Merge pull request #708 from revarbat/revarbat_dev

Anchor calculation fixes.  Added wedge() and make right_triangle() 2D.
This commit is contained in:
Revar Desmera 2021-10-26 01:26:33 -07:00 committed by GitHub
commit b66b964188
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 187 additions and 83 deletions

View file

@ -753,6 +753,8 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
// attachable(anchor, spin, two_d=true, r=|d=, ...) {...} // attachable(anchor, spin, two_d=true, r=|d=, ...) {...}
// Usage: 2D Path/Polygon Geometry // Usage: 2D Path/Polygon Geometry
// attachable(anchor, spin, two_d=true, path=, [extent=], ...) {...} // attachable(anchor, spin, two_d=true, path=, [extent=], ...) {...}
// Usage: 2D Region Geometry
// attachable(anchor, spin, two_d=true, region=, [extent=], ...) {...}
// Usage: Cubical/Prismoidal Geometry // Usage: Cubical/Prismoidal Geometry
// attachable(anchor, spin, [orient], size=, [size2=], [shift=], ...) {...} // attachable(anchor, spin, [orient], size=, [size2=], [shift=], ...) {...}
// Usage: Cylindrical Geometry // Usage: Cylindrical Geometry
@ -763,6 +765,8 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
// attachable(anchor, spin, [orient], r=|d=, ...) {...} // attachable(anchor, spin, [orient], r=|d=, ...) {...}
// Usage: Extruded Path/Polygon Geometry // Usage: Extruded Path/Polygon Geometry
// attachable(anchor, spin, path=, l=|h=, [extent=], ...) {...} // attachable(anchor, spin, path=, l=|h=, [extent=], ...) {...}
// Usage: Extruded Region Geometry
// attachable(anchor, spin, region=, l=|h=, [extent=], ...) {...}
// Usage: VNF Geometry // Usage: VNF Geometry
// attachable(anchor, spin, [orient], vnf=, [extent=], ...) {...} // attachable(anchor, spin, [orient], vnf=, [extent=], ...) {...}
// //
@ -815,6 +819,7 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) {
// l/h = Length of the cylindrical, conical, or extruded path volume along axis. // l/h = Length of the cylindrical, conical, or extruded path volume along axis.
// vnf = The [VNF](vnf.scad) of the volume. // vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from. // path = The path to generate a polygon from.
// region = The region to generate a shape from.
// extent = If true, calculate anchors by extents, rather than intersection, for VNFs and paths. Default: true. // extent = If true, calculate anchors by extents, rather than intersection, for VNFs and paths. Default: true.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]` // cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint. // offset = If given, offsets the perimeter of the volume around the centerpoint.
@ -953,7 +958,7 @@ module attachable(
anchor, spin, orient, anchor, spin, orient,
size, size2, shift, size, size2, shift,
r,r1,r2, d,d1,d2, l,h, r,r1,r2, d,d1,d2, l,h,
vnf, path, vnf, path, region,
extent=true, extent=true,
cp=[0,0,0], cp=[0,0,0],
offset=[0,0,0], offset=[0,0,0],
@ -969,11 +974,14 @@ module attachable(
anchor = default(anchor, CENTER); anchor = default(anchor, CENTER);
spin = default(spin, 0); spin = default(spin, 0);
orient = default(orient, UP); orient = default(orient, UP);
region = !is_undef(region)? region :
!is_undef(path)? [path] :
undef;
geom = _attach_geom( geom = _attach_geom(
size=size, size2=size2, shift=shift, size=size, size2=size2, shift=shift,
r=r, r1=r1, r2=r2, h=h, r=r, r1=r1, r2=r2, h=h,
d=d, d1=d1, d2=d2, l=l, d=d, d1=d1, d2=d2, l=l,
vnf=vnf, path=path, extent=extent, vnf=vnf, region=region, extent=extent,
cp=cp, offset=offset, anchors=anchors, cp=cp, offset=offset, anchors=anchors,
two_d=two_d, axis=axis two_d=two_d, axis=axis
); );
@ -1029,6 +1037,9 @@ function named_anchor(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient
// Usage: 2D Path/Polygon Geometry // Usage: 2D Path/Polygon Geometry
// mat = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], ...); // mat = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], p=, ...); // pts = reorient(anchor, spin, [orient], two_d=true, path=, [extent=], p=, ...);
// Usage: 2D Region/Polygon Geometry
// mat = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], two_d=true, region=, [extent=], p=, ...);
// Usage: Cubical/Prismoidal Geometry // Usage: Cubical/Prismoidal Geometry
// mat = reorient(anchor, spin, [orient], size=, [size2=], [shift=], ...); // mat = reorient(anchor, spin, [orient], size=, [size2=], [shift=], ...);
