mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
mat3_to_mat4() -> affine2d_to_3d() and various trailing space and formatting issues.
This commit is contained in:
parent
e8254cec7d
commit
65b78f90ae
2 changed files with 115 additions and 103 deletions
|
@ -17,9 +17,9 @@
|
||||||
function ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?1:0]];
|
function ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?1:0]];
|
||||||
|
|
||||||
|
|
||||||
// Function: affine2d_to_affine3d()
|
// Function: affine2d_to_3d()
|
||||||
// Description: Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent.
|
// Description: Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent.
|
||||||
function mat3_to_mat4(m) = concat(
|
function affine2d_to_3d(m) = concat(
|
||||||
[for (r = [0:2])
|
[for (r = [0:2])
|
||||||
concat(
|
concat(
|
||||||
[for (c = [0:2]) m[r][c]],
|
[for (c = [0:2]) m[r][c]],
|
||||||
|
|
214
paths.scad
214
paths.scad
|
@ -43,7 +43,7 @@ function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps);
|
||||||
// Returns the length of the path.
|
// Returns the length of the path.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// path = The list of points of the path to measure.
|
// path = The list of points of the path to measure.
|
||||||
// closed = true if the path is closed. Default: false
|
// closed = true if the path is closed. Default: false
|
||||||
// Example:
|
// Example:
|
||||||
// path = [[0,0], [5,35], [60,-25], [80,0]];
|
// path = [[0,0], [5,35], [60,-25], [80,0]];
|
||||||
// echo(path_length(path));
|
// echo(path_length(path));
|
||||||
|
@ -441,7 +441,7 @@ module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||||
// Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed
|
// Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed
|
||||||
// with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false.
|
// with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false.
|
||||||
// If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths.
|
// If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths.
|
||||||
// If you specify `sp` then the copies will start at `sp`.
|
// If you specify `sp` then the copies will start at `sp`.
|
||||||
//
|
//
|
||||||
// Usage:
|
// Usage:
|
||||||
// path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ...
|
// path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ...
|
||||||
|
@ -454,10 +454,10 @@ module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||||
//
|
//
|
||||||
// Side Effects:
|
// Side Effects:
|
||||||
// `$pos` is set to the center of each copy
|
// `$pos` is set to the center of each copy
|
||||||
// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`.
|
// `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`.
|
||||||
// `$dir` is set to the direction vector of the path at the point where the copy is placed.
|
// `$dir` is set to the direction vector of the path at the point where the copy is placed.
|
||||||
// `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point
|
// `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point
|
||||||
//
|
//
|
||||||
// Example(2D):
|
// Example(2D):
|
||||||
// spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100;
|
// spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100;
|
||||||
// stroke(spiral,width=.25);
|
// stroke(spiral,width=.25);
|
||||||
|
@ -466,7 +466,7 @@ module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||||
// circle = regular_ngon(n=64, or=10);
|
// circle = regular_ngon(n=64, or=10);
|
||||||
// stroke(circle,width=1,closed=true);
|
// stroke(circle,width=1,closed=true);
|
||||||
// color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3);
|
// color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3);
|
||||||
// Example(2D):
|
// Example(2D):
|
||||||
// heptagon = regular_ngon(n=7, or=10);
|
// heptagon = regular_ngon(n=7, or=10);
|
||||||
// stroke(heptagon, width=1, closed=true);
|
// stroke(heptagon, width=1, closed=true);
|
||||||
// color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT);
|
// color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT);
|
||||||
|
@ -498,7 +498,7 @@ module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||||
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
|
// sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]];
|
||||||
// stroke(sinwav,width=.1);
|
// stroke(sinwav,width=.1);
|
||||||
// color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT);
|
// color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT);
|
||||||
// Example(2D):
|
// Example(2D):
|
||||||
// wedge = arc(angle=[0,100], r=10, $fn=64);
|
// wedge = arc(angle=[0,100], r=10, $fn=64);
|
||||||
// difference(){
|
// difference(){
|
||||||
// polygon(concat([[0,0]],wedge));
|
// polygon(concat([[0,0]],wedge));
|
||||||
|
@ -520,39 +520,47 @@ module debug_polygon(points, paths=undef, convexity=2, size=1)
|
||||||
// }
|
// }
|
||||||
module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=false)
|
module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=false)
|
||||||
{
|
{
|
||||||
length = path_length(path,closed);
|
length = path_length(path,closed);
|
||||||
distances = is_def(sp) ? (
|
distances = is_def(sp)? (
|
||||||
is_def(n) && is_def(spacing) ? list_range(s=sp, step=spacing, n=n) :
|
is_def(n) && is_def(spacing)? list_range(s=sp, step=spacing, n=n) :
|
||||||
is_def(n) ? list_range(s=sp, e=length, n=n) :
|
is_def(n)? list_range(s=sp, e=length, n=n) :
|
||||||
list_range(s=sp, step=spacing, e=length)
|
list_range(s=sp, step=spacing, e=length)
|
||||||
) :
|
) : is_def(n) && is_undef(spacing)? (
|
||||||
is_def(n) && is_undef(spacing) ? (closed ? let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) :
|
closed?
