BOSL2/attachments.scad

576 lines
21 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: attachments.scad
// This is the file that handles attachments and orientation of children.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Default values for attachment code.
$tags = "";
$overlap = 0.01;
$color = undef;
$attach_to = undef;
$attach_anchor = [CENTER, CENTER, UP, 0];
$attach_norot = false;
$parent_size = undef;
$parent_size2 = undef;
$parent_shift = [0,0];
$parent_anchors = [];
$parent_anchor = BOTTOM;
$parent_orient = UP;
$tags_shown = [];
$tags_hidden = [];
// Section: Anchors, Spin, and Orientation
// This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()`
// and `sphere()` builtins, as well as to most of the shapes provided by this library itself.
// * An anchor is a place on an object which you can align the object to, or attach other objects
// to using `attach()` or `position()`. An anchor has a position, a direction, and a spin.
// The direction and spin are used to orient other objects to match when using `attach()`.
// * Spin is a simple rotation around the Z axis.
// * Orientation is rotating an object so that its top is pointed towards a given vector.
// An object will first be translated to its anchor position, then spun, then oriented.
//
// ## Anchor
// Anchoring is specified with the `anchor` argument in most shape modules.
// Specifying `anchor` when creating an object will translate the object so
// that the anchor point is at the origin (0,0,0). Anchoring always occurs
// before spin and orientation are applied.
//
// An anchor can be referred to in one of two ways; as a directional vector,
// or as a named anchor string.
//
// When given as a vector, it points, in a general way, towards the face, edge, or
// corner of the object that you want the anchor for, relative to the center of
// the object. There are directional constants named `TOP`, `BOTTOM`, `FRONT`, `BACK`,
// `LEFT`, and `RIGHT` that you can add together to specify an anchor point.
// For example:
// - `[0,0,1]` is the same as `TOP` and refers to the center of the top face.
// - `[-1,0,1]` is the same as `TOP+LEFT`, and refers to the center of the top-left edge.
// - `[1,1,-1]` is the same as `BOTTOM+BACK+RIGHT`, and refers to the bottom-back-right corner.
//
// The components of the directional vector should all be `1`, `0`, or `-1`.
// When the object is cylindrical, conical, or spherical in nature, the anchors will be
// located around the surface of the cylinder, cone, or sphere, relative to the center.
// The direction of a face anchor will be perpendicular to the face, pointing outward.
// The direction of a edge anchor will be the average of the anchor directions of the
// two faces the edge is between. The direction of a corner anchor will be the average
// of the anchor directions of the three faces the corner is on. The spin of all standard
// anchors is 0.
//
// Some more complex objects, like screws and stepper motors, have named anchors
// to refer to places on the object that are not at one of the standard faces, edges
// or corners. For example, stepper motors have anchors for `"screw1"`, `"screw2"`,
// etc. to refer to the various screwholes on the stepper motor shape. The names,
// positions, directions, and spins of these anchors will be specific to the object,
// and will be documented when they exist.
//
// ## Spin
// Spin is specified with the `spin` argument in most shape modules. Specifying `spin`
// when creating an object will rotate the object counter-clockwise around the Z axis
// by the given number of degrees. Spin is always applied after anchoring, and before
// orientation.
//
// ## Orient
// Orientation is specified with the `orient` argument in most shape modules. Specifying
// `orient` when creating an object will rotate the object such that the top of the
// object will be pointed at the vector direction given in the `orient` argument.
// Orientation is always applied after anchoring and spin. The constants `UP`, `DOWN`,
// `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be added together to form the directional
// vector for this. ie: `LEFT+BACK`
// Section: Functions
// Function: anchorpt()
// Usage:
// anchor(name, pos, [dir], [rot])
// Description:
// Creates a anchor data structure.
// Arguments:
// name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces.
// pos = The [X,Y,Z] position of the anchor.
// orient = A vector pointing in the direction parts should project from the anchor position.
// spin = If needed, the angle to rotate the part around the direction vector.
function anchorpt(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, spin];
// Function: find_anchor()
// Usage:
// find_anchor(anchor, h, size, [size2], [shift], [edges], [corners]);
// Description:
// Returns anchor data for the given vector or anchor name.
// Arguments:
// anchor = Vector or named anchor string.
// h = Height of the region.
// size = The [X,Y] size of the bottom of the cubical region.
// size2 = The [X,Y] size of the top of the cubical region.
// shift = The [X,Y] amount to shift the center of the top with respect to the center of the bottom.
// offset = If the anchor is not CENTER, this is the offset to add to the rest of the anchor points.
// geometry = One of "cube", "cylinder", or "sphere" to denote the overall geometry of the shape. Cones are "cylinder", and prismoids are "cube" for this purpose. Default: "cube"
// anchors = A list of extra non-standard named anchors.