// pts = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...); // pts = reorient(anchor, spin, [orient], size=, [size2=], [shift=], p=, ...);
@ -1044,6 +1055,9 @@ function named_anchor(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient
// Usage: Extruded Path/Polygon Geometry // Usage: Extruded Path/Polygon Geometry
// mat = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], ...); // mat = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], p=, ...); // pts = reorient(anchor, spin, [orient], path=, l=|h=, [extent=], p=, ...);
// Usage: Extruded Region Geometry
// mat = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], ...);
// pts = reorient(anchor, spin, [orient], region=, l=|h=, [extent=], p=, ...);
// Usage: VNF Geometry // Usage: VNF Geometry
// mat = reorient(anchor, spin, [orient], vnf, [extent], ...); // mat = reorient(anchor, spin, [orient], vnf, [extent], ...);
// pts = reorient(anchor, spin, [orient], vnf, [extent], p=, ...); // pts = reorient(anchor, spin, [orient], vnf, [extent], p=, ...);
@ -1092,6 +1106,7 @@ function named_anchor(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient
// l/h = Length of the cylindrical, conical, or extruded path volume along axis. // l/h = Length of the cylindrical, conical, or extruded path volume along axis.
// vnf = The [VNF](vnf.scad) of the volume. // vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from. // path = The path to generate a polygon from.
// region = The region to generate a shape from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: false. // extent = If true, calculate anchors by extents, rather than intersection. Default: false.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]` // cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint. // offset = If given, offsets the perimeter of the volume around the centerpoint.
@ -1103,7 +1118,7 @@ function reorient(
anchor, spin, orient, anchor, spin, orient,
size, size2, shift, size, size2, shift,
r,r1,r2, d,d1,d2, l,h, r,r1,r2, d,d1,d2, l,h,
vnf, path, vnf, path, region,
extent=true, extent=true,
offset=[0,0,0], offset=[0,0,0],
cp=[0,0,0], cp=[0,0,0],
@ -1118,14 +1133,17 @@ function reorient(
let( let(
anchor = default(anchor, CENTER), anchor = default(anchor, CENTER),
spin = default(spin, 0), spin = default(spin, 0),
orient = default(orient, UP) orient = default(orient, UP),
region = !is_undef(region)? region :
!is_undef(path)? [path] :
undef
) )
(anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let( (anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let(
geom = _attach_geom( geom = _attach_geom(
size=size, size2=size2, shift=shift, size=size, size2=size2, shift=shift,
r=r, r1=r1, r2=r2, h=h, r=r, r1=r1, r2=r2, h=h,
d=d, d1=d1, d2=d2, l=l, d=d, d1=d1, d2=d2, l=l,
vnf=vnf, path=path, extent=extent, vnf=vnf, region=region, extent=extent,
cp=cp, offset=offset, anchors=anchors, cp=cp, offset=offset, anchors=anchors,
two_d=two_d, axis=axis two_d=two_d, axis=axis
), ),
@ -1145,8 +1163,8 @@ function reorient(
// geom = _attach_geom(two_d=true, size=, [size2=], [shift=], ...); // geom = _attach_geom(two_d=true, size=, [size2=], [shift=], ...);
// Usage: Circle/Oval Geometry // Usage: Circle/Oval Geometry
// geom = _attach_geom(two_d=true, r=|d=, ...); // geom = _attach_geom(two_d=true, r=|d=, ...);
// Usage: 2D Path/Polygon Geometry // Usage: 2D Path/Polygon/Region Geometry
// geom = _attach_geom(two_d=true, path=, [extent=], ...); // geom = _attach_geom(two_d=true, region=, [extent=], ...);
// Usage: Cubical/Prismoidal Geometry // Usage: Cubical/Prismoidal Geometry
// geom = _attach_geom(size=, [size2=], [shift=], ...); // geom = _attach_geom(size=, [size2=], [shift=], ...);
// Usage: Cylindrical Geometry // Usage: Cylindrical Geometry
@ -1155,8 +1173,8 @@ function reorient(
// geom = _attach_geom(r1|d1=, r2=|d2=, l=, [axis=], ...); // geom = _attach_geom(r1|d1=, r2=|d2=, l=, [axis=], ...);
// Usage: Spheroid/Ovoid Geometry // Usage: Spheroid/Ovoid Geometry
// geom = _attach_geom(r=|d=, ...); // geom = _attach_geom(r=|d=, ...);
// Usage: Extruded 2D Path/Polygon Geometry // Usage: Extruded 2D Path/Polygon/Region Geometry
// geom = _attach_geom(path=, l=|h=, [extent=], ...); // geom = _attach_geom(region=, l=|h=, [extent=], ...);
// Usage: VNF Geometry // Usage: VNF Geometry
// geom = _attach_geom(vnf=, [extent=], ...); // geom = _attach_geom(vnf=, [extent=], ...);
// //
@ -1178,9 +1196,9 @@ function reorient(
// r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis.
