Merge branch 'master' of github.com:revarbat/BOSL2 into revarbat_dev

This commit is contained in:
Garth Minette 2020-08-16 23:10:50 -07:00
commit fe4e46a9cc
6 changed files with 270 additions and 289 deletions

View file

@ -18,20 +18,6 @@
// Section: List Query Operations // Section: List Query Operations
// Function: is_simple_list()
// Description:
// Returns true just when all elements of `list` are simple values.
// Usage:
// is_simple_list(list)
// Arguments:
// list = The list to check.
// Example:
// a = is_simple_list([3,4,5,6,7,8,9]); Returns: true
// b = is_simple_list([3,4,5,[6],7,8]); Returns: false
function is_simple_list(list) =
is_list(list)
&& []==[for(e=list) if(is_list(e)) 0];
// Function: select() // Function: select()
// Description: // Description:
@ -73,9 +59,6 @@ function select(list, start, end=undef) =
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ; : concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
// Function: slice() // Function: slice()
// Description: // Description:
// Returns a slice of a list. The first item is index 0. // Returns a slice of a list. The first item is index 0.
@ -101,26 +84,25 @@ function slice(list,start,end) =
) [for (i=[s:1:e-1]) if (e>s) list[i]]; ) [for (i=[s:1:e-1]) if (e>s) list[i]];
// Function: in_list() // Function: in_list()
// Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list. // Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
// Arguments: // Arguments:
// val = The simple value to search for. // val = The simple value to search for.
// list = The list to search. // list = The list to search.
// idx = If given, searches the given subindexes for matches for `val`. // idx = If given, searches the given subindex for matches for `val`.
// Example: // Example:
// in_list("bar", ["foo", "bar", "baz"]); // Returns true. // in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// in_list("bee", ["foo", "bar", "baz"]); // Returns false. // in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true. // in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
function in_list(val,list,idx=undef) = function in_list(val,list,idx=undef) =
assert( is_list(list) && (is_undef(idx) || is_finite(idx)),
"Invalid input." )
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] ) let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
s==[] || s[0]==[] ? false s==[] || s==[[]] ? false
: is_undef(idx) ? val==list[s] : is_undef(idx) ? val==list[s]
: val==list[s][idx]; : val==list[s][idx];
// Function: min_index() // Function: min_index()
// Usage: // Usage:
// min_index(vals,[all]); // min_index(vals,[all]);
@ -209,7 +191,6 @@ function repeat(val, n, i=0) =
[for (j=[1:1:n[i]]) repeat(val, n, i+1)]; [for (j=[1:1:n[i]]) repeat(val, n, i+1)];
// Function: list_range() // Function: list_range()
// Usage: // Usage:
// list_range(n, [s], [e]) // list_range(n, [s], [e])
@ -249,7 +230,6 @@ function list_range(n=undef, s=0, e=undef, step=undef) =
// Section: List Manipulation // Section: List Manipulation
// Function: reverse() // Function: reverse()
@ -315,8 +295,6 @@ function deduplicate(list, closed=false, eps=EPSILON) =
: [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]]; : [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]];
// Function: deduplicate_indexed() // Function: deduplicate_indexed()
// Usage: // Usage:
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]); // new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
@ -351,8 +329,6 @@ function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) =
]; ];
// Function: repeat_entries() // Function: repeat_entries()
// Usage: // Usage:
// newlist = repeat_entries(list, N) // newlist = repeat_entries(list, N)
@ -392,8 +368,6 @@ function repeat_entries(list, N, exact = true) =
[for(i=[0:length-1]) each repeat(list[i],reps[i])]; [for(i=[0:length-1]) each repeat(list[i],reps[i])];
// Function: list_set() // Function: list_set()
// Usage: // Usage:
// list_set(list, indices, values, [dflt], [minlen]) // list_set(list, indices, values, [dflt], [minlen])
@ -433,7 +407,6 @@ function list_set(list=[],indices,values,dflt=0,minlen=0) =
]; ];
// Function: list_insert() // Function: list_insert()
// Usage: // Usage:
// list_insert(list, indices, values); // list_insert(list, indices, values);
@ -465,8 +438,6 @@ function list_insert(list, indices, values, _i=0) =
]; ];
// Function: list_remove() // Function: list_remove()
// Usage: // Usage:
// list_remove(list, indices) // list_remove(list, indices)
@ -494,8 +465,6 @@ function list_remove(list, indices) =
]; ];
// Function: list_remove_values() // Function: list_remove_values()
// Usage: // Usage:
// list_remove_values(list,values,all=false) = // list_remove_values(list,values,all=false) =
@ -565,8 +534,6 @@ function list_bset(indexset, valuelist, dflt=0) =
); );
// Section: List Length Manipulation // Section: List Length Manipulation
// Function: list_shortest() // Function: list_shortest()
@ -579,7 +546,6 @@ function list_shortest(array) =
min([for (v = array) len(v)]); min([for (v = array) len(v)]);
// Function: list_longest() // Function: list_longest()
// Description: // Description:
// Returns the length of the longest sublist in a list of lists. // Returns the length of the longest sublist in a list of lists.