// two_d = If true, object will be treated as 2D.
function find_anchor(anchor, h, size, size2=undef, shift=[0,0], offset=[0,0,0], anchors=[], geometry="cube", two_d=false) =
is_string(anchor)? (
let(found = search([anchor], anchors, num_returns_per_match=1)[0])
assert(found!=[], str("Unknown anchor: ",anchor))
anchors[found]
) : (
assert(is_vector(anchor),str("anchor=",anchor))
let(
size = point2d(size),
size2 = (size2!=undef)? point2d(size2) : size,
shift = point2d(shift),
oang = (
two_d? 0 :
anchor == UP? 0 :
anchor == DOWN? 0 :
(norm([anchor.x,anchor.y]) < EPSILON)? 0 :
atan2(anchor.y, anchor.x)+90
)
)
geometry=="sphere"? let(
phi = (anchor==UP||anchor==CENTER)? 0 : anchor==DOWN? 180 : 90 + (45 * anchor.z),
theta = anchor==CENTER? 90 : atan2(anchor.y, anchor.x),
vec = spherical_to_xyz(1, theta, phi),
offset = anchor==CENTER? [0,0,0] : offset,
pos = anchor==CENTER? CENTER : vmul(vec, (point3d(size)+h*UP)/2) + offset
) [anchor, pos, vec, oang] : let (
xyal = (
geometry=="cylinder"? (
let(xy = point2d(anchor))
norm(xy)>0? xy/norm(xy) : [0,0]
) : point2d(anchor)
),
botpt = point3d(vmul(size/2,xyal))+DOWN*h/2,
toppt = point3d(vmul(size2/2,xyal)+shift)+UP*h/2,
offset = anchor==CENTER? [0,0,0] : offset,
pos = lerp(botpt, toppt, (anchor.z+1)/2) + offset,
sidevec = two_d? point3d(xyal) :
approx(norm(xyal),0)? [0,0,0] :
rotate_points3d([point3d(xyal)], from=UP, to=toppt-botpt)[0],
vec = (
two_d? sidevec :
anchor==CENTER? UP :
norm([anchor.x,anchor.y]) < EPSILON? anchor :
norm(size)+norm(size2) < EPSILON? anchor :
abs(anchor.z) < EPSILON? sidevec :
anchor.z>0? (UP+sidevec)/2 :
(DOWN+sidevec)/2
)
) [anchor, pos, vec, oang]
);
function _str_char_split(s,delim,n=0,acc=[],word="") =
(n>=len(s))? concat(acc, [word]) :
(s[n]==delim)?
_str_char_split(s,delim,n+1,concat(acc,[word]),"") :
_str_char_split(s,delim,n+1,acc,str(word,s[n]));
// Section: Modules
// Module: orient_and_anchor()
//
// Description:
// Takes a vertically oriented part and anchors, spins and orients it.
// This is useful for making a custom shape available in various
// orientations and anchorings without extra translate()s and rotate()s.
// Children should be vertically (Z-axis) oriented, and centered.
// Non-vector anchor points should be named via the `anchors` arg.
//
// If this is *not* run as a child of `attach()` with the `to` argument
// given, then the following transformations are performed in order:
// * Translates so the `anchor` point is at the origin (0,0,0).
// * Rotates around the Z axis by `spin` degrees counter-clockwise.
// * Rotates so the top of the part points towards the vector `orient`.
//
// If this is called as a child of `attach(from,to)`, then the info
// for the anchor points referred to by `from` and `to` are fetched,
// which will include position, direction, and spin. With that info,
// the following transformations are performed:
// * Translates this part so it's anchor position matches the parent's anchor position.
// * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector.
// * Rotates this part so it's anchor spin matches the parent's anchor spin.
//
// Usage:
// orient_and_anchor(size, [anchor], [spin], [orient], [center], [noncentered], [anchors], [chain]) ...
//
// Arguments:
// size = The [X,Y,Z] size of the part.
// size2 = The [X,Y] size of the top of the part.
// shift = The [X,Y] offset of the top of the part, compared to the bottom of the part.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// center = If given, overrides `anchor`. If true, centers vertically. If false, `anchor` will be set to the value in `noncentered`.
// noncentered = The value to set `anchor` to if `center` == `false`. Default: `BOTTOM`.
// offset = The offset of the center of the object from the CENTER anchor.
// geometry = One of "cube", "cylinder", or "sphere" to denote the overall geometry of the shape. Cones are "cylinder", and prismoids are "cube" for this purpose. Default: "cube"
// anchors = A list of extra, non-standard optional anchors.