// d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis.
// d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis.
// l/h = Length of the cylindrical, conical or extruded path volume along axis. // l/h = Length of the cylindrical, conical or extruded region volume along axis.
// vnf = The [VNF](vnf.scad) of the volume. // vnf = The [VNF](vnf.scad) of the volume.
// path = The path to generate a polygon from. // region = The region to generate a shape from.
// extent = If true, calculate anchors by extents, rather than intersection. Default: true. // extent = If true, calculate anchors by extents, rather than intersection. Default: true.
// cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]` // cp = If given, specifies the centerpoint of the volume. Default: `[0,0,0]`
// offset = If given, offsets the perimeter of the volume around the centerpoint. // offset = If given, offsets the perimeter of the volume around the centerpoint.
@ -1239,22 +1257,22 @@ function reorient(
// Example(NORENDER): 2D Oval Shape // Example(NORENDER): 2D Oval Shape
// geom = _attach_geom(two_d=true, r=[r_x, r_y]); // geom = _attach_geom(two_d=true, r=[r_x, r_y]);
// //
// Example(NORENDER): Arbitrary 2D Polygon Shape, Anchored by Extents // Example(NORENDER): Arbitrary 2D Region Shape, Anchored by Extents
// geom = _attach_geom(two_d=true, path=path); // geom = _attach_geom(two_d=true, region=region);
// //
// Example(NORENDER): Arbitrary 2D Polygon Shape, Anchored by Intersection // Example(NORENDER): Arbitrary 2D Region Shape, Anchored by Intersection
// geom = _attach_geom(two_d=true, path=path, extent=false); // geom = _attach_geom(two_d=true, region=region, extent=false);
// //
// Example(NORENDER): Extruded Polygon Shape, Anchored by Extents // Example(NORENDER): Extruded Region, Anchored by Extents
// geom = _attach_geom(path=path, l=height); // geom = _attach_geom(region=region, l=height);
// //
// Example(NORENDER): Extruded Polygon Shape, Anchored by Intersection // Example(NORENDER): Extruded Region, Anchored by Intersection
// geom = _attach_geom(path=path, l=length, extent=false); // geom = _attach_geom(region=region, l=length, extent=false);
// //
function _attach_geom( function _attach_geom(
size, size2, shift, size, size2, shift,
r,r1,r2, d,d1,d2, l,h, r,r1,r2, d,d1,d2, l,h,
vnf, path, vnf, region,
extent=true, extent=true,
cp=[0,0,0], cp=[0,0,0],
offset=[0,0,0], offset=[0,0,0],
@ -1293,18 +1311,18 @@ function _attach_geom(
assert(two_d == false) assert(two_d == false)
extent? ["vnf_extent", vnf, cp, offset, anchors] : extent? ["vnf_extent", vnf, cp, offset, anchors] :
["vnf_isect", vnf, cp, offset, anchors] ["vnf_isect", vnf, cp, offset, anchors]
) : !is_undef(path)? ( ) : !is_undef(region)? (
assert(is_path(path),2) assert(is_region(region),2)
let( l = default(l, h) ) let( l = default(l, h) )
two_d==true two_d==true
? assert(is_undef(l)) ? assert(is_undef(l))
extent==true extent==true
? ["path_extent", path, cp, offset, anchors] ? ["rgn_extent", region, cp, offset, anchors]
: ["path_isect", path, cp, offset, anchors] : ["rgn_isect", region, cp, offset, anchors]
: assert(is_finite(l)) : assert(is_finite(l))
extent==true extent==true
? ["xpath_extent", path, l, cp, offset, anchors] ? ["xrgn_extent", region, l, cp, offset, anchors]