@ -629,7 +595,6 @@ function list_fit(array, length, fill) =
: list_pad(array,length,fill); : list_pad(array,length,fill);
// Section: List Shuffling and Sorting // Section: List Shuffling and Sorting
// Function: shuffle() // Function: shuffle()
@ -684,6 +649,7 @@ function _sort_vectors2(arr) =
) )
concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) ); concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) );
// Sort a vector of vectors based on the first three entries of each vector // Sort a vector of vectors based on the first three entries of each vector
// Lexicographic order, remaining entries of vector ignored // Lexicographic order, remaining entries of vector ignored
function _sort_vectors3(arr) = function _sort_vectors3(arr) =
@ -711,7 +677,6 @@ function _sort_vectors3(arr) =
) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) ); ) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) );
// Sort a vector of vectors based on the first four entries of each vector // Sort a vector of vectors based on the first four entries of each vector
// Lexicographic order, remaining entries of vector ignored // Lexicographic order, remaining entries of vector ignored
function _sort_vectors4(arr) = function _sort_vectors4(arr) =
@ -744,42 +709,35 @@ function _sort_vectors4(arr) =
) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) ); ) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) );
// when idx==undef, returns the sorted array
// otherwise, returns the indices of the sorted array
function _sort_general(arr, idx=undef) = function _sort_general(arr, idx=undef) =
(len(arr)<=1) ? arr : (len(arr)<=1) ? arr :
is_undef(idx)
? _sort_scalar(arr)
: let( arrind=[for(k=[0:len(arr)-1], ark=[arr[k]]) [ k, [for (i=idx) ark[i]] ] ] )
_indexed_sort(arrind);
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
// the sorting is done using compare_vals()
function _indexed_sort(arrind) =
arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] :
let( pivot = arrind[floor(len(arrind)/2)][1] )
let( let(
pivot = arr[floor(len(arr)/2)], lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ],
pivotval = idx==undef? pivot : [for (i=idx) pivot[i]], equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ],
compare = greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ]
is_undef(idx) ? [for(entry=arr) compare_vals(entry, pivotval) ] : )
[ for (entry = arr) concat(_indexed_sort(lesser), equal, _indexed_sort(greater));
let( val = [for (i=idx) entry[i] ] )
compare_vals(val, pivotval) ] ,
lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ],
equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ],
greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ]
)
concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx));
function _sort_general(arr, idx=undef) =
(len(arr)<=1) ? arr :
let(
pivot = arr[floor(len(arr)/2)],
pivotval = idx==undef? pivot : [for (i=idx) pivot[i]],
compare = [
for (entry = arr) let(
val = idx==undef? entry : [for (i=idx) entry[i]],
cmp = compare_vals(val, pivotval)
) cmp
],
lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ],
equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ],
greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ]
)
concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx));
// returns true for valid index specifications idx in the interval [imin, imax)
// note that idx can't have any value greater or EQUAL to imax
function _valid_idx(idx,imin,imax) =
is_undef(idx)
|| ( is_finite(idx) && idx>=imin && idx< imax )
|| ( is_list(idx) && min(idx)>=imin && max(idx)< imax )
|| ( valid_range(idx) && idx[0]>=imin && idx[2]< imax );
// Function: sort() // Function: sort()
@ -799,20 +757,21 @@ function _sort_general(arr, idx=undef) =
// sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89] // sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89]
function sort(list, idx=undef) = function sort(list, idx=undef) =
!is_list(list) || len(list)<=1 ? list : !is_list(list) || len(list)<=1 ? list :
assert( is_undef(idx) || is_finite(idx) || is_vector(idx) || is_range(idx) , "Invalid indices.") is_def(idx)
is_def(idx) ? _sort_general(list,idx) : ? assert( _valid_idx(idx,0,len(list)) , "Invalid indices.")
let(size = array_dim(list)) let( sarr = _sort_general(list,idx) )
len(size)==1 ? _sort_scalars(list) : [for(i=[0:len(sarr)-1]) list[sarr[i]] ]
len(size)==2 && size[1] <=4 : let(size = array_dim(list))
? ( len(size)==1 ? _sort_scalars(list) :
size[1]==0 ? list : len(size)==2 && size[1] <=4
size[1]==1 ? _sort_vectors1(list) : ? (
size[1]==2 ? _sort_vectors2(list) : size[1]==0 ? list :
size[1]==3 ? _sort_vectors3(list) size[1]==1 ? _sort_vectors1(list) :
/*size[1]==4*/ : _sort_vectors4(list) size[1]==2 ? _sort_vectors2(list) :
) size[1]==3 ? _sort_vectors3(list)
: _sort_general(list); /*size[1]==4*/ : _sort_vectors4(list)
)
: _sort_general(list);
// Function: sortidx() // Function: sortidx()
@ -838,13 +797,13 @@ function sort(list, idx=undef) =
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1] // idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
function sortidx(list, idx=undef) = function sortidx(list, idx=undef) =
assert( is_list(list) || is_string(list) , "Invalid input to sort." ) assert( is_list(list) || is_string(list) , "Invalid input to sort." )
assert( is_undef(idx) || is_finite(idx) || is_vector(idx) , "Invalid indices.") assert( _valid_idx(idx,0,len(list)) , "Invalid indices.")
