mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
More additions to attachments tutorial.
This commit is contained in:
parent
8fd4073d44
commit
7af7b95b2a
1 changed files with 112 additions and 2 deletions
|
@ -217,7 +217,49 @@ cube(50, center=true)
|
|||
position([TOP,RIGHT,FRONT]) cylinder(d1=50,d2=20,l=20);
|
||||
```
|
||||
|
||||
## Anchor Arrows
|
||||
One way that is useful to show the position and orientation of an anchorpoint is by attaching
|
||||
an anchor arrow to that anchor.
|
||||
|
||||
```openscad
|
||||
cube(40, center=true)
|
||||
attach(LEFT+TOP)
|
||||
anchor_arrow();
|
||||
```
|
||||
|
||||
For large objects, you chan change the size of the arrow with the `s=` argument.
|
||||
|
||||
```openscad
|
||||
sphere(d=100)
|
||||
attach(LEFT+TOP)
|
||||
anchor_arrow(s=30);
|
||||
```
|
||||
|
||||
To show all the standard cardinal anchorpoints, you can use the `show_anchors()` module.
|
||||
|
||||
```openscad
|
||||
cube(40, center=true)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
```openscad
|
||||
cylinder(h=40, d=40, center=true)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
```openscad
|
||||
sphere(d=40)
|
||||
show_anchors();
|
||||
```
|
||||
|
||||
For large objects, you chan again change the size of the arrows with the `s=` argument.
|
||||
|
||||
```openscad
|
||||
cylinder(h=100, d=100, center=true)
|
||||
show_anchors(s=30);
|
||||
```
|
||||
|
||||
```openscad
|
||||
## Tagged Operations
|
||||
BOSL2 introduces the concept of tags. Tags are names that can be given to attachables, so that
|
||||
you can refer to them when performing `diff()`, `intersect()`, and `hulling()` operations.
|
||||
|
@ -567,8 +609,76 @@ spikeball(r=50, scale=[0.75,1,1.5]);
|
|||
|
||||
### VNF Attachables
|
||||
If the shape just doesn't fit into any of the above categories, and you constructed it as a
|
||||
[VNF](vnf.scad), you can use the VNF itself to describe the geometry.
|
||||
TBW
|
||||
[VNF](vnf.scad), you can use the VNF itself to describe the geometry with the `vnf=` argument.
|
||||
|
||||
There are two variations to how anchoring can work for VNFs. When `extents=true`, (the default)
|
||||
then a plane is projected out from the origin, perpendicularly in the direction of the anchor,
|
||||
to the furthest distance that intersects with the VNF shape. The anchorpoint is then the
|
||||
center of the points that still intersect that plane.
|
||||
|
||||
```openscad-FlatSpin
|
||||
module stellate_cube(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||
s2 = 3 * s;
|
||||
verts = [
|
||||
[0,0,-s2*sqrt(2)/2],
|
||||
each down(s/2, p=path3d(square(s,center=true))),
|
||||
each zrot(45, p=path3d(square(s2,center=true))),
|
||||
each up(s/2, p=path3d(square(s,center=true))),
|
||||
[0,0,s2*sqrt(2)/2]
|
||||
];
|
||||
faces = [
|
||||
[0,2,1], [0,3,2], [0,4,3], [0,1,4],
|
||||
[1,2,6], [1,6,9], [6,10,9], [2,10,6],
|
||||
[1,5,4], [1,9,5], [9,12,5], [5,12,4],
|
||||
[4,8,3], [4,12,8], [12,11,8], [11,3,8],
|
||||
[2,3,7], [3,11,7], [7,11,10], [2,7,10],
|
||||
[9,10,13], [10,11,13], [11,12,13], [12,9,13]
|
||||
];
|
||||
vnf = [verts, faces];
|
||||
attachable(anchor,spin,orient, vnf=vnf) {
|
||||
vnf_polyhedron(vnf);
|
||||
children();
|
||||
}
|
||||
}
|
||||
stellate_cube(25) {
|
||||
attach(UP+RIGHT) {
|
||||
anchor_arrow(20);
|
||||
%cube([100,100,0.1],center=true);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
When `extents=false`, then the anchorpoint will be the furthest intersection of the VNF with
|
||||
the anchor ray from the origin. The orientation of the anchorpoint will be the normal of the
|
||||
face at the intersection. If the intersection is at an edge or corner, then the orientation
|
||||
will bisect the angles between the faces.
|
||||
|
||||
```openscad
|
||||
module stellate_cube(s=100, anchor=CENTER, spin=0, orient=UP) {
|
||||
s2 = 3 * s;
|
||||
verts = [
|
||||
[0,0,-s2*sqrt(2)/2],
|
||||
each down(s/2, p=path3d(square(s,center=true))),
|
||||
each zrot(45, p=path3d(square(s2,center=true))),
|
||||
each up(s/2, p=path3d(square(s,center=true))),
|
||||
[0,0,s2*sqrt(2)/2]
|
||||
];
|
||||
faces = [
|
||||
[0,2,1], [0,3,2], [0,4,3], [0,1,4],
|
||||
[1,2,6], [1,6,9], [6,10,9], [2,10,6],
|
||||
[1,5,4], [1,9,5], [9,12,5], [5,12,4],
|
||||
[4,8,3], [4,12,8], [12,11,8], [11,3,8],
|
||||
[2,3,7], [3,11,7], [7,11,10], [2,7,10],
|
||||
[9,10,13], [10,11,13], [11,12,13], [12,9,13]
|
||||
];
|
||||
vnf = [verts, faces];
|
||||
attachable(anchor,spin,orient, vnf=vnf, extents=false) {
|
||||
vnf_polyhedron(vnf);
|
||||
children();
|
||||
}
|
||||
}
|
||||
stellate_cube() show_anchors(50);
|
||||
```
|
||||
|
||||
|
||||
## Making Named Anchors
|
||||
|
|
Loading…
Reference in a new issue