mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-21 03:49:38 +00:00
Merge branch 'master' of github.com:revarbat/BOSL2 into revarbat_dev
This commit is contained in:
commit
fe4e46a9cc
6 changed files with 270 additions and 289 deletions
247
arrays.scad
247
arrays.scad
|
@ -18,20 +18,6 @@
|
||||||
|
|
||||||
// Section: List Query Operations
|
// Section: List Query Operations
|
||||||
|
|
||||||
// Function: is_simple_list()
|
|
||||||
// Description:
|
|
||||||
// Returns true just when all elements of `list` are simple values.
|
|
||||||
// Usage:
|
|
||||||
// is_simple_list(list)
|
|
||||||
// Arguments:
|
|
||||||
// list = The list to check.
|
|
||||||
// Example:
|
|
||||||
// a = is_simple_list([3,4,5,6,7,8,9]); Returns: true
|
|
||||||
// b = is_simple_list([3,4,5,[6],7,8]); Returns: false
|
|
||||||
function is_simple_list(list) =
|
|
||||||
is_list(list)
|
|
||||||
&& []==[for(e=list) if(is_list(e)) 0];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: select()
|
// Function: select()
|
||||||
// Description:
|
// Description:
|
||||||
|
@ -73,9 +59,6 @@ function select(list, start, end=undef) =
|
||||||
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
|
: concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: slice()
|
// Function: slice()
|
||||||
// Description:
|
// Description:
|
||||||
// Returns a slice of a list. The first item is index 0.
|
// Returns a slice of a list. The first item is index 0.
|
||||||
|
@ -101,24 +84,23 @@ function slice(list,start,end) =
|
||||||
) [for (i=[s:1:e-1]) if (e>s) list[i]];
|
) [for (i=[s:1:e-1]) if (e>s) list[i]];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: in_list()
|
// Function: in_list()
|
||||||
// Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
|
// Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// val = The simple value to search for.
|
// val = The simple value to search for.
|
||||||
// list = The list to search.
|
// list = The list to search.
|
||||||
// idx = If given, searches the given subindexes for matches for `val`.
|
// idx = If given, searches the given subindex for matches for `val`.
|
||||||
// Example:
|
// Example:
|
||||||
// in_list("bar", ["foo", "bar", "baz"]); // Returns true.
|
// in_list("bar", ["foo", "bar", "baz"]); // Returns true.
|
||||||
// in_list("bee", ["foo", "bar", "baz"]); // Returns false.
|
// in_list("bee", ["foo", "bar", "baz"]); // Returns false.
|
||||||
// in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
|
// in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
|
||||||
function in_list(val,list,idx=undef) =
|
function in_list(val,list,idx=undef) =
|
||||||
|
assert( is_list(list) && (is_undef(idx) || is_finite(idx)),
|
||||||
|
"Invalid input." )
|
||||||
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
|
let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] )
|
||||||
s==[] || s[0]==[] ? false
|
s==[] || s==[[]] ? false
|
||||||
: is_undef(idx) ? val==list[s]
|
: is_undef(idx) ? val==list[s]
|
||||||
: val==list[s][idx];
|
: val==list[s][idx];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: min_index()
|
// Function: min_index()
|
||||||
|
@ -209,7 +191,6 @@ function repeat(val, n, i=0) =
|
||||||
[for (j=[1:1:n[i]]) repeat(val, n, i+1)];
|
[for (j=[1:1:n[i]]) repeat(val, n, i+1)];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: list_range()
|
// Function: list_range()
|
||||||
// Usage:
|
// Usage:
|
||||||
// list_range(n, [s], [e])
|
// list_range(n, [s], [e])
|
||||||
|
@ -249,7 +230,6 @@ function list_range(n=undef, s=0, e=undef, step=undef) =
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: List Manipulation
|
// Section: List Manipulation
|
||||||
|
|
||||||
// Function: reverse()
|
// Function: reverse()
|
||||||
|
@ -315,8 +295,6 @@ function deduplicate(list, closed=false, eps=EPSILON) =
|
||||||
: [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]];
|
: [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: deduplicate_indexed()
|
// Function: deduplicate_indexed()
|
||||||
// Usage:
|
// Usage:
|
||||||
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
|
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
|
||||||
|
@ -351,8 +329,6 @@ function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) =
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: repeat_entries()
|
// Function: repeat_entries()
|
||||||
// Usage:
|
// Usage:
|
||||||
// newlist = repeat_entries(list, N)
|
// newlist = repeat_entries(list, N)
|
||||||
|
@ -390,8 +366,6 @@ function repeat_entries(list, N, exact = true) =
|
||||||
: [for (val=reps_guess) round(val)]
|
: [for (val=reps_guess) round(val)]
|
||||||
)
|
)
|
||||||
[for(i=[0:length-1]) each repeat(list[i],reps[i])];
|
[for(i=[0:length-1]) each repeat(list[i],reps[i])];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: list_set()
|
// Function: list_set()
|
||||||
|
@ -431,7 +405,6 @@ function list_set(list=[],indices,values,dflt=0,minlen=0) =
|
||||||
dflt ,
|
dflt ,
|
||||||
each repeat(dflt, minlen-max(indices))
|
each repeat(dflt, minlen-max(indices))
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: list_insert()
|
// Function: list_insert()
|
||||||
|
@ -465,8 +438,6 @@ function list_insert(list, indices, values, _i=0) =
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: list_remove()
|
// Function: list_remove()
|
||||||
// Usage:
|
// Usage:
|
||||||
// list_remove(list, indices)
|
// list_remove(list, indices)
|
||||||
|
@ -494,8 +465,6 @@ function list_remove(list, indices) =
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: list_remove_values()
|
// Function: list_remove_values()
|
||||||
// Usage:
|
// Usage:
|
||||||
// list_remove_values(list,values,all=false) =
|
// list_remove_values(list,values,all=false) =
|
||||||
|
@ -565,8 +534,6 @@ function list_bset(indexset, valuelist, dflt=0) =
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: List Length Manipulation
|
// Section: List Length Manipulation
|
||||||
|
|
||||||
// Function: list_shortest()
|
// Function: list_shortest()
|
||||||
|
@ -579,7 +546,6 @@ function list_shortest(array) =
|
||||||
min([for (v = array) len(v)]);
|
min([for (v = array) len(v)]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: list_longest()
|
// Function: list_longest()
|
||||||
// Description:
|
// Description:
|
||||||
// Returns the length of the longest sublist in a list of lists.
|
// Returns the length of the longest sublist in a list of lists.