list==[] ? [] : list==[] ? [] :
let( let(
size = array_dim(list), size = array_dim(list),
aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4)) aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))
? zip(list, list_range(len(list))) ? zip(list, list_range(len(list)))
: enumerate(list,idx=idx) : 0
) )
is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) : is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) :
is_undef(idx) && len(size) == 2 && size[1] <=4 is_undef(idx) && len(size) == 2 && size[1] <=4
@ -856,25 +815,8 @@ function sortidx(list, idx=undef) =
/*size[1]==4*/ : subindex(_sort_vectors4(aug),4) /*size[1]==4*/ : subindex(_sort_vectors4(aug),4)
) )
: // general case : // general case
subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0); _sort_general(list,idx);
function sortidx(list, idx=undef) =
list==[] ? [] : let(
size = array_dim(list),
aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))?
zip(list, list_range(len(list))) :
enumerate(list,idx=idx)
)
is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) :
is_undef(idx) && len(size) == 2 && size[1] <=4? (
size[1]==0? list_range(len(arr)) :
size[1]==1? subindex(_sort_vectors1(aug),1) :
size[1]==2? subindex(_sort_vectors2(aug),2) :
size[1]==3? subindex(_sort_vectors3(aug),3) :
/*size[1]==4*/ subindex(_sort_vectors4(aug),4)
) :
// general case
subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0);
// sort() does not accept strings but sortidx does; isn't inconsistent ? // sort() does not accept strings but sortidx does; isn't inconsistent ?
@ -896,7 +838,6 @@ function unique(arr) =
]; ];
// Function: unique_count() // Function: unique_count()
// Usage: // Usage:
// unique_count(arr); // unique_count(arr);
@ -913,8 +854,6 @@ function unique_count(arr) =
[ select(arr,ind), deltas( concat(ind,[len(arr)]) ) ]; [ select(arr,ind), deltas( concat(ind,[len(arr)]) ) ];
// Section: List Iteration Helpers // Section: List Iteration Helpers
// Function: idx() // Function: idx()
@ -952,10 +891,10 @@ function idx(list, step=1, end=-1,start=0) =
// for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10); // for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10);
function enumerate(l,idx=undef) = function enumerate(l,idx=undef) =
assert(is_list(l)||is_string(list), "Invalid input." ) assert(is_list(l)||is_string(list), "Invalid input." )
assert(is_undef(idx)||is_finite(idx)||is_vector(idx) ||is_range(idx), "Invalid index/indices." ) assert( _valid_idx(idx,0,len(l)), "Invalid index/indices." )
(idx==undef) (idx==undef)
? [for (i=[0:1:len(l)-1]) [i,l[i]]] ? [for (i=[0:1:len(l)-1]) [i,l[i]]]
: [for (i=[0:1:len(l)-1]) concat([i], [for (j=idx) l[i][j]])]; : [for (i=[0:1:len(l)-1]) [ i, for (j=idx) l[i][j]] ];
// Function: force_list() // Function: force_list()
@ -1109,8 +1048,6 @@ function set_union(a, b, get_indices=false) =
) [idxs, nset]; ) [idxs, nset];
// Function: set_difference() // Function: set_difference()
// Usage: // Usage:
// s = set_difference(a, b); // s = set_difference(a, b);
@ -1130,7 +1067,6 @@ function set_difference(a, b) =
[ for (i=idx(a)) if(found[i]==[]) a[i] ]; [ for (i=idx(a)) if(found[i]==[]) a[i] ];
// Function: set_intersection() // Function: set_intersection()
// Usage: // Usage:
// s = set_intersection(a, b); // s = set_intersection(a, b);
@ -1151,7 +1087,6 @@ function set_intersection(a, b) =
// Section: Array Manipulation // Section: Array Manipulation
// Function: add_scalar() // Function: add_scalar()
@ -1170,14 +1105,14 @@ function add_scalar(v,s) =
is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v; is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v;
// Function: subindex() // Function: subindex()
// Usage: // Usage:
// subindex(M, idx) // subindex(M, idx)
// Description: // Description:
// Extracts the entries listed in idx from each entry in M. For a matrix this means // Extracts the entries listed in idx from each entry in M. For a matrix this means
// selecting a specified set of columsn. If idx is a number the return is a vector, otherwise // selecting a specified set of columns. If idx is a number the return is a vector,
// it is a list of lists (the submatrix). // otherwise it is a list of lists (the submatrix).
// This function will return `undef` at all entry positions indexed by idx not found in the input list M.
// Arguments: // Arguments:
// M = The given list of lists. // M = The given list of lists.
// idx = The index, list of indices, or range of indices to fetch. // idx = The index, list of indices, or range of indices to fetch.
