Examples(2D):
|
|
||||||
// star(n=5, r=50, ir=25);
|
|
||||||
// star(n=5, r=50, step=2);
|
|
||||||
// star(n=7, r=50, step=2);
|
|
||||||
// star(n=7, r=50, step=3);
|
|
||||||
// Example(2D): Realigned
|
|
||||||
// star(n=7, r=50, step=3, realign=true);
|
|
||||||
// Example(2D): Alignment by Tip
|
|
||||||
// star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
|
|
||||||
// attach("tip0", FWD) color("blue")
|
|
||||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
|
||||||
// Example(2D): Alignment by Pit
|
|
||||||
// star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
|
|
||||||
// attach("pit0", FWD) color("blue")
|
|
||||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
|
||||||
// Example(2D): Called as Function
|
|
||||||
// stroke(closed=true, star(n=5, r=50, ir=25));
|
|
||||||
function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) =
|
|
||||||
assert(is_undef(align_tip) || is_vector(align_tip))
|
|
||||||
assert(is_undef(align_pit) || is_vector(align_pit))
|
|
||||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit")
|
|
||||||
let(
|
|
||||||
r = get_radius(r1=or, d1=od, r=r, d=d),
|
|
||||||
count = num_defined([ir,id,step]),
|
|
||||||
stepOK = is_undef(step) || (step>1 && step<n/2)
|
|
||||||
)
|
|
||||||
assert(is_def(n), "Must specify number of points, n")
|
|
||||||
assert(count==1, "Must specify exactly one of ir, id, step")
|
|
||||||
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
|
|
||||||
let(
|
|
||||||
mat = !is_undef(_mat) ? _mat :
|
|
||||||
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
|
||||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
|
||||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
|
||||||
affine2d_identity()
|
|
||||||
),
|
|
||||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
|
|
||||||
ir = get_radius(r=ir, d=id, dflt=stepr),
|
|
||||||
offset = realign? 180/n : 0,
|
|
||||||
path1 = [for(i=[2*n:-1:1]) let(theta=180*i/n, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
|
|
||||||
path = apply(mat, path1),
|
|
||||||
anchors = !is_undef(_anchs) ? _anchs :
|
|
||||||
!is_string(anchor)? [] : [
|
|
||||||
for (i = [0:1:n-1]) let(
|
|
||||||
a1 = 360 - i*360/n,
|
|
||||||
a2 = a1 - 180/n,
|
|
||||||
a3 = a1 - 360/n,
|
|
||||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
|
||||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
|
||||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
|
||||||
pos = (p1+p3)/2
|
|
||||||
) each [
|
|
||||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
|
||||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
|
||||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
|
||||||
]
|
|
||||||
]
|
|
||||||
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors);
|
|
||||||
|
|
||||||
|
|
||||||
module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0) {
|
|
||||||
assert(is_undef(align_tip) || is_vector(align_tip));
|
|
||||||
assert(is_undef(align_pit) || is_vector(align_pit));
|
|
||||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit");
|
|
||||||
r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef);
|
|
||||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n);
|
|
||||||
ir = get_radius(r=ir, d=id, dflt=stepr);
|
|
||||||
mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
|
||||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
|
||||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
|
||||||
affine2d_identity()
|
|
||||||
);
|
|
||||||
anchors = [
|
|
||||||
for (i = [0:1:n-1]) let(
|
|
||||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