|
||||||
|
@ -629,7 +595,6 @@ function list_fit(array, length, fill) =
|
||||||
: list_pad(array,length,fill);
|
: list_pad(array,length,fill);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: List Shuffling and Sorting
|
// Section: List Shuffling and Sorting
|
||||||
|
|
||||||
// Function: shuffle()
|
// Function: shuffle()
|
||||||
|
@ -684,6 +649,7 @@ function _sort_vectors2(arr) =
|
||||||
)
|
)
|
||||||
concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) );
|
concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) );
|
||||||
|
|
||||||
|
|
||||||
// Sort a vector of vectors based on the first three entries of each vector
|
// Sort a vector of vectors based on the first three entries of each vector
|
||||||
// Lexicographic order, remaining entries of vector ignored
|
// Lexicographic order, remaining entries of vector ignored
|
||||||
function _sort_vectors3(arr) =
|
function _sort_vectors3(arr) =
|
||||||
|
@ -711,7 +677,6 @@ function _sort_vectors3(arr) =
|
||||||
) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) );
|
) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) );
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Sort a vector of vectors based on the first four entries of each vector
|
// Sort a vector of vectors based on the first four entries of each vector
|
||||||
// Lexicographic order, remaining entries of vector ignored
|
// Lexicographic order, remaining entries of vector ignored
|
||||||
function _sort_vectors4(arr) =
|
function _sort_vectors4(arr) =
|
||||||
|
@ -742,45 +707,38 @@ function _sort_vectors4(arr) =
|
||||||
&& y[3]>pivot[3] ))))))
|
&& y[3]>pivot[3] ))))))
|
||||||
y ]
|
y ]
|
||||||
) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) );
|
) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) );
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// when idx==undef, returns the sorted array
|
||||||
|
// otherwise, returns the indices of the sorted array
|
||||||
function _sort_general(arr, idx=undef) =
|
function _sort_general(arr, idx=undef) =
|
||||||
(len(arr)<=1) ? arr :
|
(len(arr)<=1) ? arr :
|
||||||
|
is_undef(idx)
|
||||||
|
? _sort_scalar(arr)
|
||||||
|
: let( arrind=[for(k=[0:len(arr)-1], ark=[arr[k]]) [ k, [for (i=idx) ark[i]] ] ] )
|
||||||
|
_indexed_sort(arrind);
|
||||||
|
|
||||||
|
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
|
||||||
|
// the sorting is done using compare_vals()
|
||||||
|
function _indexed_sort(arrind) =
|
||||||
|
arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] :
|
||||||
|
let( pivot = arrind[floor(len(arrind)/2)][1] )
|
||||||
let(
|
let(
|
||||||
pivot = arr[floor(len(arr)/2)],
|
lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ],
|
||||||
pivotval = idx==undef? pivot : [for (i=idx) pivot[i]],
|
equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ],
|
||||||
compare =
|
greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ]
|
||||||
is_undef(idx) ? [for(entry=arr) compare_vals(entry, pivotval) ] :
|
)
|
||||||
[ for (entry = arr)
|
concat(_indexed_sort(lesser), equal, _indexed_sort(greater));
|
||||||
let( val = [for (i=idx) entry[i] ] )
|
|
||||||
compare_vals(val, pivotval) ] ,
|
|
||||||
lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ],
|
// returns true for valid index specifications idx in the interval [imin, imax)
|
||||||
equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ],
|
// note that idx can't have any value greater or EQUAL to imax
|
||||||
greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ]
|
function _valid_idx(idx,imin,imax) =
|
||||||
)
|
is_undef(idx)
|
||||||
concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx));
|
|| ( is_finite(idx) && idx>=imin && idx< imax )
|
||||||
|
|| ( is_list(idx) && min(idx)>=imin && max(idx)< imax )
|
||||||
|
|| ( valid_range(idx) && idx[0]>=imin && idx[2]< imax );
|
||||||
|
|
||||||
function _sort_general(arr, idx=undef) =
|
|
||||||
(len(arr)<=1) ? arr :
|
|
||||||
let(
|
|
||||||
pivot = arr[floor(len(arr)/2)],
|
|
||||||
pivotval = idx==undef? pivot : [for (i=idx) pivot[i]],
|
|
||||||
compare = [
|
|
||||||
for (entry = arr) let(
|
|
||||||
val = idx==undef? entry : [for (i=idx) entry[i]],
|
|
||||||
cmp = compare_vals(val, pivotval)
|
|
||||||
) cmp
|
|
||||||
],
|
|
||||||
lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ],
|
|
||||||
equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ],
|
|
||||||
greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ]
|
|
||||||
)
|
|
||||||
concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: sort()
|
// Function: sort()
|
||||||
// Usage:
|
// Usage:
|
||||||
|
@ -799,20 +757,21 @@ function _sort_general(arr, idx=undef) =
|
||||||
// sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89]
|
// sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89]
|
||||||
function sort(list, idx=undef) =
|
function sort(list, idx=undef) =
|
||||||
!is_list(list) || len(list)<=1 ? list :
|
!is_list(list) || len(list)<=1 ? list :
|
||||||
assert( is_undef(idx) || is_finite(idx) || is_vector(idx) || is_range(idx) , "Invalid indices.")
|
is_def(idx)
|
||||||
is_def(idx) ? _sort_general(list,idx) :
|
? assert( _valid_idx(idx,0,len(list)) , "Invalid indices.")
|
||||||
let(size = array_dim(list))
|
let( sarr = _sort_general(list,idx) )
|
||||||
len(size)==1 ? _sort_scalars(list) :
|
[for(i=[0:len(sarr)-1]) list[sarr[i]] ]
|
||||||
len(size)==2 && size[1] <=4
|
: let(size = array_dim(list))
|
||||||
? (
|
len(size)==1 ? _sort_scalars(list) :
|
||||||
size[1]==0 ? list :
|
len(size)==2 && size[1] <=4
|
||||||
size[1]==1 ? _sort_vectors1(list) :
|
? (
|
||||||
size[1]==2 ? _sort_vectors2(list) :
|
size[1]==0 ? list :
|
||||||
size[1]==3 ? _sort_vectors3(list)
|
size[1]==1 ? _sort_vectors1(list) :
|
||||||
/*size[1]==4*/ : _sort_vectors4(list)
|
size[1]==2 ? _sort_vectors2(list) :
|
||||||
)
|
size[1]==3 ? _sort_vectors3(list)
|
||||||
: _sort_general(list);
|
/*size[1]==4*/ : _sort_vectors4(list)
|
||||||
|
)
|
||||||
|
: _sort_general(list);
|
||||||
|
|
||||||
|
|
||||||
// Function: sortidx()
|
// Function: sortidx()
|
||||||
|
@ -838,13 +797,13 @@ function sort(list, idx=undef) =
|
||||||
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
|
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
|
||||||
function sortidx(list, idx=undef) =
|
function sortidx(list, idx=undef) =
|
||||||
assert( is_list(list) || is_string(list) , "Invalid input to sort." )
|
assert( is_list(list) || is_string(list) , "Invalid input to sort." )
|
||||||
assert( is_undef(idx) || is_finite(idx) || is_vector(idx) , "Invalid indices.")
|
assert( _valid_idx(idx,0,len(list)) , "Invalid indices.")