@ -1187,11 +1122,45 @@ function add_scalar(v,s) =
// subindex(M,[2]); // Returns [[3], [7], [11], [15]] // subindex(M,[2]); // Returns [[3], [7], [11], [15]]
// subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]] // subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
// subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]] // subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
// N = [ [1,2], [3], [4,5], [6,7,8] ];
// subindex(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
function subindex(M, idx) = function subindex(M, idx) =
is_num(idx) assert( is_list(M), "The input is not a list." )
assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." )
is_finite(idx)
? [for(row=M) row[idx]] ? [for(row=M) row[idx]]
: [for(row=M) [for(i=idx) row[i]]]; : [for(row=M) [for(i=idx) row[i]]];
// Function: submatrix()
// Usage: submatrix(M, idx1, idx2)
// Description:
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columsn listed in idx2.
// Arguments:
// M = Given list of lists
// idx1 = rows index list or range
// idx2 = column index list or range
// Example:
// M = [[ 1, 2, 3, 4, 5],
// [ 6, 7, 8, 9,10],
// [11,12,13,14,15],
// [16,17,18,19,20],
// [21,22,23,24,25]];
// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]]
// submatrix(M,[1], [3,4])); // Returns [[9,10]]
// submatrix(M,1, [3,4])); // Returns [[9,10]]
// submatrix(M,1,3)); // Returns [[9]]
// submatrix(M, [3,4],1); // Returns [[17],[22]]);
// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]);
// A = [[true, 17, "test"],
// [[4,2], 91, false],
// [6, [3,4], undef]];
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
function submatrix(M,idx1,idx2) =
[for(i=idx1) [for(j=idx2) M[i][j] ] ];
// Function: zip() // Function: zip()
// Usage: // Usage:
// zip(v1, v2, v3, [fit], [fill]); // zip(v1, v2, v3, [fit], [fill]);
@ -1318,6 +1287,10 @@ function array_dim(v, depth=undef) =
// Function: transpose() // Function: transpose()
// Description: Returns the transposition of the given array. // Description: Returns the transposition of the given array.
// When reverse=true, the transposition is done in respect to the secondary diagonal, that is:
// .
// reverse(transpose(reverse(arr))) == transpose(arr, reverse=true)
// By default, reverse=false.
// Example: // Example:
// arr = [ // arr = [
// ["a", "b", "c"], // ["a", "b", "c"],
@ -1344,16 +1317,32 @@ function array_dim(v, depth=undef) =
// // ["c", "f"], // // ["c", "f"],
// // ] // // ]
// Example: // Example:
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"],
// ["g", "h", "i"]
// ];
// t = transpose(arr, reverse=true);
// // Returns:
// // [
// // ["i", "f", "c"],
// // ["h", "e", "b"],
// // ["g", "d", "a"]
// // ]
// Example:
// transpose([3,4,5]); // Returns: [3,4,5] // transpose([3,4,5]); // Returns: [3,4,5]
function transpose(arr) = function transpose(arr, reverse=false) =
let( a0 = arr[0] ) assert( is_list(arr) && len(arr)>0, "The array is not a vector neither a matrix." )
is_list(a0) is_list(arr[0])
? assert([for(a=arr) if(len(a)!=len(a0)) 1]==[], "The array is not a matrix." ) ? let( l0 = len(arr[0]) )
[for (i=[0:1:len(a0)-1]) assert([for(a=arr) if(!is_list(a) || len(a)!=l0) 1 ]==[], "The array is not a vector neither a matrix." )
[ for (j=[0:1:len(arr)-1]) arr[j][i] ] ] reverse
: arr; ? [for (i=[0:1:l0-1])
[ for (j=[0:1:len(arr)-1]) arr[len(arr)-1-j][l0-1-i] ] ]
: [for (i=[0:1:l0-1])
[ for (j=[0:1:len(arr)-1]) arr[j][i] ] ]
: assert( is_vector(arr), "The array is not a vector neither a matrix." )
arr;
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -140,7 +140,7 @@ function _list_pattern(list) =
// is_consistent(list) // is_consistent(list)
// Description: // Description:
// Tests whether input is a list of entries which all have the same list structure // Tests whether input is a list of entries which all have the same list structure
// and are filled with finite numerical data. // and are filled with finite numerical data. It returns `true`for the empty list.
// Example: // Example:
// is_consistent([3,4,5]); // Returns true // is_consistent([3,4,5]); // Returns true
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true // is_consistent([[3,4],[4,5],[6,7]]); // Returns true

195
math.scad
View file

@ -84,7 +84,7 @@ function hypot(x,y,z=0) =
// y = factorial(6); // Returns: 720 // y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880 // z = factorial(9); // Returns: 362880
function factorial(n,d=0) = function factorial(n,d=0) =
assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is not defined for negative numbers") assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers")
assert(d<=n, "d cannot be larger than n") assert(d<=n, "d cannot be larger than n")
product([1,for (i=[n:-1:d+1]) i]); product([1,for (i=[n:-1:d+1]) i]);
@ -164,7 +164,7 @@ function binomial_coefficient(n,k) =
function lerp(a,b,u) = function lerp(a,b,u) =
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp") assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
is_finite(u)? (1-u)*a + u*b : is_finite(u)? (1-u)*a + u*b :
assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or range.") assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.")
