mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
removal of duplicate definitions
This commit is contained in:
parent
8a25764744
commit
5c239187e9
1 changed files with 2 additions and 56 deletions
58
math.scad
58
math.scad
|
@ -857,7 +857,7 @@ function determinant(M) =
|
||||||
// Description:
|
// Description:
|
||||||
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
||||||
// are omitted or set to undef then true is returned for any positive dimension.
|
// are omitted or set to undef then true is returned for any positive dimension.
|
||||||
// If `square` is true then the matrix is required to be square. Note if you
|
// If `square` is true then the matrix is required to be square.
|
||||||
// specify m != n and require a square matrix then the result will always be false.
|
// specify m != n and require a square matrix then the result will always be false.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// A = matrix to test
|
// A = matrix to test
|
||||||
|
@ -1010,16 +1010,6 @@ function all(l, i=0, fail=false) =
|
||||||
// count_true([[0,0], [1,0]]); // Returns 1.
|
// count_true([[0,0], [1,0]]); // Returns 1.
|
||||||
// count_true([[1,1], [1,1]]); // Returns 4.
|
// count_true([[1,1], [1,1]]); // Returns 4.
|
||||||
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
||||||
function count_true(l, nmax=undef, i=0, cnt=0) =
|
|
||||||
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
|
|
||||||
count_true(
|
|
||||||
l=l, nmax=nmax, i=i+1, cnt=cnt+(
|
|
||||||
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
|
|
||||||
(l[i]? 1 : 0)
|
|
||||||
)
|
|
||||||
);
|
|
||||||
|
|
||||||
|
|
||||||
function count_true(l, nmax) =
|
function count_true(l, nmax) =
|
||||||
!is_list(l) ? !(!l) ? 1: 0 :
|
!is_list(l) ? !(!l) ? 1: 0 :
|
||||||
let( c = [for( i = 0,
|
let( c = [for( i = 0,
|
||||||
|
@ -1212,27 +1202,6 @@ function C_div(z1,z2) =
|
||||||
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
||||||
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
||||||
// The result is a number if `z` is a number and a complex number otherwise.
|
// The result is a number if `z` is a number and a complex number otherwise.
|
||||||
|
|
||||||
// Note: this should probably be recoded to use division by [1,-z], which is more accurate
|
|
||||||
// and avoids overflow with large coefficients, but requires poly_div to support complex coefficients.
|
|
||||||
function polynomial(p, z, _k, _zk, _total) =
|
|
||||||
is_undef(_k)
|
|
||||||
? assert( is_vector(p), "Input polynomial coefficients must be a vector." )
|
|
||||||
let(p = _poly_trim(p))
|
|
||||||
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
|
|
||||||
polynomial( p,
|
|
||||||
z,
|
|
||||||
len(p)-1,
|
|
||||||
is_num(z)? 1 : [1,0],
|
|
||||||
is_num(z) ? 0 : [0,0])
|
|
||||||
: _k==0
|
|
||||||
? _total + +_zk*p[0]
|
|
||||||
: polynomial( p,
|
|
||||||
z,
|
|
||||||
_k-1,
|
|
||||||
is_num(z) ? _zk*z : C_times(_zk,z),
|
|
||||||
_total+_zk*p[_k]);
|
|
||||||
|
|
||||||
function polynomial(p,z,k,total) =
|
function polynomial(p,z,k,total) =
|
||||||
is_undef(k)
|
is_undef(k)
|
||||||
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
||||||
|
@ -1248,36 +1217,13 @@ function polynomial(p,z,k,total) =
|
||||||
// Description:
|
// Description:
|
||||||
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
||||||
// computes the coefficient list of the product polynomial.
|
// computes the coefficient list of the product polynomial.
|
||||||
function poly_mult(p,q) =
|
|
||||||
is_undef(q) ?
|
|
||||||
assert( is_list(p)
|
|
||||||
&& []==[for(pi=p) if( !is_vector(pi) && pi!=[]) 0],
|
|
||||||
"Invalid arguments to poly_mult")
|
|
||||||
len(p)==2 ? poly_mult(p[0],p[1])
|
|
||||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
|
||||||
:
|
|
||||||
_poly_trim(
|
|
||||||
[
|
|
||||||
for(n = [len(p)+len(q)-2:-1:0])
|
|
||||||
sum( [for(i=[0:1:len(p)-1])
|
|
||||||
let(j = len(p)+len(q)- 2 - n - i)
|
|
||||||
if (j>=0 && j<len(q)) p[i]*q[j]
|
|
||||||
])
|
|
||||||
]);
|
|
||||||
|
|
||||||
function poly_mult(p,q) =
|
function poly_mult(p,q) =
|
||||||
is_undef(q) ?
|
is_undef(q) ?
|
||||||
len(p)==2 ? poly_mult(p[0],p[1])
|
len(p)==2 ? poly_mult(p[0],p[1])
|
||||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
||||||
:
|
:
|
||||||
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
||||||
_poly_trim( [
|
_poly_trim(convolve(p,q));
|
||||||
for(n = [len(p)+len(q)-2:-1:0])
|
|
||||||
sum( [for(i=[0:1:len(p)-1])
|
|
||||||
let(j = len(p)+len(q)- 2 - n - i)
|
|
||||||
if (j>=0 && j<len(q)) p[i]*q[j]
|
|
||||||
])
|
|
||||||
]);
|
|
||||||
|
|
||||||
|
|
||||||
// Function: poly_div()
|
// Function: poly_div()
|
||||||
|
|
Loading…
Reference in a new issue