|
||||||
list==[] ? [] :
|
list==[] ? [] :
|
||||||
let(
|
let(
|
||||||
size = array_dim(list),
|
size = array_dim(list),
|
||||||
aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))
|
aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))
|
||||||
? zip(list, list_range(len(list)))
|
? zip(list, list_range(len(list)))
|
||||||
: enumerate(list,idx=idx)
|
: 0
|
||||||
)
|
)
|
||||||
is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) :
|
is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) :
|
||||||
is_undef(idx) && len(size) == 2 && size[1] <=4
|
is_undef(idx) && len(size) == 2 && size[1] <=4
|
||||||
|
@ -856,25 +815,8 @@ function sortidx(list, idx=undef) =
|
||||||
/*size[1]==4*/ : subindex(_sort_vectors4(aug),4)
|
/*size[1]==4*/ : subindex(_sort_vectors4(aug),4)
|
||||||
)
|
)
|
||||||
: // general case
|
: // general case
|
||||||
subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0);
|
_sort_general(list,idx);
|
||||||
|
|
||||||
function sortidx(list, idx=undef) =
|
|
||||||
list==[] ? [] : let(
|
|
||||||
size = array_dim(list),
|
|
||||||
aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))?
|
|
||||||
zip(list, list_range(len(list))) :
|
|
||||||
enumerate(list,idx=idx)
|
|
||||||
)
|
|
||||||
is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) :
|
|
||||||
is_undef(idx) && len(size) == 2 && size[1] <=4? (
|
|
||||||
size[1]==0? list_range(len(arr)) :
|
|
||||||
size[1]==1? subindex(_sort_vectors1(aug),1) :
|
|
||||||
size[1]==2? subindex(_sort_vectors2(aug),2) :
|
|
||||||
size[1]==3? subindex(_sort_vectors3(aug),3) :
|
|
||||||
/*size[1]==4*/ subindex(_sort_vectors4(aug),4)
|
|
||||||
) :
|
|
||||||
// general case
|
|
||||||
subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0);
|
|
||||||
|
|
||||||
// sort() does not accept strings but sortidx does; isn't inconsistent ?
|
// sort() does not accept strings but sortidx does; isn't inconsistent ?
|
||||||
|
|
||||||
|
@ -896,7 +838,6 @@ function unique(arr) =
|
||||||
];
|
];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: unique_count()
|
// Function: unique_count()
|
||||||
// Usage:
|
// Usage:
|
||||||
// unique_count(arr);
|
// unique_count(arr);
|
||||||
|
@ -913,8 +854,6 @@ function unique_count(arr) =
|
||||||
[ select(arr,ind), deltas( concat(ind,[len(arr)]) ) ];
|
[ select(arr,ind), deltas( concat(ind,[len(arr)]) ) ];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: List Iteration Helpers
|
// Section: List Iteration Helpers
|
||||||
|
|
||||||
// Function: idx()
|
// Function: idx()
|
||||||
|
@ -952,10 +891,10 @@ function idx(list, step=1, end=-1,start=0) =
|
||||||
// for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10);
|
// for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10);
|
||||||
function enumerate(l,idx=undef) =
|
function enumerate(l,idx=undef) =
|
||||||
assert(is_list(l)||is_string(list), "Invalid input." )
|
assert(is_list(l)||is_string(list), "Invalid input." )
|
||||||
assert(is_undef(idx)||is_finite(idx)||is_vector(idx) ||is_range(idx), "Invalid index/indices." )
|
assert( _valid_idx(idx,0,len(l)), "Invalid index/indices." )
|
||||||
(idx==undef)
|
(idx==undef)
|
||||||
? [for (i=[0:1:len(l)-1]) [i,l[i]]]
|
? [for (i=[0:1:len(l)-1]) [i,l[i]]]
|
||||||
: [for (i=[0:1:len(l)-1]) concat([i], [for (j=idx) l[i][j]])];
|
: [for (i=[0:1:len(l)-1]) [ i, for (j=idx) l[i][j]] ];
|
||||||
|
|
||||||
|
|
||||||
// Function: force_list()
|
// Function: force_list()
|
||||||
|
@ -1109,8 +1048,6 @@ function set_union(a, b, get_indices=false) =
|
||||||
) [idxs, nset];
|
) [idxs, nset];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: set_difference()
|
// Function: set_difference()
|
||||||
// Usage:
|
// Usage:
|
||||||
// s = set_difference(a, b);
|
// s = set_difference(a, b);
|
||||||
|
@ -1130,7 +1067,6 @@ function set_difference(a, b) =
|
||||||
[ for (i=idx(a)) if(found[i]==[]) a[i] ];
|
[ for (i=idx(a)) if(found[i]==[]) a[i] ];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: set_intersection()
|
// Function: set_intersection()
|
||||||
// Usage:
|
// Usage:
|
||||||
// s = set_intersection(a, b);
|
// s = set_intersection(a, b);
|
||||||
|
@ -1151,7 +1087,6 @@ function set_intersection(a, b) =
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: Array Manipulation
|
// Section: Array Manipulation
|
||||||
|
|
||||||
// Function: add_scalar()
|
// Function: add_scalar()
|
||||||
|
@ -1170,14 +1105,14 @@ function add_scalar(v,s) =
|
||||||
is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v;
|
is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: subindex()
|
// Function: subindex()
|
||||||
// Usage:
|
// Usage:
|
||||||
// subindex(M, idx)
|
// subindex(M, idx)
|
||||||
// Description:
|
// Description:
|
||||||
// Extracts the entries listed in idx from each entry in M. For a matrix this means
|
// Extracts the entries listed in idx from each entry in M. For a matrix this means
|
||||||
// selecting a specified set of columsn. If idx is a number the return is a vector, otherwise
|
// selecting a specified set of columns. If idx is a number the return is a vector,
|
||||||
// it is a list of lists (the submatrix).
|
// otherwise it is a list of lists (the submatrix).
|
||||||
|
// This function will return `undef` at all entry positions indexed by idx not found in the input list M.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// M = The given list of lists.
|
// M = The given list of lists.
|
||||||
// idx = The index, list of indices, or range of indices to fetch.
|
// idx = The index, list of indices, or range of indices to fetch.
|
||||||
|
@ -1187,11 +1122,45 @@ function add_scalar(v,s) =
|
||||||
// subindex(M,[2]); // Returns [[3], [7], [11], [15]]
|
// subindex(M,[2]); // Returns [[3], [7], [11], [15]]
|
||||||
// subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
|
// subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
|
||||||
// subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
|
// subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
|
||||||
|
// N = [ [1,2], [3], [4,5], [6,7,8] ];
|
||||||
|
// subindex(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
|
||||||
function subindex(M, idx) =
|
function subindex(M, idx) =
|
||||||
is_num(idx)
|
assert( is_list(M), "The input is not a list." )
|
||||||
|
assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." )
|
||||||
|
is_finite(idx)
|
||||||
? [for(row=M) row[idx]]
|
? [for(row=M) row[idx]]
|
||||||
: [for(row=M) [for(i=idx) row[i]]];
|
: [for(row=M) [for(i=idx) row[i]]];
|
||||||
|
|
||||||
|
|
||||||
|
// Function: submatrix()
|
||||||
|
// Usage: submatrix(M, idx1, idx2)
|
||||||
|
// Description:
|
||||||
|
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columsn listed in idx2.