[for (v = u) (1-v)*a + v*b ]; [for (v = u) (1-v)*a + v*b ];
@ -387,12 +387,13 @@ function modang(x) =
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270] // modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90] // modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
function modrange(x, y, m, step=1) = function modrange(x, y, m, step=1) =
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers. The module value cannot be zero.") assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." )
let( let(
a = posmod(x, m), a = posmod(x, m),
b = posmod(y, m), b = posmod(y, m),
c = step>0? (a>b? b+m : b) : (a<b? b-m : b) c = step>0? (a>b? b+m : b)
) [for (i=[a:step:c]) (i%m+m)%m]; : (a<b? b-m : b)
) [for (i=[a:step:c]) (i%m+m)%m ];
@ -536,9 +537,13 @@ function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
// cumsum([2,2,2]); // returns [2,4,6] // cumsum([2,2,2]); // returns [2,4,6]
// cumsum([1,2,3]); // returns [1,3,6] // cumsum([1,2,3]); // returns [1,3,6]
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]] // cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
function cumsum(v,_i=0,_acc=[]) = function cumsum(v) =
assert(is_consistent(v), "The input is not consistent." )
_cumsum(v,_i=0,_acc=[]);
function _cumsum(v,_i=0,_acc=[]) =
_i==len(v) ? _acc : _i==len(v) ? _acc :
cumsum( _cumsum(
v, _i+1, v, _i+1,
concat( concat(
_acc, _acc,
@ -598,7 +603,7 @@ function deltas(v) =
// Description: // Description:
// Returns the product of all entries in the given list. // Returns the product of all entries in the given list.
// If passed a list of vectors of same dimension, returns a vector of products of each part. // If passed a list of vectors of same dimension, returns a vector of products of each part.
// If passed a list of square matrices, returns a the resulting product matrix. // If passed a list of square matrices, returns the resulting product matrix.
// Arguments: // Arguments:
// v = The list to get the product of. // v = The list to get the product of.
// Example: // Example:
@ -606,7 +611,7 @@ function deltas(v) =
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105] // product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
function product(v) = function product(v) =
assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)), assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)),
"Invalid input.") "Invalid input.")
_product(v, 1, v[0]); _product(v, 1, v[0]);
function _product(v, i=0, _tot) = function _product(v, i=0, _tot) =
@ -691,9 +696,11 @@ function linear_solve(A,b) =
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i] zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
) )
zeros != [] ? [] : zeros != [] ? [] :
m<n ? Q*back_substitute(R,b,transpose=true) : m<n
back_substitute(R, transpose(Q)*b); // avoiding input validation in back_substitute
? let( n = len(R) )
Q*reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
: _back_substitute(R, transpose(Q)*b);
// Function: matrix_inverse() // Function: matrix_inverse()
// Usage: // Usage:
@ -708,18 +715,6 @@ function matrix_inverse(A) =
linear_solve(A,ident(len(A))); linear_solve(A,ident(len(A)));
// Function: submatrix()
// Usage: submatrix(M, ind1, ind2)
// Description:
// Returns a submatrix with the specified index ranges or index sets.
function submatrix(M,ind1,ind2) =
assert( is_matrix(M), "Input must be a matrix." )
[for(i=ind1)
[for(j=ind2)
assert( ! is_undef(M[i][j]), "Invalid indexing." )
M[i][j] ] ];
// Function: qr_factor() // Function: qr_factor()
// Usage: qr = qr_factor(A) // Usage: qr = qr_factor(A)
// Description: // Description:
@ -732,13 +727,14 @@ function qr_factor(A) =
n = len(A[0]) n = len(A[0])
) )
let( let(
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)), qr =_qr_factor(A, Q=ident(m), column=0, m = m, n=n),
Rzero = [ Rzero =
for(i=[0:m-1]) [ let( R = qr[1] )
for(j=[0:n-1]) [ for(i=[0:m-1]) [
i>j ? 0 : qr[1][i][j] let( ri = R[i] )
for(j=[0:n-1]) i>j ? 0 : ri[j]
] ]
] ]
) [qr[0],Rzero]; ) [qr[0],Rzero];
function _qr_factor(A,Q, column, m, n) = function _qr_factor(A,Q, column, m, n) =
@ -767,13 +763,12 @@ function back_substitute(R, b, transpose = false) =
let(n=len(R)) let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b))) assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
transpose transpose
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]], ? reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
reverse(b)))
: _back_substitute(R,b); : _back_substitute(R,b);
function _back_substitute(R, b, x=[]) = function _back_substitute(R, b, x=[]) =
let(n=len(R)) let(n=len(R))
len(x) == n ? x len(x) == n ? x
: let(ind = n - len(x) - 1) : let(ind = n - len(x) - 1)
R[ind][ind] == 0 ? [] R[ind][ind] == 0 ? []
: let( : let(
@ -793,7 +788,7 @@ function _back_substitute(R, b, x=[]) =
// M = [ [6,-2], [1,8] ]; // M = [ [6,-2], [1,8] ];
// det = det2(M); // Returns: 50 // det = det2(M); // Returns: 50
function det2(M) = function det2(M) =
assert( is_matrix(M,2,2), "Matrix should be 2x2." ) assert( 0*M==[[0,0],[0,0]], "Matrix should be 2x2." )
M[0][0] * M[1][1] - M[0][1]*M[1][0]; M[0][0] * M[1][1] - M[0][1]*M[1][0];
@ -806,7 +801,7 @@ function det2(M) =
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ]; // M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
// det = det3(M); // Returns: -334 // det = det3(M); // Returns: -334
function det3(M) = function det3(M) =
assert( is_matrix(M,3,3), "Matrix should be 3x3." ) assert( 0*M==[[0,0,0],[0,0,0],[0,0,0]], "Matrix should be 3x3." )
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) - M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) + M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]); M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
@ -846,7 +841,7 @@ function determinant(M) =
// Description: // Description:
// Returns true if A is a numeric matrix of height m and width n. If m or n // Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension. // are omitted or set to undef then true is returned for any positive dimension.