: ["xpath_isect", path, l, cp, offset, anchors] : ["xrgn_isect", region, l, cp, offset, anchors]
) : ) :
let( let(
r1 = get_radius(r1=r1,d1=d1,r=r,d=d,dflt=undef) r1 = get_radius(r1=r1,d1=d1,r=r,d=d,dflt=undef)
@ -1345,7 +1363,7 @@ function _attach_geom(
function _attach_geom_2d(geom) = function _attach_geom_2d(geom) =
let( type = geom[0] ) let( type = geom[0] )
type == "rect" || type == "circle" || type == "rect" || type == "circle" ||
type == "path_isect" || type == "path_extent"; type == "rgn_isect" || type == "rgn_extent";
/// Internal Function: _attach_geom_size() /// Internal Function: _attach_geom_size()
@ -1390,9 +1408,9 @@ function _attach_geom_size(geom) =
mm = pointlist_bounds(geom[1][0]), mm = pointlist_bounds(geom[1][0]),
delt = mm[1]-mm[0] delt = mm[1]-mm[0]
) delt ) delt
) : type == "xpath_isect" || type == "xpath_extent"? ( //path, l ) : type == "xrgn_isect" || type == "xrgn_extent"? ( //path, l
let( let(
mm = pointlist_bounds(geom[1]), mm = pointlist_bounds(flatten(geom[1])),
delt = mm[1]-mm[0] delt = mm[1]-mm[0]
) [delt.x, delt.y, geom[2]] ) [delt.x, delt.y, geom[2]]
) : type == "rect"? ( //size, size2 ) : type == "rect"? ( //size, size2
@ -1403,9 +1421,9 @@ function _attach_geom_size(geom) =
) : type == "circle"? ( //r ) : type == "circle"? ( //r
let( r=geom[1] ) let( r=geom[1] )
is_num(r)? [2,2]*r : v_mul([2,2],point2d(r)) is_num(r)? [2,2]*r : v_mul([2,2],point2d(r))
) : type == "path_isect" || type == "path_extent"? ( //path ) : type == "rgn_isect" || type == "rgn_extent"? ( //path
let( let(
mm = pointlist_bounds(geom[1]), mm = pointlist_bounds(flatten(geom[1])),
delt = mm[1]-mm[0] delt = mm[1]-mm[0]
) [delt.x, delt.y] ) [delt.x, delt.y]
) : ) :
@ -1495,7 +1513,7 @@ function _get_cp(geom) =
is_vector(cp) ? cp is_vector(cp) ? cp
: let( : let(
type = in_list(geom[0],["vnf_extent","vnf_isect"]) ? "vnf" type = in_list(geom[0],["vnf_extent","vnf_isect"]) ? "vnf"
: in_list(geom[0],["path_extent","path_isect"]) ? "path" : in_list(geom[0],["rgn_extent","rgn_isect"]) ? "path"
: "other" : "other"
) )
assert(type!="other", "Invalid cp value") assert(type!="other", "Invalid cp value")
@ -1548,17 +1566,17 @@ function _find_anchor(anchor, geom) =
shift=point2d(geom[3]), axis=point3d(geom[4]), shift=point2d(geom[3]), axis=point3d(geom[4]),
anch = rot(from=axis, to=UP, p=anchor), anch = rot(from=axis, to=UP, p=anchor),
h = size.z, h = size.z,
u = (anch.z+1)/2, u = (anch.z+1)/2, // u is one of 0, 0.5, or 1
axy = point2d(anch), axy = point2d(anch),
bot = point3d(v_mul(point2d(size)/2,axy),-h/2), bot = point3d(v_mul(point2d(size)/2,axy),-h/2),
top = point3d(v_mul(point2d(size2)/2,axy)+shift,h/2), top = point3d(v_mul(point2d(size2)/2,axy)+shift,h/2),
pos = point3d(cp) + lerp(bot,top,u) + offset, pos = point3d(cp) + lerp(bot,top,u) + offset,
sidevec = unit(rot(from=UP, to=top-bot, p=point3d(axy)),UP), vecs = [
vvec = anch==CENTER? UP : unit([0,0,anch.z],UP), if (anchor.x!=0) unit(rot(from=UP, to=unit([(top-bot).x,0,h]), p=[axy.x,0,0]), UP),
vec = anch==CENTER? UP : if (anchor.y!=0) unit(rot(from=UP, to=unit([0,(top-bot).y,h]), p=[0,axy.y,0]), UP),
approx(axy,[0,0])? unit(anch,UP) : if (anchor.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP)
approx(anch.z,0)? sidevec : ],