|
||||||
|
// Arguments:
|
||||||
|
// M = Given list of lists
|
||||||
|
// idx1 = rows index list or range
|
||||||
|
// idx2 = column index list or range
|
||||||
|
// Example:
|
||||||
|
// M = [[ 1, 2, 3, 4, 5],
|
||||||
|
// [ 6, 7, 8, 9,10],
|
||||||
|
// [11,12,13,14,15],
|
||||||
|
// [16,17,18,19,20],
|
||||||
|
// [21,22,23,24,25]];
|
||||||
|
// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]]
|
||||||
|
// submatrix(M,[1], [3,4])); // Returns [[9,10]]
|
||||||
|
// submatrix(M,1, [3,4])); // Returns [[9,10]]
|
||||||
|
// submatrix(M,1,3)); // Returns [[9]]
|
||||||
|
// submatrix(M, [3,4],1); // Returns [[17],[22]]);
|
||||||
|
// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]);
|
||||||
|
// A = [[true, 17, "test"],
|
||||||
|
// [[4,2], 91, false],
|
||||||
|
// [6, [3,4], undef]];
|
||||||
|
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
|
||||||
|
|
||||||
|
function submatrix(M,idx1,idx2) =
|
||||||
|
[for(i=idx1) [for(j=idx2) M[i][j] ] ];
|
||||||
|
|
||||||
|
|
||||||
// Function: zip()
|
// Function: zip()
|
||||||
// Usage:
|
// Usage:
|
||||||
// zip(v1, v2, v3, [fit], [fill]);
|
// zip(v1, v2, v3, [fit], [fill]);
|
||||||
|
@ -1318,6 +1287,10 @@ function array_dim(v, depth=undef) =
|
||||||
|
|
||||||
// Function: transpose()
|
// Function: transpose()
|
||||||
// Description: Returns the transposition of the given array.
|
// Description: Returns the transposition of the given array.
|
||||||
|
// When reverse=true, the transposition is done in respect to the secondary diagonal, that is:
|
||||||
|
// .
|
||||||
|
// reverse(transpose(reverse(arr))) == transpose(arr, reverse=true)
|
||||||
|
// By default, reverse=false.
|
||||||
// Example:
|
// Example:
|
||||||
// arr = [
|
// arr = [
|
||||||
// ["a", "b", "c"],
|
// ["a", "b", "c"],
|
||||||
|
@ -1344,16 +1317,32 @@ function array_dim(v, depth=undef) =
|
||||||
// // ["c", "f"],
|
// // ["c", "f"],
|
||||||
// // ]
|
// // ]
|
||||||
// Example:
|
// Example:
|
||||||
|
// arr = [
|
||||||
|
// ["a", "b", "c"],
|
||||||
|
// ["d", "e", "f"],
|
||||||
|
// ["g", "h", "i"]
|
||||||
|
// ];
|
||||||
|
// t = transpose(arr, reverse=true);
|
||||||
|
// // Returns:
|
||||||
|
// // [
|
||||||
|
// // ["i", "f", "c"],
|
||||||
|
// // ["h", "e", "b"],
|
||||||
|
// // ["g", "d", "a"]
|
||||||
|
// // ]
|
||||||
|
// Example:
|
||||||
// transpose([3,4,5]); // Returns: [3,4,5]
|
// transpose([3,4,5]); // Returns: [3,4,5]
|
||||||
function transpose(arr) =
|
function transpose(arr, reverse=false) =
|
||||||
let( a0 = arr[0] )
|
assert( is_list(arr) && len(arr)>0, "The array is not a vector neither a matrix." )
|
||||||
is_list(a0)
|
is_list(arr[0])
|
||||||
? assert([for(a=arr) if(len(a)!=len(a0)) 1]==[], "The array is not a matrix." )
|
? let( l0 = len(arr[0]) )
|
||||||
[for (i=[0:1:len(a0)-1])
|
assert([for(a=arr) if(!is_list(a) || len(a)!=l0) 1 ]==[], "The array is not a vector neither a matrix." )
|
||||||
[ for (j=[0:1:len(arr)-1]) arr[j][i] ] ]
|
reverse
|
||||||
: arr;
|
? [for (i=[0:1:l0-1])
|
||||||
|
[ for (j=[0:1:len(arr)-1]) arr[len(arr)-1-j][l0-1-i] ] ]
|
||||||
|
: [for (i=[0:1:l0-1])
|
||||||
|
[ for (j=[0:1:len(arr)-1]) arr[j][i] ] ]
|
||||||
|
: assert( is_vector(arr), "The array is not a vector neither a matrix." )
|
||||||
|
arr;
|
||||||
|
|
||||||
|
|
||||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||||
|
|
|
@ -140,7 +140,7 @@ function _list_pattern(list) =
|
||||||
// is_consistent(list)
|
// is_consistent(list)
|
||||||
// Description:
|
// Description:
|
||||||
// Tests whether input is a list of entries which all have the same list structure
|
// Tests whether input is a list of entries which all have the same list structure
|
||||||
// and are filled with finite numerical data.
|
// and are filled with finite numerical data. It returns `true`for the empty list.
|
||||||
// Example:
|
// Example:
|
||||||
// is_consistent([3,4,5]); // Returns true
|
// is_consistent([3,4,5]); // Returns true
|
||||||
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true
|
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true
|
||||||
|
|
197
math.scad
197
math.scad
|
@ -84,7 +84,7 @@ function hypot(x,y,z=0) =
|
||||||
// y = factorial(6); // Returns: 720
|
// y = factorial(6); // Returns: 720
|
||||||
// z = factorial(9); // Returns: 362880
|
// z = factorial(9); // Returns: 362880
|
||||||
function factorial(n,d=0) =
|
function factorial(n,d=0) =
|
||||||
assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is not defined for negative numbers")
|
assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers")
|
||||||
assert(d<=n, "d cannot be larger than n")
|
assert(d<=n, "d cannot be larger than n")
|
||||||
product([1,for (i=[n:-1:d+1]) i]);
|
product([1,for (i=[n:-1:d+1]) i]);
|
||||||
|
|
||||||
|
@ -164,7 +164,7 @@ function binomial_coefficient(n,k) =
|
||||||
function lerp(a,b,u) =
|
function lerp(a,b,u) =
|
||||||
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
|
assert(same_shape(a,b), "Bad or inconsistent inputs to lerp")
|
||||||
is_finite(u)? (1-u)*a + u*b :
|
is_finite(u)? (1-u)*a + u*b :
|
||||||
assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or range.")
|
assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.")
|
||||||
[for (v = u) (1-v)*a + v*b ];
|
[for (v = u) (1-v)*a + v*b ];
|
||||||
|
|
||||||
|
|
||||||
|
@ -387,12 +387,13 @@ function modang(x) =
|
||||||
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
|
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
|
||||||
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
|
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
|
||||||
function modrange(x, y, m, step=1) =
|
function modrange(x, y, m, step=1) =
|
||||||
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers. The module value cannot be zero.")