// If `square` is true then the matrix is required to be square. Note if you // If `square` is true then the matrix is required to be square.
// specify m != n and require a square matrix then the result will always be false. // specify m != n and require a square matrix then the result will always be false.
// Arguments: // Arguments:
// A = matrix to test // A = matrix to test
@ -855,10 +850,10 @@ function determinant(M) =
// square = set to true to require a square matrix. Default: false // square = set to true to require a square matrix. Default: false
function is_matrix(A,m,n,square=false) = function is_matrix(A,m,n,square=false) =
is_list(A[0]) is_list(A[0])
    && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
    && (is_undef(n) || len(A[0])==n ) && (is_undef(n) || len(A[0])==n )
    && (is_undef(m) || len(A)==m ) && (is_undef(m) || len(A)==m )
    && ( !square || len(A)==len(A[0])); && ( !square || len(A)==len(A[0]));
// Section: Comparisons and Logic // Section: Comparisons and Logic
@ -948,13 +943,16 @@ function compare_lists(a, b) =
// any([1,5,true]); // Returns true. // any([1,5,true]); // Returns true.
// any([[0,0], [0,0]]); // Returns false. // any([[0,0], [0,0]]); // Returns false.
// any([[0,0], [1,0]]); // Returns true. // any([[0,0], [1,0]]); // Returns true.
function any(l, i=0, succ=false) = function any(l) =
(i>=len(l) || succ)? succ : assert(is_list(l), "The input is not a list." )
any( l, _any(l, i=0, succ=false);
i+1,
succ = is_list(l[i]) ? any(l[i]) : !(!l[i])
);
function _any(l, i=0, succ=false) =
(i>=len(l) || succ)? succ :
_any( l,
i+1,
succ = is_list(l[i]) ? _any(l[i]) : !(!l[i])
);
// Function: all() // Function: all()
@ -971,12 +969,15 @@ function any(l, i=0, succ=false) =
// all([[0,0], [1,0]]); // Returns false. // all([[0,0], [1,0]]); // Returns false.
// all([[1,1], [1,1]]); // Returns true. // all([[1,1], [1,1]]); // Returns true.
function all(l, i=0, fail=false) = function all(l, i=0, fail=false) =
(i>=len(l) || fail)? !fail : assert( is_list(l), "The input is not a list." )
all( l, _all(l, i=0, fail=false);
i+1,
fail = is_list(l[i]) ? !all(l[i]) : !l[i]
) ;
function _all(l, i=0, fail=false) =
(i>=len(l) || fail)? !fail :
_all( l,
i+1,
fail = is_list(l[i]) ? !_all(l[i]) : !l[i]
) ;
// Function: count_true() // Function: count_true()
@ -999,16 +1000,6 @@ function all(l, i=0, fail=false) =
// count_true([[0,0], [1,0]]); // Returns 1. // count_true([[0,0], [1,0]]); // Returns 1.
// count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]]); // Returns 4.
// count_true([[1,1], [1,1]], nmax=3); // Returns 3. // count_true([[1,1], [1,1]], nmax=3); // Returns 3.
function count_true(l, nmax=undef, i=0, cnt=0) =
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
count_true(
l=l, nmax=nmax, i=i+1, cnt=cnt+(
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
(l[i]? 1 : 0)
)
);
function count_true(l, nmax) = function count_true(l, nmax) =
!is_list(l) ? !(!l) ? 1: 0 : !is_list(l) ? !(!l) ? 1: 0 :
let( c = [for( i = 0, let( c = [for( i = 0,
@ -1204,12 +1195,12 @@ function C_div(z1,z2) =
// where a_n is the z^n coefficient. Polynomial coefficients are real. // where a_n is the z^n coefficient. Polynomial coefficients are real.