|
||||||
list_range(s=0, e=length, n=n)
|
let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) :
|
||||||
) :
|
list_range(s=0, e=length, n=n)
|
||||||
let( n = is_def(n) ? n : floor(length/spacing)+(closed?0:1),
|
) : (
|
||||||
ptlist = list_range(s=0,step=spacing,n=n),
|
let(
|
||||||
listcenter = mean(ptlist)
|
n = is_def(n)? n : floor(length/spacing)+(closed?0:1),
|
||||||
)
|
ptlist = list_range(s=0,step=spacing,n=n),
|
||||||
closed ? sort([for(entry=ptlist) posmod(entry-listcenter,length)]) :
|
listcenter = mean(ptlist)
|
||||||
[for(entry=ptlist) entry + length/2-listcenter ];
|
) closed?
|
||||||
distOK = min(distances)>=0 && max(distances)<=length;
|
sort([for(entry=ptlist) posmod(entry-listcenter,length)]) :
|
||||||
assert(distOK,"Cannot fit all of the copies");
|
[for(entry=ptlist) entry + length/2-listcenter ]
|
||||||
cutlist = path_cut(path, distances, closed, direction=true);
|
);
|
||||||
planar = len(path[0])==2;
|
distOK = min(distances)>=0 && max(distances)<=length;
|
||||||
if (true) for(i=[0:1:len(cutlist)-1]) {
|
assert(distOK,"Cannot fit all of the copies");
|
||||||
$pos = cutlist[i][0];
|
cutlist = path_cut(path, distances, closed, direction=true);
|
||||||
$idx = i;
|
planar = len(path[0])==2;
|
||||||
$dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2];
|
if (true) for(i=[0:1:len(cutlist)-1]) {
|
||||||
$normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3];
|
$pos = cutlist[i][0];
|
||||||
translate($pos) {
|
$idx = i;
|
||||||
if (rotate_children) {
|
$dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2];
|
||||||
if(planar) rot(from=[0,1],to=cutlist[i][3]) children();
|
$normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3];
|
||||||
else multmatrix(mat3_to_mat4(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]]))) children();
|
translate($pos) {
|
||||||
}
|
if (rotate_children) {
|
||||||
else children();
|
if(planar) {
|
||||||
}
|
rot(from=[0,1],to=cutlist[i][3]) children();
|
||||||
}
|
} else {
|
||||||
}
|
multmatrix(affine2d_to_3d(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]])))
|
||||||
|
children();
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
children();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// Function: path_cut()
|
// Function: path_cut()
|
||||||
|
@ -561,17 +569,20 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals
|
||||||
// path_cut(path, dists, [closed], [direction])
|
// path_cut(path, dists, [closed], [direction])
|
||||||
//
|
//
|
||||||
// Description:
|
// Description:
|
||||||
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut points and indices of the next point in the path after that point.
|
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
|
||||||
// So for example, a return value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after this point is path[5].