unit((sidevec+vvec)/2,UP), vec = unit(sum(vecs) / len(vecs)),
pos2 = rot(from=UP, to=axis, p=pos), pos2 = rot(from=UP, to=axis, p=pos),
vec2 = rot(from=UP, to=axis, p=vec) vec2 = rot(from=UP, to=axis, p=vec)
) [anchor, pos2, vec2, oang] ) [anchor, pos2, vec2, oang]
@ -1656,11 +1674,22 @@ function _find_anchor(anchor, geom) =
) : type == "rect"? ( //size, size2, shift ) : type == "rect"? ( //size, size2, shift
let( let(
size=geom[1], size2=geom[2], shift=geom[3], size=geom[1], size2=geom[2], shift=geom[3],
u = (anchor.y+1)/2, u = (anchor.y+1)/2, // 0<=u<=1
frpt = [size.x/2*anchor.x, -size.y/2], frpt = [size.x/2*anchor.x, -size.y/2],
bkpt = [size2/2*anchor.x+shift, size.y/2], bkpt = [size2/2*anchor.x+shift, size.y/2],
pos = point2d(cp) + lerp(frpt, bkpt, u) + offset, pos = point2d(cp) + lerp(frpt, bkpt, u) + point2d(offset),
vec = unit(rot(from=BACK, to=bkpt-frpt, p=anchor),[0,1]) svec = point3d(line_normal(bkpt,frpt)*anchor.x),
vec = anchor.y < 0? (
anchor.x == 0? FWD :
size.x == 0? unit(-[shift,size.y], FWD) :
unit((point3d(svec) + FWD) / 2, FWD)
) :
anchor.y == 0? ( anchor.x == 0? BACK : svec ) :
( // anchor.y > 0
anchor.x == 0? BACK :
size2 == 0? unit([shift,size.y], BACK) :
unit((point3d(svec) + BACK) / 2, BACK)
)
) [anchor, pos, vec, 0] ) [anchor, pos, vec, 0]
) : type == "circle"? ( //r ) : type == "circle"? ( //r
let( let(
@ -1670,12 +1699,13 @@ function _find_anchor(anchor, geom) =
pos = point2d(cp) + v_mul(r,anchor) + point2d(offset), pos = point2d(cp) + v_mul(r,anchor) + point2d(offset),
vec = unit(v_mul(r,anchor),[0,1]) vec = unit(v_mul(r,anchor),[0,1])
) [anchor, pos, vec, 0] ) [anchor, pos, vec, 0]
) : type == "path_isect"? ( //path ) : type == "rgn_isect"? ( //region
let( let(
path = move(-point2d(cp), p=geom[1]), rgn_raw = move(-point2d(cp), p=geom[1]),
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point2d(anchor), anchor = point2d(anchor),
isects = [ isects = [
for (t=triplet(path,true)) let( for (path=rgn, t=triplet(path,true)) let(
seg1 = [t[0],t[1]], seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]], seg2 = [t[1],t[2]],
isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT), isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT),
@ -1691,26 +1721,31 @@ function _find_anchor(anchor, geom) =
pos = point2d(cp) + isect[1], pos = point2d(cp) + isect[1],
vec = unit(isect[2],[0,1]) vec = unit(isect[2],[0,1])
) [anchor, pos, vec, 0] ) [anchor, pos, vec, 0]
) : type == "path_extent"? ( //path ) : type == "rgn_extent"? ( //region
let( let(
path = geom[1], rgn_raw = geom[1],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point2d(anchor), anchor = point2d(anchor),
rpath = rot(from=anchor, to=RIGHT, p=move(point2d(-cp), p=path)), m = rot(from=anchor, to=RIGHT) * move(-[cp.x, cp.y, 0]),
maxx = max(columns(rpath,0)), rpts = apply(m, flatten(rgn)),
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i], maxx = max(columns(rpts,0)),
miny = min([for (i=idxs) rpath[i].y]), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
maxy = max([for (i=idxs) rpath[i].y]), miny = min([for (i=idxs) rpts[i].y]),
avgy = (miny+maxy)/2, maxy = max([for (i=idxs) rpts[i].y]),
pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,avgy]) midy = (miny+maxy)/2,
pos = point2d(cp) + rot(from=RIGHT, to=anchor, p=[maxx,midy])