|
||||||
a2 = a1 - 180/n,
|
|
||||||
a3 = a1 - 360/n,
|
|
||||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
|
||||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
|
||||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
|
||||||
pos = (p1+p3)/2
|
|
||||||
) each [
|
|
||||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
|
||||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
|
||||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
|
||||||
]
|
|
||||||
];
|
|
||||||
path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors);
|
|
||||||
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) {
|
|
||||||
polygon(path);
|
|
||||||
children();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
|
function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
|
||||||
pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1);
|
pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1);
|
||||||
|
|
|
@ -1355,7 +1355,7 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||||
let(rotations =
|
let(rotations =
|
||||||
[for( i = 0,
|
[for( i = 0,
|
||||||
ynormal = normal - (normal * tangents[0])*tangents[0],
|
ynormal = normal - (normal * tangents[0])*tangents[0],
|
||||||
rotation = affine3d_frame_map(y=ynormal, z=tangents[0])
|
rotation = frame_map(y=ynormal, z=tangents[0])
|
||||||
;
|
;
|
||||||
i < len(tangents) + (closed?1:0) ;
|
i < len(tangents) + (closed?1:0) ;
|
||||||
rotation = i<len(tangents)-1+(closed?1:0)? rot(from=tangents[i],to=tangents[(i+1)%L])*rotation : undef,
|
rotation = i<len(tangents)-1+(closed?1:0)? rot(from=tangents[i],to=tangents[(i+1)%L])*rotation : undef,
|
||||||
|
@ -1374,7 +1374,7 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||||
last_tangent = last(tangents),
|
last_tangent = last(tangents),
|
||||||
lastynormal = last_normal - (last_normal * last_tangent) * last_tangent
|
lastynormal = last_normal - (last_normal * last_tangent) * last_tangent
|
||||||
)
|
)
|
||||||
affine3d_frame_map(y=lastynormal, z=last_tangent),
|
frame_map(y=lastynormal, z=last_tangent),
|
||||||
mismatch = transpose(last(rotations)) * reference_rot,
|
mismatch = transpose(last(rotations)) * reference_rot,
|
||||||
correction_twist = atan2(mismatch[1][0], mismatch[0][0]),
|
correction_twist = atan2(mismatch[1][0], mismatch[0][0]),
|
||||||
// Spread out this extra twist over the whole sweep so that it doesn't occur
|
// Spread out this extra twist over the whole sweep so that it doesn't occur
|
||||||
|
@ -1387,7 +1387,7 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||||
[for(i=[0:L-(closed?0:1)]) let(
|
[for(i=[0:L-(closed?0:1)]) let(
|
||||||
ynormal = relaxed ? normals[i%L] : normals[i%L] - (normals[i%L] * tangents[i%L])*tangents[i%L],
|
ynormal = relaxed ? normals[i%L] : normals[i%L] - (normals[i%L] * tangents[i%L])*tangents[i%L],
|
||||||
znormal = relaxed ? tangents[i%L] - (normals[i%L] * tangents[i%L])*normals[i%L] : tangents[i%L],
|
znormal = relaxed ? tangents[i%L] - (normals[i%L] * tangents[i%L])*normals[i%L] : tangents[i%L],
|
||||||
rotation = affine3d_frame_map(y=ynormal, z=znormal)
|
rotation = frame_map(y=ynormal, z=znormal)
|
||||||
)
|
)
|
||||||
assert(approx(ynormal*znormal,0),str("Supplied normal is parallel to the path tangent at point ",i))
|
assert(approx(ynormal*znormal,0),str("Supplied normal is parallel to the path tangent at point ",i))
|
||||||
translate(path[i%L])*rotation*zrot(-twist*pathfrac[i]),
|
translate(path[i%L])*rotation*zrot(-twist*pathfrac[i]),
|
||||||
|
@ -1400,7 +1400,7 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||||