|
assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." )
|
||||||
let(
|
let(
|
||||||
a = posmod(x, m),
|
a = posmod(x, m),
|
||||||
b = posmod(y, m),
|
b = posmod(y, m),
|
||||||
c = step>0? (a>b? b+m : b) : (a<b? b-m : b)
|
c = step>0? (a>b? b+m : b)
|
||||||
) [for (i=[a:step:c]) (i%m+m)%m];
|
: (a<b? b-m : b)
|
||||||
|
) [for (i=[a:step:c]) (i%m+m)%m ];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -536,9 +537,13 @@ function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
|
||||||
// cumsum([2,2,2]); // returns [2,4,6]
|
// cumsum([2,2,2]); // returns [2,4,6]
|
||||||
// cumsum([1,2,3]); // returns [1,3,6]
|
// cumsum([1,2,3]); // returns [1,3,6]
|
||||||
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
|
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
|
||||||
function cumsum(v,_i=0,_acc=[]) =
|
function cumsum(v) =
|
||||||
|
assert(is_consistent(v), "The input is not consistent." )
|
||||||
|
_cumsum(v,_i=0,_acc=[]);
|
||||||
|
|
||||||
|
function _cumsum(v,_i=0,_acc=[]) =
|
||||||
_i==len(v) ? _acc :
|
_i==len(v) ? _acc :
|
||||||
cumsum(
|
_cumsum(
|
||||||
v, _i+1,
|
v, _i+1,
|
||||||
concat(
|
concat(
|
||||||
_acc,
|
_acc,
|
||||||
|
@ -598,7 +603,7 @@ function deltas(v) =
|
||||||
// Description:
|
// Description:
|
||||||
// Returns the product of all entries in the given list.
|
// Returns the product of all entries in the given list.
|
||||||
// If passed a list of vectors of same dimension, returns a vector of products of each part.
|
// If passed a list of vectors of same dimension, returns a vector of products of each part.
|
||||||
// If passed a list of square matrices, returns a the resulting product matrix.
|
// If passed a list of square matrices, returns the resulting product matrix.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// v = The list to get the product of.
|
// v = The list to get the product of.
|
||||||
// Example:
|
// Example:
|
||||||
|
@ -606,7 +611,7 @@ function deltas(v) =
|
||||||
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
||||||
function product(v) =
|
function product(v) =
|
||||||
assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)),
|
assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)),
|
||||||
"Invalid input.")
|
"Invalid input.")
|
||||||
_product(v, 1, v[0]);
|
_product(v, 1, v[0]);
|
||||||
|
|
||||||
function _product(v, i=0, _tot) =
|
function _product(v, i=0, _tot) =
|
||||||
|
@ -691,9 +696,11 @@ function linear_solve(A,b) =
|
||||||
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
||||||
)
|
)
|
||||||
zeros != [] ? [] :
|
zeros != [] ? [] :
|
||||||
m<n ? Q*back_substitute(R,b,transpose=true) :
|
m<n
|
||||||
back_substitute(R, transpose(Q)*b);
|
// avoiding input validation in back_substitute
|
||||||
|
? let( n = len(R) )
|
||||||
|
Q*reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
|
||||||
|
: _back_substitute(R, transpose(Q)*b);
|
||||||
|
|
||||||
// Function: matrix_inverse()
|
// Function: matrix_inverse()
|
||||||
// Usage:
|
// Usage:
|
||||||
|
@ -708,18 +715,6 @@ function matrix_inverse(A) =
|
||||||
linear_solve(A,ident(len(A)));
|
linear_solve(A,ident(len(A)));
|
||||||
|
|
||||||
|
|
||||||
// Function: submatrix()
|
|
||||||
// Usage: submatrix(M, ind1, ind2)
|
|
||||||
// Description:
|
|
||||||
// Returns a submatrix with the specified index ranges or index sets.
|
|
||||||
function submatrix(M,ind1,ind2) =
|
|
||||||
assert( is_matrix(M), "Input must be a matrix." )
|
|
||||||
[for(i=ind1)
|
|
||||||
[for(j=ind2)
|
|
||||||
assert( ! is_undef(M[i][j]), "Invalid indexing." )
|
|
||||||
M[i][j] ] ];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: qr_factor()
|
// Function: qr_factor()
|
||||||
// Usage: qr = qr_factor(A)
|
// Usage: qr = qr_factor(A)
|
||||||
// Description:
|
// Description:
|
||||||
|
@ -732,13 +727,14 @@ function qr_factor(A) =
|
||||||
n = len(A[0])
|
n = len(A[0])
|
||||||
)
|
)
|
||||||
let(
|
let(
|
||||||
qr =_qr_factor(A, column=0, m = m, n=n, Q=ident(m)),
|
qr =_qr_factor(A, Q=ident(m), column=0, m = m, n=n),
|
||||||
Rzero = [
|
Rzero =
|
||||||
for(i=[0:m-1]) [
|
let( R = qr[1] )
|
||||||
for(j=[0:n-1])
|
[ for(i=[0:m-1]) [
|
||||||
i>j ? 0 : qr[1][i][j]
|
let( ri = R[i] )
|
||||||
|
for(j=[0:n-1]) i>j ? 0 : ri[j]
|
||||||
]
|
]
|
||||||
]
|
]
|
||||||
) [qr[0],Rzero];
|
) [qr[0],Rzero];
|
||||||
|
|
||||||
function _qr_factor(A,Q, column, m, n) =
|
function _qr_factor(A,Q, column, m, n) =
|
||||||
|
@ -767,13 +763,12 @@ function back_substitute(R, b, transpose = false) =
|
||||||
let(n=len(R))
|
let(n=len(R))
|
||||||
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
||||||
transpose
|
transpose
|
||||||
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
|
? reverse(_back_substitute(transpose(R, reverse=true), reverse(b)))
|
||||||
reverse(b)))
|
|
||||||
: _back_substitute(R,b);
|
: _back_substitute(R,b);
|
||||||
|
|
||||||
function _back_substitute(R, b, x=[]) =
|
function _back_substitute(R, b, x=[]) =
|
||||||
let(n=len(R))
|
let(n=len(R))
|
||||||
len(x) == n ? x
|
len(x) == n ? x
|
||||||
: let(ind = n - len(x) - 1)
|
: let(ind = n - len(x) - 1)
|
||||||
R[ind][ind] == 0 ? []
|
R[ind][ind] == 0 ? []
|
||||||
: let(
|
: let(
|
||||||
|
@ -793,7 +788,7 @@ function _back_substitute(R, b, x=[]) =
|
||||||
// M = [ [6,-2], [1,8] ];
|
// M = [ [6,-2], [1,8] ];
|
||||||
// det = det2(M); // Returns: 50
|
// det = det2(M); // Returns: 50
|
||||||
function det2(M) =
|
function det2(M) =
|
||||||
assert( is_matrix(M,2,2), "Matrix should be 2x2." )
|
assert( 0*M==[[0,0],[0,0]], "Matrix should be 2x2." )
|
||||||
M[0][0] * M[1][1] - M[0][1]*M[1][0];
|
M[0][0] * M[1][1] - M[0][1]*M[1][0];
|
||||||
|
|
||||||
|
|
||||||
|
@ -806,7 +801,7 @@ function det2(M) =
|
||||||
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
|
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
|
||||||
// det = det3(M); // Returns: -334
|
// det = det3(M); // Returns: -334
|
||||||
function det3(M) =
|
function det3(M) =
|
||||||
assert( is_matrix(M,3,3), "Matrix should be 3x3." )
|
assert( 0*M==[[0,0,0],[0,0,0],[0,0,0]], "Matrix should be 3x3." )
|
||||||
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
|
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
|
||||||
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
|
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
|
||||||
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
|
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
|
||||||
|
@ -846,7 +841,7 @@ function determinant(M) =
|
||||||
// Description:
|
// Description:
|
||||||
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
// Returns true if A is a numeric matrix of height m and width n. If m or n
|
||||||
// are omitted or set to undef then true is returned for any positive dimension.