|
// points and indices of the next point in the path after that point. So for example, a return
|
||||||
// If the path is too short then path_cut returns undef. If you set `direction` to true then `path_cut` will also return the tangent vector to the path
|
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
|
||||||
// and a normal vector to the path. It tries to find a normal vector that is coplanar to the path near the cut point. If this fails it will return a normal
|
// this point is path[5]. If the path is too short then path_cut returns undef. If you set
|
||||||
// vector parallel to the xy plane. The output with direction vectors will be `[point, next_index, tangent, normal]`.
|
// `direction` to true then `path_cut` will also return the tangent vector to the path and a normal
|
||||||
|
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
|
||||||
|
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
|
||||||
|
// direction vectors will be `[point, next_index, tangent, normal]`.
|
||||||
//
|
//
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// path = path to cut
|
// path = path to cut
|
||||||
// dists = distances where the path should be cut (a list) or a scalar single distance
|
// dists = distances where the path should be cut (a list) or a scalar single distance
|
||||||
// closed = set to true if the curve is closed. Default: false
|
// closed = set to true if the curve is closed. Default: false
|
||||||
// direction = set to true to return direction vectors. Default: false
|
// direction = set to true to return direction vectors. Default: false
|
||||||
//
|
//
|
||||||
// Example(NORENDER):
|
// Example(NORENDER):
|
||||||
// square=[[0,0],[1,0],[1,1],[0,1]];
|
// square=[[0,0],[1,0],[1,1],[0,1]];
|
||||||
|
@ -580,75 +591,76 @@ module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=fals
|
||||||
// path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
|
// path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
|
||||||
// path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
|
// path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
|
||||||
function path_cut(path, dists, closed=false, direction=false) =
|
function path_cut(path, dists, closed=false, direction=false) =
|
||||||
let( long_enough = len(path) >= (closed ? 3 : 2))
|
let(long_enough = len(path) >= (closed ? 3 : 2))
|
||||||
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
|
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
|
||||||
!is_list(dists) ? path_cut(path, [dists],closed, direction)[0] :
|
!is_list(dists)? path_cut(path, [dists],closed, direction)[0] :
|
||||||
let(cuts = _path_cut(path,dists,closed))
|
let(cuts = _path_cut(path,dists,closed))
|
||||||
!direction ? cuts :
|
!direction ? cuts : let(
|
||||||
let( dir = _path_cuts_dir(path, cuts, closed),
|
dir = _path_cuts_dir(path, cuts, closed),
|
||||||
normals = _path_cuts_normals(path, cuts, dir, closed)
|
normals = _path_cuts_normals(path, cuts, dir, closed)
|
||||||
)
|
) zip(cuts, array_group(dir,1), array_group(normals,1));
|
||||||
zip(cuts, array_group(dir,1), array_group(normals,1));
|
|
||||||
|
|
||||||
// Main recursive path cut function
|
// Main recursive path cut function
|
||||||
function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
|
function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
|
||||||
dind == len(dists) ? result :
|
dind == len(dists) ? result :
|
||||||
let(
|
let(
|
||||||
lastpt = len(result)>0 ? select(result,-1)[0] : [],
|
lastpt = len(result)>0? select(result,-1)[0] : [],
|
||||||
dpartial = len(result)==0 ? 0 : norm(lastpt-path[pind]),
|
dpartial = len(result)==0? 0 : norm(lastpt-path[pind]),
|
||||||
nextpoint = dpartial > dists[dind]-dtotal ?
|
nextpoint = dpartial > dists[dind]-dtotal?
|
||||||
[lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind]
|
[lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind] :
|
||||||
:
|
_path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
|
||||||
_path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
|
) is_undef(nextpoint)?
|
||||||
)
|
concat(result, replist(undef,len(dists)-dind)) :
|
||||||
nextpoint == undef ? concat(result, replist(undef,len(dists)-dind)):
|
_path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
|
||||||
_path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
|
|
||||||
|
|
||||||
// Search for a single cut point in the path
|
// Search for a single cut point in the path
|
||||||
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
|
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
|
||||||
ind>=len(path) ? undef :
|
ind>=len(path)? undef :
|
||||||
ind==len(path)-1 && !closed ? (dist<eps? [path[ind],ind+1] : undef) :
|
ind==len(path)-1 && !closed? (dist<eps? [path[ind],ind+1] : undef) :
|
||||||
let(d = norm(path[ind]-select(path,ind+1)))
|
let(d = norm(path[ind]-select(path,ind+1))) d > dist ?