// The result is a number if `z` is a number and a complex number otherwise. // The result is a number if `z` is a number and a complex number otherwise.
function polynomial(p,z,k,total) = function polynomial(p,z,k,total) =
is_undef(k)     is_undef(k)
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )     ?   assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )         assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])         polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
: k==len(p) ? total     : k==len(p) ? total
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);     : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
// Function: poly_mult() // Function: poly_mult()
// Usage: // Usage:
@ -1219,35 +1210,15 @@ function polynomial(p,z,k,total) =
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first, // Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
// computes the coefficient list of the product polynomial. // computes the coefficient list of the product polynomial.
function poly_mult(p,q) = function poly_mult(p,q) =
is_undef(q) ?     is_undef(q) ?
assert( is_list(p)         len(p)==2
&& []==[for(pi=p) if( !is_vector(pi) && pi!=[]) 0], ? poly_mult(p[0],p[1])
"Invalid arguments to poly_mult")         : poly_mult(p[0], poly_mult(select(p,1,-1)))
len(p)==2 ? poly_mult(p[0],p[1])     :
: poly_mult(p[0], poly_mult(select(p,1,-1)))     assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
: p*p==0 || q*q==0
_poly_trim( ? [0]
[ : _poly_trim(convolve(p,q));
for(n = [len(p)+len(q)-2:-1:0])
sum( [for(i=[0:1:len(p)-1])
let(j = len(p)+len(q)- 2 - n - i)
if (j>=0 && j<len(q)) p[i]*q[j]
])
]);
function poly_mult(p,q) =
is_undef(q) ?
len(p)==2 ? poly_mult(p[0],p[1])
: poly_mult(p[0], poly_mult(select(p,1,-1)))
:
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
_poly_trim( [
for(n = [len(p)+len(q)-2:-1:0])
sum( [for(i=[0:1:len(p)-1])
let(j = len(p)+len(q)- 2 - n - i)
if (j>=0 && j<len(q)) p[i]*q[j]
])
]);
// Function: poly_div() // Function: poly_div()
@ -1258,19 +1229,23 @@ function poly_mult(p,q) =
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then // a list of two polynomials, [quotient, remainder]. If the division has no remainder then
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero // the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
// the returned quotient will be []. // the returned quotient will be [].
function poly_div(n,d,q) = function poly_div(n,d) =
is_undef(q) assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
? assert( is_vector(n) && is_vector(d) , "Invalid polynomials." ) let( d = _poly_trim(d),
let( d = _poly_trim(d) ) n = _poly_trim(n) )
assert( d!=[0] , "Denominator cannot be a zero polynomial." ) assert( d!=[0] , "Denominator cannot be a zero polynomial." )
poly_div(n,d,q=[]) n==[0]
: len(n)<len(d) ? [q,_poly_trim(n)] : ? [[0],[0]]
let( : _poly_div(n,d,q=[]);
t = n[0] / d[0],
newq = concat(q,[t]), function _poly_div(n,d,q) =
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]] len(n)<len(d) ? [q,_poly_trim(n)] :
) let(
poly_div(newn,d,newq); t = n[0] / d[0],
newq = concat(q,[t]),
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
)
_poly_div(newn,d,newq);
// Internal Function: _poly_trim() // Internal Function: _poly_trim()

View file

@ -43,10 +43,12 @@ include <triangulation.scad>
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3] // dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
// fast = set to true for fast check that only looks at first entry. Default: false // fast = set to true for fast check that only looks at first entry. Default: false
function is_path(list, dim=[2,3], fast=false) = function is_path(list, dim=[2,3], fast=false) =
fast? is_list(list) && is_vector(list[0]) : fast
is_list(list) && is_list(list[0]) && len(list)>1 && ? is_list(list) && is_vector(list[0])
(is_undef(dim) || in_list(len(list[0]), force_list(dim))) && : is_matrix(list)
is_list_of(list, repeat(0,len(list[0]))); && len(list)>1
&& len(list[0])>0
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
// Function: is_closed_path() // Function: is_closed_path()
@ -105,32 +107,51 @@ function path_subselect(path, s1, u1, s2, u2, closed=false) =
// Function: simplify_path() // Function: simplify_path()
// Description: // Description:
// Takes a path and removes unnecessary collinear points. // Takes a path and removes unnecessary subsequent collinear points.
// Usage: // Usage:
// simplify_path(path, [eps]) // simplify_path(path, [eps])
// Arguments: // Arguments:
// path = A list of 2D path points. // path = A list of path points of any dimension.
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9) // eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path(path, eps=EPSILON) = function simplify_path(path, eps=EPSILON) =
len(path)<=2? path : let( assert( is_path(path), "Invalid path." )
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1]) assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
) [for (i = indices) path[i]]; len(path)<=2 ? path
: let(
indices = [ 0,
for (i=[1:1:len(path)-2])
if (!collinear(path[i-1],path[i],path[i+1], eps=eps)) i,
len(path)-1
]
)
[for (i = indices) path[i] ];
// Function: simplify_path_indexed() // Function: simplify_path_indexed()
// Description: // Description:
// Takes a list of points, and a path as a list of indices into `points`, // Takes a list of points, and a list of indices into `points`,
// and removes all path points that are unecessarily collinear. // and removes from the list all indices of subsequent indexed points that are unecessarily collinear.
// Returns the list of the remained indices.
// Usage: // Usage:
// simplify_path_indexed(path, eps) // simplify_path_indexed(points,indices, eps)
// Arguments: // Arguments:
// points = A list of points. // points = A list of points.