|
// are omitted or set to undef then true is returned for any positive dimension.
|
||||||
// If `square` is true then the matrix is required to be square. Note if you
|
// If `square` is true then the matrix is required to be square.
|
||||||
// specify m != n and require a square matrix then the result will always be false.
|
// specify m != n and require a square matrix then the result will always be false.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// A = matrix to test
|
// A = matrix to test
|
||||||
|
@ -855,10 +850,10 @@ function determinant(M) =
|
||||||
// square = set to true to require a square matrix. Default: false
|
// square = set to true to require a square matrix. Default: false
|
||||||
function is_matrix(A,m,n,square=false) =
|
function is_matrix(A,m,n,square=false) =
|
||||||
is_list(A[0])
|
is_list(A[0])
|
||||||
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
|
&& ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers
|
||||||
&& (is_undef(n) || len(A[0])==n )
|
&& (is_undef(n) || len(A[0])==n )
|
||||||
&& (is_undef(m) || len(A)==m )
|
&& (is_undef(m) || len(A)==m )
|
||||||
&& ( !square || len(A)==len(A[0]));
|
&& ( !square || len(A)==len(A[0]));
|
||||||
|
|
||||||
|
|
||||||
// Section: Comparisons and Logic
|
// Section: Comparisons and Logic
|
||||||
|
@ -948,13 +943,16 @@ function compare_lists(a, b) =
|
||||||
// any([1,5,true]); // Returns true.
|
// any([1,5,true]); // Returns true.
|
||||||
// any([[0,0], [0,0]]); // Returns false.
|
// any([[0,0], [0,0]]); // Returns false.
|
||||||
// any([[0,0], [1,0]]); // Returns true.
|
// any([[0,0], [1,0]]); // Returns true.
|
||||||
function any(l, i=0, succ=false) =
|
function any(l) =
|
||||||
(i>=len(l) || succ)? succ :
|
assert(is_list(l), "The input is not a list." )
|
||||||
any( l,
|
_any(l, i=0, succ=false);
|
||||||
i+1,
|
|
||||||
succ = is_list(l[i]) ? any(l[i]) : !(!l[i])
|
|
||||||
);
|
|
||||||
|
|
||||||
|
function _any(l, i=0, succ=false) =
|
||||||
|
(i>=len(l) || succ)? succ :
|
||||||
|
_any( l,
|
||||||
|
i+1,
|
||||||
|
succ = is_list(l[i]) ? _any(l[i]) : !(!l[i])
|
||||||
|
);
|
||||||
|
|
||||||
|
|
||||||
// Function: all()
|
// Function: all()
|
||||||
|
@ -971,12 +969,15 @@ function any(l, i=0, succ=false) =
|
||||||
// all([[0,0], [1,0]]); // Returns false.
|
// all([[0,0], [1,0]]); // Returns false.
|
||||||
// all([[1,1], [1,1]]); // Returns true.
|
// all([[1,1], [1,1]]); // Returns true.
|
||||||
function all(l, i=0, fail=false) =
|
function all(l, i=0, fail=false) =
|
||||||
(i>=len(l) || fail)? !fail :
|
assert( is_list(l), "The input is not a list." )
|
||||||
all( l,
|
_all(l, i=0, fail=false);
|
||||||
i+1,
|
|
||||||
fail = is_list(l[i]) ? !all(l[i]) : !l[i]
|
|
||||||
) ;
|
|
||||||
|
|
||||||
|
function _all(l, i=0, fail=false) =
|
||||||
|
(i>=len(l) || fail)? !fail :
|
||||||
|
_all( l,
|
||||||
|
i+1,
|
||||||
|
fail = is_list(l[i]) ? !_all(l[i]) : !l[i]
|
||||||
|
) ;
|
||||||
|
|
||||||
|
|
||||||
// Function: count_true()
|
// Function: count_true()
|
||||||
|
@ -999,16 +1000,6 @@ function all(l, i=0, fail=false) =
|
||||||
// count_true([[0,0], [1,0]]); // Returns 1.
|
// count_true([[0,0], [1,0]]); // Returns 1.
|
||||||
// count_true([[1,1], [1,1]]); // Returns 4.
|
// count_true([[1,1], [1,1]]); // Returns 4.
|
||||||
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
||||||
function count_true(l, nmax=undef, i=0, cnt=0) =
|
|
||||||
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
|
|
||||||
count_true(
|
|
||||||
l=l, nmax=nmax, i=i+1, cnt=cnt+(
|
|
||||||
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
|
|
||||||
(l[i]? 1 : 0)
|
|
||||||
)
|
|
||||||
);
|
|
||||||
|
|
||||||
|
|
||||||
function count_true(l, nmax) =
|
function count_true(l, nmax) =
|
||||||
!is_list(l) ? !(!l) ? 1: 0 :
|
!is_list(l) ? !(!l) ? 1: 0 :
|
||||||
let( c = [for( i = 0,
|
let( c = [for( i = 0,
|
||||||
|
@ -1204,12 +1195,12 @@ function C_div(z1,z2) =
|
||||||
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
||||||
// The result is a number if `z` is a number and a complex number otherwise.
|
// The result is a number if `z` is a number and a complex number otherwise.
|
||||||
function polynomial(p,z,k,total) =
|
function polynomial(p,z,k,total) =
|
||||||
is_undef(k)
|
is_undef(k)
|
||||||
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
|
||||||
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
|
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
|
||||||
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
|
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
|
||||||
: k==len(p) ? total
|
: k==len(p) ? total
|
||||||
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
|
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
|
||||||
|
|
||||||
// Function: poly_mult()
|
// Function: poly_mult()
|
||||||
// Usage:
|
// Usage:
|
||||||
|
@ -1219,35 +1210,15 @@ function polynomial(p,z,k,total) =
|
||||||
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
||||||
// computes the coefficient list of the product polynomial.
|
// computes the coefficient list of the product polynomial.
|
||||||
function poly_mult(p,q) =
|
function poly_mult(p,q) =
|
||||||
is_undef(q) ?
|
is_undef(q) ?