dummy = min(testnormals) < .5 ? echo("WARNING: ***** Abrupt change in normal direction. Consider a different method *****") :0
|
dummy = min(testnormals) < .5 ? echo("WARNING: ***** Abrupt change in normal direction. Consider a different method *****") :0
|
||||||
)
|
)
|
||||||
[for(i=[0:L-(closed?0:1)]) let(
|
[for(i=[0:L-(closed?0:1)]) let(
|
||||||
rotation = affine3d_frame_map(x=pathnormal[i%L], z=tangents[i%L])
|
rotation = frame_map(x=pathnormal[i%L], z=tangents[i%L])
|
||||||
)
|
)
|
||||||
translate(path[i%L])*rotation*zrot(-twist*pathfrac[i])
|
translate(path[i%L])*rotation*zrot(-twist*pathfrac[i])
|
||||||
] :
|
] :
|
||||||
|
|
|
@ -216,12 +216,6 @@ test_affine3d_skew_yz();
|
||||||
|
|
||||||
////////////////////////////
|
////////////////////////////
|
||||||
|
|
||||||
module test_affine3d_frame_map() {
|
|
||||||
assert(approx(affine3d_frame_map(x=[1,1,0], y=[-1,1,0]), affine3d_zrot(45)));
|
|
||||||
}
|
|
||||||
test_affine3d_frame_map();
|
|
||||||
|
|
||||||
|
|
||||||
module test_apply() {
|
module test_apply() {
|
||||||
assert(approx(apply(affine3d_xrot(90),2*UP),2*FRONT));
|
assert(approx(apply(affine3d_xrot(90),2*UP),2*FRONT));
|
||||||
assert(approx(apply(affine3d_yrot(90),2*UP),2*RIGHT));
|
assert(approx(apply(affine3d_yrot(90),2*UP),2*RIGHT));
|
||||||
|
|
|
@ -462,6 +462,11 @@ module test_xyzrot() {
|
||||||
}
|
}
|
||||||
test_xyzrot();
|
test_xyzrot();
|
||||||
|
|
||||||
|
module test_frame_map() {
|
||||||
|
assert(approx(frame_map(x=[1,1,0], y=[-1,1,0]), affine3d_zrot(45)));
|
||||||
|
}
|
||||||
|
test_frame_map();
|
||||||
|
|
||||||
|
|
||||||
module test_skew() {
|
module test_skew() {
|
||||||
m = affine3d_skew(sxy=2, sxz=3, syx=4, syz=5, szx=6, szy=7);
|
m = affine3d_skew(sxy=2, sxz=3, syx=4, syz=5, szx=6, szy=7);
|
||||||
|
|
|
@ -918,7 +918,7 @@ module generic_threaded_rod(
|
||||||
dummy1 = assert(_r1>depth && _r2>depth, "Screw profile deeper than rod radius");
|
dummy1 = assert(_r1>depth && _r2>depth, "Screw profile deeper than rod radius");
|
||||||
map_threads = right((_r1 + _r2) / 2) // Shift profile out to thread radius
|
map_threads = right((_r1 + _r2) / 2) // Shift profile out to thread radius
|
||||||
* affine3d_skew(sxz=(_r2-_r1)/l) // Skew correction for tapered threads
|
* affine3d_skew(sxz=(_r2-_r1)/l) // Skew correction for tapered threads
|
||||||
* affine3d_frame_map(x=[0,0,1], y=[1,0,0]) // Map profile to 3d, parallel to z axis
|
* frame_map(x=[0,0,1], y=[1,0,0]) // Map profile to 3d, parallel to z axis
|
||||||
* scale(pitch); // scale profile by pitch
|
* scale(pitch); // scale profile by pitch
|
||||||
hig_table = [
|
hig_table = [
|
||||||
[-twist/2-0.0001, 0],
|
[-twist/2-0.0001, 0],
|
||||||
|
|
|
@ -1,6 +1,14 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// LibFile: transforms.scad
|
// LibFile: transforms.scad
|
||||||
// Functions and modules for translation, rotation, reflection and skewing.
|
// Functions and modules that provide shortcuts for translation,
|
||||||
|
// rotation and mirror operations. Also provided are skew and frame_map
|
||||||
|
// which remaps the coordinate axes. The shortcuts can act on
|
||||||
|
// geometry, like the usual OpenSCAD rotate() and translate(). They
|
||||||
|
// also work as functions that operate on lists of points in various
|
||||||
|
// forms: paths, VNFS and bezier patches. Lastly, the function form
|
||||||
|
// of the shortcuts can return a matrix representing the operation
|
||||||
|
// the shortcut performs. The rotation and scaling shortcuts accept
|
||||||
|
// an optional centerpoint for the rotation or scaling operation.
