skin.scad docs fixes.

This commit is contained in:
Garth Minette 2021-02-20 22:47:50 -08:00
parent 4a42da2159
commit e3369b6b6e

View file

@ -784,14 +784,14 @@ function _find_one_tangent(curve, edge, curve_offset=[0,0,0], closed=true) =
// sq = regular_ngon(4,side=2); // sq = regular_ngon(4,side=2);
// hex = apply(rot(60),hexagon(side=2)); // hex = apply(rot(60),hexagon(side=2));
// skin(associate_vertices([sq,hex],[[0,0]]), slices=10, refine=10, sampling="segment", z=[0,4]); // skin(associate_vertices([sq,hex],[[0,0]]), slices=10, refine=10, sampling="segment", z=[0,4]);
// Example: This example shows several polygons, with only a single vertex split at each step: // Example(3D): This example shows several polygons, with only a single vertex split at each step:
// sq = regular_ngon(4,side=2); // sq = regular_ngon(4,side=2);
// pent = pentagon(side=2); // pent = pentagon(side=2);
// hex = hexagon(side=2); // hex = hexagon(side=2);
// sep = regular_ngon(7,side=2); // sep = regular_ngon(7,side=2);
// profiles = associate_vertices([sq,pent,hex,sep], [1,3,4]); // profiles = associate_vertices([sq,pent,hex,sep], [1,3,4]);
// skin(profiles ,slices=10, refine=10, method="distance", z=[0,2,4,6]); // skin(profiles ,slices=10, refine=10, method="distance", z=[0,2,4,6]);
// Example: The polygons cannot shrink, so if you want to have decreasing polygons you'll need to concatenate multiple results. Note that it is perfectly ok to duplicate a profile as shown here, where the pentagon is duplicated: // Example(3D): The polygons cannot shrink, so if you want to have decreasing polygons you'll need to concatenate multiple results. Note that it is perfectly ok to duplicate a profile as shown here, where the pentagon is duplicated:
// sq = regular_ngon(4,side=2); // sq = regular_ngon(4,side=2);
// pent = pentagon(side=2); // pent = pentagon(side=2);
// grow = associate_vertices([sq,pent], [1]); // grow = associate_vertices([sq,pent], [1]);
@ -1168,7 +1168,7 @@ module sweep(shape, transforms, closed=false, caps, convexity=10,
// points = 50; // points per loop // points = 50; // points per loop
// R = 400; r = 150; // Torus size // R = 400; r = 150; // Torus size
// p = 2; q = 5; // Knot parameters // p = 2; q = 5; // Knot parameters
// %torus(r=R,r2=r); // %torus(r_maj=R,r_min=r);
// k = max(p,q) / gcd(p,q) * points; // k = max(p,q) / gcd(p,q) * points;
// knot_path = [ for (i=[0:k-1]) knot(360*i/k/gcd(p,q),R,r,p,q) ]; // knot_path = [ for (i=[0:k-1]) knot(360*i/k/gcd(p,q),R,r,p,q) ];
// path_sweep(rot(90,p=ushape),knot_path, method="natural", closed=true); // path_sweep(rot(90,p=ushape),knot_path, method="natural", closed=true);
@ -1185,7 +1185,7 @@ module sweep(shape, transforms, closed=false, caps, convexity=10,
// points = 50; // points per loop // points = 50; // points per loop
// R = 400; r = 150; // Torus size // R = 400; r = 150; // Torus size
// p = 2; q = 5; // Knot parameters // p = 2; q = 5; // Knot parameters
// %torus(r=R,r2=r); // %torus(r_maj=R,r_min=r);
// k = max(p,q) / gcd(p,q) * points; // k = max(p,q) / gcd(p,q) * points;
// knot_path = [ for (i=[0:k-1]) knot(360*i/k/gcd(p,q),R,r,p,q) ]; // knot_path = [ for (i=[0:k-1]) knot(360*i/k/gcd(p,q),R,r,p,q) ];
// normals = [ for (i=[0:k-1]) knot_normal(360*i/k/gcd(p,q),R,r,p,q) ]; // normals = [ for (i=[0:k-1]) knot_normal(360*i/k/gcd(p,q),R,r,p,q) ];