|
||||||
assert( is_list(p)
|
len(p)==2
|
||||||
&& []==[for(pi=p) if( !is_vector(pi) && pi!=[]) 0],
|
? poly_mult(p[0],p[1])
|
||||||
"Invalid arguments to poly_mult")
|
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
||||||
len(p)==2 ? poly_mult(p[0],p[1])
|
:
|
||||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
||||||
:
|
p*p==0 || q*q==0
|
||||||
_poly_trim(
|
? [0]
|
||||||
[
|
: _poly_trim(convolve(p,q));
|
||||||
for(n = [len(p)+len(q)-2:-1:0])
|
|
||||||
sum( [for(i=[0:1:len(p)-1])
|
|
||||||
let(j = len(p)+len(q)- 2 - n - i)
|
|
||||||
if (j>=0 && j<len(q)) p[i]*q[j]
|
|
||||||
])
|
|
||||||
]);
|
|
||||||
|
|
||||||
function poly_mult(p,q) =
|
|
||||||
is_undef(q) ?
|
|
||||||
len(p)==2 ? poly_mult(p[0],p[1])
|
|
||||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
|
||||||
:
|
|
||||||
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
|
|
||||||
_poly_trim( [
|
|
||||||
for(n = [len(p)+len(q)-2:-1:0])
|
|
||||||
sum( [for(i=[0:1:len(p)-1])
|
|
||||||
let(j = len(p)+len(q)- 2 - n - i)
|
|
||||||
if (j>=0 && j<len(q)) p[i]*q[j]
|
|
||||||
])
|
|
||||||
]);
|
|
||||||
|
|
||||||
|
|
||||||
// Function: poly_div()
|
// Function: poly_div()
|
||||||
|
@ -1258,19 +1229,23 @@ function poly_mult(p,q) =
|
||||||
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
|
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
|
||||||
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
|
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
|
||||||
// the returned quotient will be [].
|
// the returned quotient will be [].
|
||||||
function poly_div(n,d,q) =
|
function poly_div(n,d) =
|
||||||
is_undef(q)
|
assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
|
||||||
? assert( is_vector(n) && is_vector(d) , "Invalid polynomials." )
|
let( d = _poly_trim(d),
|
||||||
let( d = _poly_trim(d) )
|
n = _poly_trim(n) )
|
||||||
assert( d!=[0] , "Denominator cannot be a zero polynomial." )
|
assert( d!=[0] , "Denominator cannot be a zero polynomial." )
|
||||||
poly_div(n,d,q=[])
|
n==[0]
|
||||||
: len(n)<len(d) ? [q,_poly_trim(n)] :
|
? [[0],[0]]
|
||||||
let(
|
: _poly_div(n,d,q=[]);
|
||||||
t = n[0] / d[0],
|
|
||||||
newq = concat(q,[t]),
|
function _poly_div(n,d,q) =
|
||||||
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
|
len(n)<len(d) ? [q,_poly_trim(n)] :
|
||||||
)
|
let(
|
||||||
poly_div(newn,d,newq);
|
t = n[0] / d[0],
|
||||||
|
newq = concat(q,[t]),
|
||||||
|
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
|
||||||
|
)
|
||||||
|
_poly_div(newn,d,newq);
|
||||||
|
|
||||||
|
|
||||||
// Internal Function: _poly_trim()
|
// Internal Function: _poly_trim()
|
||||||
|
@ -1401,4 +1376,4 @@ function real_roots(p,eps=undef,tol=1e-14) =
|
||||||
? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
|
? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
|
||||||
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
|
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
|
||||||
|
|
||||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
55
paths.scad
55
paths.scad
|
@ -43,10 +43,12 @@ include <triangulation.scad>
|
||||||
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
|
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
|
||||||
// fast = set to true for fast check that only looks at first entry. Default: false
|
// fast = set to true for fast check that only looks at first entry. Default: false
|
||||||
function is_path(list, dim=[2,3], fast=false) =
|
function is_path(list, dim=[2,3], fast=false) =
|
||||||
fast? is_list(list) && is_vector(list[0]) :
|
fast
|
||||||
is_list(list) && is_list(list[0]) && len(list)>1 &&
|
? is_list(list) && is_vector(list[0])
|
||||||
(is_undef(dim) || in_list(len(list[0]), force_list(dim))) &&
|
: is_matrix(list)
|
||||||
is_list_of(list, repeat(0,len(list[0])));
|
&& len(list)>1
|
||||||
|
&& len(list[0])>0
|
||||||
|
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
|
||||||
|
|
||||||
|
|
||||||
// Function: is_closed_path()
|
// Function: is_closed_path()
|
||||||
|
@ -105,32 +107,51 @@ function path_subselect(path, s1, u1, s2, u2, closed=false) =
|
||||||
|
|
||||||
// Function: simplify_path()
|
// Function: simplify_path()
|
||||||
// Description:
|
// Description:
|
||||||
// Takes a path and removes unnecessary collinear points.
|
// Takes a path and removes unnecessary subsequent collinear points.
|
||||||
// Usage:
|
// Usage:
|
||||||
// simplify_path(path, [eps])
|
// simplify_path(path, [eps])
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// path = A list of 2D path points.
|
// path = A list of path points of any dimension.
|
||||||
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
|
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
|
||||||
function simplify_path(path, eps=EPSILON) =
|
function simplify_path(path, eps=EPSILON) =
|
||||||
len(path)<=2? path : let(
|
assert( is_path(path), "Invalid path." )
|
||||||
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
|
assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
|
||||||
) [for (i = indices) path[i]];
|
len(path)<=2 ? path
|
||||||
|
: let(
|
||||||
|
indices = [ 0,
|
||||||
|
for (i=[1:1:len(path)-2])
|
||||||
|
if (!collinear(path[i-1],path[i],path[i+1], eps=eps)) i,
|
||||||
|
len(path)-1
|
||||||
|
]
|
||||||
|
)
|
||||||
|
[for (i = indices) path[i] ];
|
||||||
|
|
||||||
|
|
||||||
// Function: simplify_path_indexed()
|
// Function: simplify_path_indexed()
|
||||||
// Description:
|
// Description:
|
||||||
// Takes a list of points, and a path as a list of indices into `points`,
|
// Takes a list of points, and a list of indices into `points`,
|
||||||
// and removes all path points that are unecessarily collinear.
|
// and removes from the list all indices of subsequent indexed points that are unecessarily collinear.
|
||||||
|
// Returns the list of the remained indices.
|
||||||
// Usage:
|
// Usage:
|
||||||
// simplify_path_indexed(path, eps)
|
// simplify_path_indexed(points,indices, eps)
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// points = A list of points.
|
// points = A list of points.
|
||||||
// path = A list of indices into `points` that forms a path.
|
// indices = A list of indices into `points` that forms a path.