// path = A list of indices into `points` that forms a path. // indices = A list of indices into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees. // eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
function simplify_path_indexed(points, path, eps=EPSILON) = function simplify_path_indexed(points, indices, eps=EPSILON) =
len(path)<=2? path : let( len(indices)<=2? indices
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1]) : let(
) [for (i = indices) path[i]]; indices = concat( indices[0],
[for (i=[1:1:len(indices)-2])
let(
i1 = indices[i-1],
i2 = indices[i],
i3 = indices[i+1]
)
if (!collinear(points[i1],points[i2],points[i3], eps=eps)) indices[i]],
indices[len(indices)-1] )
)
indices;
// Function: path_length() // Function: path_length()

View file

@ -3,14 +3,6 @@ include <../std.scad>
// Section: List Query Operations // Section: List Query Operations
module test_is_simple_list() {
assert(is_simple_list([1,2,3,4]));
assert(is_simple_list([]));
assert(!is_simple_list([1,2,[3,4]]));
}
test_is_simple_list();
module test_select() { module test_select() {
l = [3,4,5,6,7,8,9]; l = [3,4,5,6,7,8,9];
assert(select(l, 5, 6) == [8,9]); assert(select(l, 5, 6) == [8,9]);
@ -365,6 +357,27 @@ module test_subindex() {
test_subindex(); test_subindex();
// Need decision about behavior for out of bounds ranges, empty ranges
module test_submatrix(){
M = [[1,2,3,4,5],
[6,7,8,9,10],
[11,12,13,14,15],
[16,17,18,19,20],
[21,22,23,24,25]];
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
assert_equal(submatrix(M, 1,3), [[9]]);
A = [[true, 17, "test"],
[[4,2], 91, false],
[6, [3,4], undef]];
assert_equal(submatrix(A,[0,2],[1,2]),[[17, "test"], [[3, 4], undef]]);
}
test_submatrix();
module test_force_list() { module test_force_list() {
assert_equal(force_list([3,4,5]), [3,4,5]); assert_equal(force_list([3,4,5]), [3,4,5]);
assert_equal(force_list(5), [5]); assert_equal(force_list(5), [5]);
@ -467,6 +480,7 @@ test_array_dim();
module test_transpose() { module test_transpose() {
assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]); assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]);
assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]); assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]);
assert(transpose([[1,2,3],[4,5,6]],reverse=true) == [[6,3], [5,2], [4,1]]);
assert(transpose([3,4,5]) == [3,4,5]); assert(transpose([3,4,5]) == [3,4,5]);
} }
test_transpose(); test_transpose();

View file

@ -853,22 +853,6 @@ module test_real_roots(){
} }
test_real_roots(); test_real_roots();
// Need decision about behavior for out of bounds ranges, empty ranges
module test_submatrix(){
M = [[1,2,3,4,5],
[6,7,8,9,10],
[11,12,13,14,15],
[16,17,18,19,20],
[21,22,23,24,25]];
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
}
test_submatrix();
module test_qr_factor() { module test_qr_factor() {
// Check that R is upper triangular // Check that R is upper triangular
@ -913,23 +897,21 @@ test_qr_factor();
module test_poly_mult(){ module test_poly_mult(){
assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]); assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]);
assert_equal(poly_mult([3,2,1],[0]),[0]);
// assert_equal(poly_mult([3,2,1],[]),[]);
assert_equal(poly_mult([[1,2],[3,4],[5,6]]), [15,68,100,48]); assert_equal(poly_mult([[1,2],[3,4],[5,6]]), [15,68,100,48]);
assert_equal(poly_mult([3,2,1],[0]),[0]);
assert_equal(poly_mult([[1,2],[0],[5,6]]), [0]); assert_equal(poly_mult([[1,2],[0],[5,6]]), [0]);
// assert_equal(poly_mult([[1,2],[],[5,6]]), []); assert_equal(poly_mult([[3,4,5],[0,0,0]]), [0]);
assert_equal(poly_mult([[3,4,5],[0,0,0]]),[0]); assert_equal(poly_mult([[0],[0,0,0]]),[0]);
// assert_equal(poly_mult([[3,4,5],[0,0,0]]),[]);
} }
test_poly_mult(); test_poly_mult();
module test_poly_div(){ module test_poly_div(){
assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[0]]); assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[0]]);
// assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[]]);
assert_equal(poly_div([1,2,3,4],[1,2,3,4,5]), [[], [1,2,3,4]]); assert_equal(poly_div([1,2,3,4],[1,2,3,4,5]), [[], [1,2,3,4]]);
assert_equal(poly_div(poly_add(poly_mult([1,2,3,4],[2,0,2]), [1,1,2]), [1,2,3,4]), [[2,0,2],[1,1,2]]); assert_equal(poly_div(poly_add(poly_mult([1,2,3,4],[2,0,2]), [1,1,2]), [1,2,3,4]), [[2,0,2],[1,1,2]]);
assert_equal(poly_div([1,2,3,4], [1,-3]), [[1,5,18],[58]]); assert_equal(poly_div([1,2,3,4], [1,-3]), [[1,5,18],[58]]);
assert_equal(poly_div([0], [1,-3]), [[0],[0]]);
} }
test_poly_div(); test_poly_div();