) [anchor, pos, anchor, 0] ) [anchor, pos, anchor, 0]
) : type == "xpath_isect"? ( //path ) : type == "xrgn_isect"? ( //region
let( let(
path = move(-point2d(cp), p=geom[1]), rgn_raw = move(-point2d(cp), p=geom[1]),
l = geom[2], l = geom[2],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point3d(anchor), anchor = point3d(anchor),
xyanch = point2d(anchor), xyanch = point2d(anchor)
) approx(xyanch,[0,0])? [anchor, [0,0,anchor.z*l/2], unit(anchor,UP), 0] :
let(
isects = [ isects = [
for (t=triplet(path,true)) let( for (path=rgn, t=triplet(path,true)) let(
seg1 = [t[0],t[1]], seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]], seg2 = [t[1],t[2]],
isect = line_intersection([[0,0],xyanch], seg1, RAY, SEGMENT), isect = line_intersection([[0,0],xyanch], seg1, RAY, SEGMENT),
@ -1726,22 +1761,30 @@ function _find_anchor(anchor, geom) =
isect = isects[maxidx], isect = isects[maxidx],
pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2, pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2,
xyvec = unit(isect[2],[0,1]), xyvec = unit(isect[2],[0,1]),
vec = unit((point3d(xyvec)+UP)/2,UP), vec = unit((point3d(xyvec)+UP*anchor.z)/2,UP),
oang = approx(xyvec, [0,0])? 0 : atan2(xyvec.y, xyvec.x) + 90 oang = approx(xyvec, [0,0])? 0 : atan2(xyvec.y, xyvec.x) + 90
) [anchor, pos, vec, oang] ) [anchor, pos, vec, oang]
) : type == "xpath_extent"? ( //path ) : type == "xrgn_extent"? ( //region
let( let(
path = geom[1], l = geom[2], rgn_raw = geom[1], l = geom[2],
rgn = is_region(rgn_raw)? rgn_raw : [rgn_raw],
anchor = point3d(anchor), anchor = point3d(anchor),
xyanch = point2d(anchor), xyanch = point2d(anchor),
rpath = rot(from=xyanch, to=RIGHT, p=move(point2d(-cp), p=path)), m = (
maxx = max(columns(rpath,0)), approx(xyanch,[0,0])? [[1,0,0],[0,1,0],[0,0,1]] :
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i], rot(from=xyanch, to=RIGHT, planar=true)
ys = [for (i=idxs) rpath[i].y], ) * move(-[cp.x, cp.y]),
avgy = (min(ys)+max(ys))/2, rpts = apply(m, flatten(rgn)),
xypos = point2d(cp) + rot(from=RIGHT, to=xyanch, p=[maxx,avgy]), maxx = max(columns(rpts,0)),
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
ys = [for (i=idxs) rpts[i].y],
midy = (min(ys)+max(ys))/2,
xypos = point2d(cp) + (
approx(xyanch,[0,0])? [0,0] :
rot(from=RIGHT, to=xyanch, p=[maxx,midy])
),
pos = point3d(xypos) + unit([0,0,anchor.z],CENTER)*l/2, pos = point3d(xypos) + unit([0,0,anchor.z],CENTER)*l/2,
vec = unit((point3d(xyanch)+UP)/2,UP) vec = unit((point3d(xyanch)+UP*anchor.z)/2,UP)
) [anchor, pos, vec, oang] ) [anchor, pos, vec, oang]
) : ) :
assert(false, "Unknown attachment geometry type."); assert(false, "Unknown attachment geometry type.");

View file

@ -602,6 +602,50 @@ module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip,
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
// Function&Module right_triangle()
// Usage: As Module
// right_triangle(size, [center], ...);
// Usage: With Attachments
// right_triangle(size, [center], ...) { attachments }
// Usage: As Function
// path = right_triangle(size, [center], ...);
// Description:
// Creates a right triangle with the Hypotenuse in the X+Y+ quadrant.
// Arguments:
// size = The width and length of the right triangle, given as a scalar or an XY vector.