|
||||||
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
||||||
function simplify_path_indexed(points, path, eps=EPSILON) =
|
function simplify_path_indexed(points, indices, eps=EPSILON) =
|
||||||
len(path)<=2? path : let(
|
len(indices)<=2? indices
|
||||||
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
|
: let(
|
||||||
) [for (i = indices) path[i]];
|
indices = concat( indices[0],
|
||||||
|
[for (i=[1:1:len(indices)-2])
|
||||||
|
let(
|
||||||
|
i1 = indices[i-1],
|
||||||
|
i2 = indices[i],
|
||||||
|
i3 = indices[i+1]
|
||||||
|
)
|
||||||
|
if (!collinear(points[i1],points[i2],points[i3], eps=eps)) indices[i]],
|
||||||
|
indices[len(indices)-1] )
|
||||||
|
)
|
||||||
|
indices;
|
||||||
|
|
||||||
|
|
||||||
// Function: path_length()
|
// Function: path_length()
|
||||||
|
|
|
@ -3,14 +3,6 @@ include <../std.scad>
|
||||||
|
|
||||||
// Section: List Query Operations
|
// Section: List Query Operations
|
||||||
|
|
||||||
module test_is_simple_list() {
|
|
||||||
assert(is_simple_list([1,2,3,4]));
|
|
||||||
assert(is_simple_list([]));
|
|
||||||
assert(!is_simple_list([1,2,[3,4]]));
|
|
||||||
}
|
|
||||||
test_is_simple_list();
|
|
||||||
|
|
||||||
|
|
||||||
module test_select() {
|
module test_select() {
|
||||||
l = [3,4,5,6,7,8,9];
|
l = [3,4,5,6,7,8,9];
|
||||||
assert(select(l, 5, 6) == [8,9]);
|
assert(select(l, 5, 6) == [8,9]);
|
||||||
|
@ -365,6 +357,27 @@ module test_subindex() {
|
||||||
test_subindex();
|
test_subindex();
|
||||||
|
|
||||||
|
|
||||||
|
// Need decision about behavior for out of bounds ranges, empty ranges
|
||||||
|
module test_submatrix(){
|
||||||
|
M = [[1,2,3,4,5],
|
||||||
|
[6,7,8,9,10],
|
||||||
|
[11,12,13,14,15],
|
||||||
|
[16,17,18,19,20],
|
||||||
|
[21,22,23,24,25]];
|
||||||
|
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
|
||||||
|
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
|
||||||
|
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
|
||||||
|
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
|
||||||
|
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
|
||||||
|
assert_equal(submatrix(M, 1,3), [[9]]);
|
||||||
|
A = [[true, 17, "test"],
|
||||||
|
[[4,2], 91, false],
|
||||||
|
[6, [3,4], undef]];
|
||||||
|
assert_equal(submatrix(A,[0,2],[1,2]),[[17, "test"], [[3, 4], undef]]);
|
||||||
|
}
|
||||||
|
test_submatrix();
|
||||||
|
|
||||||
|
|
||||||
module test_force_list() {
|
module test_force_list() {
|
||||||
assert_equal(force_list([3,4,5]), [3,4,5]);
|
assert_equal(force_list([3,4,5]), [3,4,5]);
|
||||||
assert_equal(force_list(5), [5]);
|
assert_equal(force_list(5), [5]);
|
||||||
|
@ -467,6 +480,7 @@ test_array_dim();
|
||||||
module test_transpose() {
|
module test_transpose() {
|
||||||
assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]);
|
assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]);
|
||||||
assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]);
|
assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]);
|
||||||
|
assert(transpose([[1,2,3],[4,5,6]],reverse=true) == [[6,3], [5,2], [4,1]]);
|
||||||
assert(transpose([3,4,5]) == [3,4,5]);
|
assert(transpose([3,4,5]) == [3,4,5]);
|
||||||
}
|
}
|
||||||
test_transpose();
|
test_transpose();
|
||||||
|
|
|
@ -853,22 +853,6 @@ module test_real_roots(){
|
||||||
}
|
}
|
||||||
test_real_roots();
|
test_real_roots();
|
||||||
|
|
||||||
// Need decision about behavior for out of bounds ranges, empty ranges
|
|
||||||
module test_submatrix(){
|
|
||||||
M = [[1,2,3,4,5],
|
|
||||||
[6,7,8,9,10],
|
|
||||||
[11,12,13,14,15],
|
|
||||||
[16,17,18,19,20],
|
|
||||||
[21,22,23,24,25]];
|
|
||||||
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
|
|
||||||
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
|
|
||||||
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
|
|
||||||
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
|
|
||||||
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
|
|
||||||
}
|
|
||||||
test_submatrix();
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
module test_qr_factor() {
|
module test_qr_factor() {
|
||||||
// Check that R is upper triangular
|
// Check that R is upper triangular
|
||||||
|
@ -913,23 +897,21 @@ test_qr_factor();
|
||||||
|
|
||||||
module test_poly_mult(){
|
module test_poly_mult(){
|
||||||
assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]);
|
assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]);
|
||||||
assert_equal(poly_mult([3,2,1],[0]),[0]);
|
|
||||||
// assert_equal(poly_mult([3,2,1],[]),[]);
|
|
||||||
assert_equal(poly_mult([[1,2],[3,4],[5,6]]), [15,68,100,48]);
|
assert_equal(poly_mult([[1,2],[3,4],[5,6]]), [15,68,100,48]);
|
||||||
|
assert_equal(poly_mult([3,2,1],[0]),[0]);
|
||||||
assert_equal(poly_mult([[1,2],[0],[5,6]]), [0]);
|
assert_equal(poly_mult([[1,2],[0],[5,6]]), [0]);
|
||||||
// assert_equal(poly_mult([[1,2],[],[5,6]]), []);
|
assert_equal(poly_mult([[3,4,5],[0,0,0]]), [0]);
|
||||||
assert_equal(poly_mult([[3,4,5],[0,0,0]]),[0]);
|
assert_equal(poly_mult([[0],[0,0,0]]),[0]);
|
||||||
// assert_equal(poly_mult([[3,4,5],[0,0,0]]),[]);
|
|
||||||
}
|
}
|
||||||
test_poly_mult();
|
test_poly_mult();
|
||||||
|
|
||||||
|
|
||||||
module test_poly_div(){
|
module test_poly_div(){
|
||||||
assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[0]]);
|
assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[0]]);
|
||||||
// assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[]]);
|
|
||||||
assert_equal(poly_div([1,2,3,4],[1,2,3,4,5]), [[], [1,2,3,4]]);
|
assert_equal(poly_div([1,2,3,4],[1,2,3,4,5]), [[], [1,2,3,4]]);
|
||||||
assert_equal(poly_div(poly_add(poly_mult([1,2,3,4],[2,0,2]), [1,1,2]), [1,2,3,4]), [[2,0,2],[1,1,2]]);
|
assert_equal(poly_div(poly_add(poly_mult([1,2,3,4],[2,0,2]), [1,1,2]), [1,2,3,4]), [[2,0,2],[1,1,2]]);
|
||||||
assert_equal(poly_div([1,2,3,4], [1,-3]), [[1,5,18],[58]]);
|
assert_equal(poly_div([1,2,3,4], [1,-3]), [[1,5,18],[58]]);
|
||||||
|
assert_equal(poly_div([0], [1,-3]), [[0],[0]]);
|
||||||
}
|
}
|
||||||
test_poly_div();
|
test_poly_div();
|
||||||
|
|
||||||
|
@ -942,4 +924,4 @@ module test_poly_add(){
|
||||||
}
|
}
|
||||||
test_poly_add();
|
test_poly_add();
|
||||||
|
|
||||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
Loading…
Reference in a new issue