|
||||||
// Includes:
|
// Includes:
|
||||||
// include <BOSL2/std.scad>
|
// include <BOSL2/std.scad>
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
@ -771,6 +779,8 @@ module xyzrot(a=0, p, cp)
|
||||||
function xyzrot(a=0, p, cp) = rot(a=a, v=[1,1,1], cp=cp, p=p);
|
function xyzrot(a=0, p, cp) = rot(a=a, v=[1,1,1], cp=cp, p=p);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// Section: Scaling and Mirroring
|
// Section: Scaling and Mirroring
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
@ -1011,6 +1021,10 @@ function zscale(z=1, p, cp=0) =
|
||||||
scale([1,1,z], cp=cp, p=p);
|
scale([1,1,z], cp=cp, p=p);
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
// Section: Reflection (Mirroring)
|
||||||
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
// Function&Module: mirror()
|
// Function&Module: mirror()
|
||||||
// Usage: As Module
|
// Usage: As Module
|
||||||
// mirror(v) ...
|
// mirror(v) ...
|
||||||
|
@ -1435,9 +1449,87 @@ function yzflip(p, cp=0) =
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
// Section: Skewing
|
// Section: Other Transformations
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
// Function&Module: frame_map()
|
||||||
|
// Usage: As module
|
||||||
|
// frame_map(v1, v2, v3, [reverse=]) { ... }
|
||||||
|
// Usage: As function to remap points
|
||||||
|
// transformed = frame_map(v1, v2, v3, p=points, [reverse=]);
|
||||||
|
// Usage: As function to return a transformation matrix:
|
||||||
|
// map = frame_map(v1, v2, v3, [reverse=]);
|
||||||
|
// map = frame_map(x=VECTOR1, y=VECTOR2, [reverse=]);
|
||||||
|
// map = frame_map(x=VECTOR1, z=VECTOR2, [reverse=]);
|
||||||
|
// map = frame_map(y=VECTOR1, z=VECTOR2, [reverse=]);
|
||||||
|
// Topics: Affine, Matrices, Transforms, Rotation
|
||||||
|
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
||||||
|
// Description:
|
||||||
|
// Maps one coordinate frame to another. You must specify two or
|
||||||
|
// three of `x`, `y`, and `z`. The specified axes are mapped to the vectors you supplied, so if you
|
||||||
|
// specify x=[1,1] then the x axis will be mapped to the line y=x. If you
|
||||||
|
// give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand
|
||||||
|
// coordinate system. If the vectors you give are orthogonal the result will be a rotation and the
|
||||||
|
// `reverse` parameter will supply the inverse map, which enables you to map two arbitrary
|
||||||
|
// coordinate systems to each other by using the canonical coordinate system as an intermediary.
|
||||||
|
// You cannot use the `reverse` option with non-orthogonal inputs. Note that only the direction
|
||||||
|
// of the specified vectors matters: the transformation will not apply scaling, though it can
|
||||||
|
// skew if your provide non-orthogonal axes.
|
||||||
|
// Arguments:
|
||||||
|
// x = Destination 3D vector for x axis.
|
||||||
|
// y = Destination 3D vector for y axis.
|
||||||
|
// z = Destination 3D vector for z axis.