|
||||||
d > dist ? [lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
|
[lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
|
||||||
_path_cut_single(path, dist-d,closed, ind+1, eps);
|
_path_cut_single(path, dist-d,closed, ind+1, eps);
|
||||||
|
|
||||||
// Find normal directions to the path, coplanar to local part of the path
|
// Find normal directions to the path, coplanar to local part of the path
|
||||||
// Or return a vector parallel to the x-y plane if the above fails
|
// Or return a vector parallel to the x-y plane if the above fails
|
||||||
function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
||||||
[for(i=[0:len(cuts)-1])
|
[for(i=[0:len(cuts)-1])
|
||||||
len(path[0])==2? [-dirs[i].y,dirs[i].x] :
|
len(path[0])==2? [-dirs[i].y, dirs[i].x] : (
|
||||||
let(
|
let(
|
||||||
plane = len(path)<3 ? undef :
|
plane = len(path)<3 ? undef :
|
||||||
let( start = max(min(cuts[i][1],len(path)-1),2))
|
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
|
||||||
_path_plane(path, start, start-2)
|
)
|
||||||
)
|
plane==undef?
|
||||||
plane==undef ? normalize([-dirs[i].y, dirs[i].x,0]) :
|
normalize([-dirs[i].y, dirs[i].x,0]) :
|
||||||
normalize(cross(dirs[i],cross(plane[0],plane[1])))
|
normalize(cross(dirs[i],cross(plane[0],plane[1])))
|
||||||
];
|
)
|
||||||
|
];
|
||||||
|
|
||||||
// Scan from the specified point (ind) to find a noncoplanar triple to use
|
// Scan from the specified point (ind) to find a noncoplanar triple to use
|
||||||
// to define the plane of the path.
|
// to define the plane of the path.
|
||||||
function _path_plane(path, ind, i,closed) =
|
function _path_plane(path, ind, i,closed) =
|
||||||
i<(closed?-1:0) ? undef :
|
i<(closed?-1:0) ? undef :
|
||||||
!collinear(path[ind],path[ind-1], select(path,i)) ? [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : _path_plane(path, ind, i-1);
|
!collinear(path[ind],path[ind-1], select(path,i))?
|
||||||
|
[select(path,i)-path[ind-1],path[ind]-path[ind-1]] :
|
||||||
|
_path_plane(path, ind, i-1);
|
||||||
|
|
||||||
// Find the direction of the path at the cut points
|
// Find the direction of the path at the cut points
|
||||||
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
||||||
[for(ind=[0:len(cuts)-1])
|
[for(ind=[0:len(cuts)-1])
|
||||||
let(
|
let(
|
||||||
nextind = cuts[ind][1],
|
nextind = cuts[ind][1],
|
||||||
nextpath = normalize(select(path, nextind+1)-select(path, nextind)),
|
nextpath = normalize(select(path, nextind+1)-select(path, nextind)),
|
||||||
thispath = normalize(select(path, nextind) - path[nextind-1]),
|
thispath = normalize(select(path, nextind) - path[nextind-1]),
|
||||||
lastpath = normalize(path[nextind-1] - select(path, nextind-2)),
|
lastpath = normalize(path[nextind-1] - select(path, nextind-2)),
|
||||||
nextdir =
|
nextdir =
|
||||||
nextind==len(path) && !closed ? lastpath :
|
nextind==len(path) && !closed? lastpath :
|
||||||
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps) ?
|
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)?
|
||||||
normalize(nextpath+thispath) :
|
normalize(nextpath+thispath) :
|
||||||
(nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps) ?
|
(nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps)?
|
||||||
normalize(thispath+lastpath) :
|
normalize(thispath+lastpath) :
|
||||||
thispath
|
thispath
|
||||||
)
|
) nextdir
|
||||||
nextdir];
|
];
|
||||||
|
|
||||||
|
|
||||||
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||||
|
|
Loading…
Reference in a new issue