// center = If true, forces `anchor=CENTER`. If false, forces `anchor=[-1,-1]`. Default: undef (use `anchor=`)
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example:
// right_triangle([40,30]);
// Example: With `center=true`
// right_triangle([40,30], center=true);
// Example: Anchors
// right_triangle([40,30])
// show_anchors();
function right_triangle(size=[1,1], center, anchor, spin=0) =
let(
size = is_num(size)? [size,size] : size,
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1])
)
assert(is_vector(size,2))
let(
path = [ [size.x/2,-size.y/2], [-size.x/2,-size.y/2], [-size.x/2,size.y/2] ]
) reorient(anchor,spin, two_d=true, size=[size.x,size.y], size2=0, shift=-size.x/2, p=path);
module right_triangle(size=[1,1], center, anchor, spin=0) {
size = is_num(size)? [size,size] : size;
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]);
assert(is_vector(size,2));
path = right_triangle(size, center=true);
attachable(anchor,spin, two_d=true, size=[size.x,size.y], size2=0, shift=-size.x/2) {
polygon(path);
children();
}
}
// Function&Module: trapezoid() // Function&Module: trapezoid()
// Usage: As Module // Usage: As Module
// trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...); // trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...);

View file

@ -872,13 +872,18 @@ function rect_tube(
) = no_function("rect_tube"); ) = no_function("rect_tube");
// Module: right_triangle() // Function&Module: wedge()
// //
// Usage: // Usage: As Module
// right_triangle(size, [center]); // wedge(size, [center], ...);
// Usage: With Attachments
// wedge(size, [center], ...) { attachments }
// Usage: As Function
// vnf = wedge(size, [center], ...);
// //
// Description: // Description:
// Creates a 3D right triangular prism with the hypotenuse in the X+Y+ quadrant. // When called as a modulem creates a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant.
// When called as a function creates a VNF for a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant.
// //
// Arguments: // Arguments:
// size = [width, thickness, height] // size = [width, thickness, height]
@ -889,28 +894,40 @@ function rect_tube(
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// //
// Example: Centered // Example: Centered
// right_triangle([60, 40, 10], center=true); // wedge([20, 40, 15], center=true);
// Example: *Non*-Centered // Example: *Non*-Centered
// right_triangle([60, 40, 10]); // wedge([20, 40, 15]);
// Example: Standard Connectors // Example: Standard Connectors
// right_triangle([60, 40, 15]) show_anchors(); // wedge([20, 40, 15]) show_anchors();
module right_triangle(size=[1, 1, 1], center, anchor, spin=0, orient=UP) module wedge(size=[1, 1, 1], center, anchor, spin=0, orient=UP)
{ {
size = scalar_vec3(size); size = scalar_vec3(size);
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG); anchor = get_anchor(anchor, center, ALLNEG, ALLNEG);
attachable(anchor,spin,orient, size=size) { vnf = wedge(size, center=true);
attachable(anchor,spin,orient, size=size, size2=[size.x,0], shift=[0,-size.y/2]) {
if (size.z > 0) { if (size.z > 0) {
linear_extrude(height=size.z, convexity=2, center=true) { vnf_polyhedron(vnf);
polygon([[-size.x/2,-size.y/2], [-size.x/2,size.y/2], [size.x/2,-size.y/2]]);
}
} }
children(); children();
} }
} }
function right_triangle(size=[1,1,1], center, anchor, spin=0, orient=UP) = function wedge(size=[1,1,1], center, anchor, spin=0, orient=UP) =
no_function("right_triangle"); let(
size = scalar_vec3(size),
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG),
pts = [
[ 1,1,-1], [ 1,-1,-1], [ 1,-1,1],
[-1,1,-1], [-1,-1,-1], [-1,-1,1],
],
faces = [
[0,1,2], [3,5,4], [0,3,1], [1,3,4],
[1,4,2], [2,4,5], [2,5,3], [0,2,3],
],
vnf = [scale(size/2,p=pts), faces]
)
reorient(anchor,spin,orient, size=size, size2=[size.x,0], shift=[0,-size.y/2], p=vnf);
// Section: Cylinders // Section: Cylinders
@ -1529,7 +1546,7 @@ module pie_slice(
// vnf_polyhedron(vnf); // vnf_polyhedron(vnf);
module sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) { module sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) {
r = get_radius(r=r, d=d, dflt=1); r = get_radius(r=r, d=d, dflt=1);
if (!circum && style=="orig") { if (!circum && style=="orig" && is_num(r)) {
attachable(anchor,spin,orient, r=r) { attachable(anchor,spin,orient, r=r) {
_sphere(r=r); _sphere(r=r);
children(); children();