|
||||||
|
// reverse = reverse direction of the map for orthogonal inputs. Default: false
|
||||||
|
// Example: Remap axes after linear extrusion
|
||||||
|
// frame_map(x=[0,1,0], y=[0,0,1]) linear_extrude(height=10) square(3);
|
||||||
|
// Example: This map is just a rotation around the z axis
|
||||||
|
// mat = frame_map(x=[1,1,0], y=[-1,1,0]);
|
||||||
|
// Example: This map is not a rotation because x and y aren't orthogonal
|
||||||
|
// mat = frame_map(x=[1,0,0], y=[1,1,0]);
|
||||||
|
// Example: This sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]
|
||||||
|
// mat = frame_map(x=[0,1,1], y=[0,-1,1]) * frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
|
||||||
|
function frame_map(x,y,z, p, reverse=false) =
|
||||||
|
is_def(p)
|
||||||
|
? apply(frame_map(x,y,z,reverse=reverse), p)
|
||||||
|
:
|
||||||
|
assert(num_defined([x,y,z])>=2, "Must define at least two inputs")
|
||||||
|
let(
|
||||||
|
xvalid = is_undef(x) || (is_vector(x) && len(x)==3),
|
||||||
|
yvalid = is_undef(y) || (is_vector(y) && len(y)==3),
|
||||||
|
zvalid = is_undef(z) || (is_vector(z) && len(z)==3)
|
||||||
|
)
|
||||||
|
assert(xvalid,"Input x must be a length 3 vector")
|
||||||
|
assert(yvalid,"Input y must be a length 3 vector")
|
||||||
|
assert(zvalid,"Input z must be a length 3 vector")
|
||||||
|
let(
|
||||||
|
x = is_undef(x)? undef : unit(x,RIGHT),
|
||||||
|
y = is_undef(y)? undef : unit(y,BACK),
|
||||||
|
z = is_undef(z)? undef : unit(z,UP),
|
||||||
|
map = is_undef(x)? [cross(y,z), y, z] :
|
||||||
|
is_undef(y)? [x, cross(z,x), z] :
|
||||||
|
is_undef(z)? [x, y, cross(x,y)] :
|
||||||
|
[x, y, z]
|
||||||
|
)
|
||||||
|
reverse? (
|
||||||
|
let(
|
||||||
|
ocheck = (
|
||||||
|
approx(map[0]*map[1],0) &&
|
||||||
|
approx(map[0]*map[2],0) &&
|
||||||
|
approx(map[1]*map[2],0)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
assert(ocheck, "Inputs must be orthogonal when reverse==true")
|
||||||
|
[for (r=map) [for (c=r) c, 0], [0,0,0,1]]
|
||||||
|
) : [for (r=transpose(map)) [for (c=r) c, 0], [0,0,0,1]];
|
||||||
|
|
||||||
|
|
||||||
|
module frame_map(x,y,z,p,reverse=false)
|
||||||
|
{
|
||||||
|
assert(is_undef(p), "Module form `frame_map()` does not accept p= argument.");
|
||||||
|
multmatrix(frame_map(x,y,z,reverse=reverse))
|
||||||
|
children();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: skew()
|
// Function&Module: skew()
|
||||||
// Usage: As Module
|
// Usage: As Module
|
||||||
|
|
|
@ -433,7 +433,7 @@ function turtle3d(commands, state=RIGHT, transforms=false, full_state=false, rep
|
||||||
state = is_matrix(state,4,4) ? [[state],[yrot(90)],1,90,0] :
|
state = is_matrix(state,4,4) ? [[state],[yrot(90)],1,90,0] :
|
||||||
is_vector(state,3) ?
|
is_vector(state,3) ?
|
||||||
let( updir = UP - (UP * state) * state / (state*state) )
|
let( updir = UP - (UP * state) * state / (state*state) )
|
||||||
[[affine3d_frame_map(x=state, z=approx(norm(updir),0) ? FWD : updir)], [yrot(90)],1, 90, 0]
|
[[frame_map(x=state, z=approx(norm(updir),0) ? FWD : updir)], [yrot(90)],1, 90, 0]
|
||||||
: assert(_turtle3d_state_valid(state), "Supplied state is not valid")
|
: assert(_turtle3d_state_valid(state), "Supplied state is not valid")
|
||||||
state,
|
state,
|
||||||
finalstate = _turtle3d_repeat(commands, state, repeat)
|
finalstate = _turtle3d_repeat(commands, state, repeat)
|
||||||
|
|
Loading…
Reference in a new issue