// chain = If true, allow attachable children.
// two_d = If true, object will be treated as 2D.
//
// Side Effects:
// `$parent_size` is set to the parent object's cubical region size.
// `$parent_size2` is set to the parent object's top [X,Y] size.
// `$parent_shift` is set to the parent object's `shift` value, if any.
// `$parent_geom` is set to the parent object's `geometry` value.
// `$parent_orient` is set to the parent object's `orient` value.
// `$parent_anchor` is set to the parent object's `anchor` value.
// `$parent_anchors` is set to the parent object's list of non-standard extra anchors.
// `$parent_2d` is set to the parent object's `two_d` value.
//
// Example(Med):
// #cylinder(d1=50, d2=30, h=60);
// orient_and_anchor(size=[50,50,60], size2=[30,30], anchor=RIGHT, orient=FWD)
// cylinder(d1=50, d2=30, h=60);
module orient_and_anchor(
size=undef,
orient=UP,
anchor=CENTER,
center=undef,
noncentered=BOTTOM,
spin=0,
size2=undef,
shift=[0,0],
offset=[0,0,0],
geometry="cube",
anchors=[],
chain=false,
two_d=false
) {
size2 = point2d(default(size2, size));
shift = point2d(shift);
anchr = is_undef(center)? anchor : (center? CENTER : noncentered);
pos = find_anchor(anchr, size.z, size, size2=size2, shift=shift, offset=offset, anchors=anchors, geometry=geometry, two_d=two_d)[1];
$parent_size = size;
$parent_size2 = size2;
$parent_shift = shift;
$parent_geom = geometry;
$parent_orient = orient;
$parent_offset = offset;
$parent_2d = two_d;
$parent_anchor = anchr;
$parent_anchors = anchors;
tags = _str_char_split($tags, " ");
s_tags = $tags_shown;
h_tags = $tags_hidden;
shown = !s_tags || any([for (tag=tags) in_list(tag, s_tags)]);
hidden = any([for (tag=tags) in_list(tag, h_tags)]);
if ($attach_to != undef) {
anch = find_anchor($attach_to, size.z, size, size2=size2, shift=shift, offset=offset, anchors=anchors, geometry=geometry, two_d=two_d);
ang = vector_angle(anch[2], two_d? BACK : DOWN);
axis = two_d? UP : vector_axis(anch[2], DOWN);
ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3];
axis2 = rotate_points3d([axis],[0,0,ang2])[0];
$attach_to = undef;
rot(ang, v=axis2)
rotate(ang2+spin)
translate(-anch[1])
{
if ($children>1 && chain) {
if(shown && !hidden) {
color($color) for (i=[0:1:$children-2]) children(i);
}
children($children-1);
} else {
if(shown && !hidden) color($color) children();
}
}
} else {
rot(from=UP,to=orient)
rotate(spin)
translate(-pos)
{
if ($children>1 && chain) {
if(shown && !hidden) {
color($color) for (i=[0:1:$children-2]) children(i);
}
children($children-1);
} else {
if(shown && !hidden) color($color) children();
}
}
}
}
// Module: position()
// Usage:
// position(from, [overlap]) ...
// Description:
// Attaches children to a parent object at an anchor point.
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// Example:
// spheroid(d=20) {
// position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(RIGHT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(FRONT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// }
module position(from)
{
assert($parent_size != undef, "No object to attach to!");
anchors = (is_vector(from)||is_string(from))? [from] : from;
for (anchr = anchors) {
anch = find_anchor(anchr, $parent_size.z, point2d($parent_size), size2=$parent_size2, shift=$parent_shift, offset=$parent_offset, anchors=$parent_anchors, geometry=$parent_geom, two_d=$parent_2d);
$attach_to = undef;
$attach_anchor = anch;
$attach_norot = true;
translate(anch[1]) children();
}
}
// Module: attach()
// Usage:
// attach(from, [overlap]) ...
// attach(from, to, [overlap]) ...
// Description:
// Attaches children to a parent object at an anchor point and orientation.
// Attached objects will be overlapped into the parent object by a little bit,
// as specified by the default `$overlap` value (0.01 by default), or by the
// overriding `overlap=` argument. This is to prevent OpenSCAD from making
// non-manifold objects. You can also define `$overlap=` as an argument in a
// parent module to set the default for all attachments to it.
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// to = Optional name of the child anchor point. If given, orients the child such that the named anchors align together rotationally.
// overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0.01` by default.
// norot = If true, don't rotate children when attaching to the anchor point. Only translate to the anchor point.
// Example:
// spheroid(d=20) {
// attach(TOP) down(1.5) cyl(l=11.5, d1=10, d2=5, anchor=BOTTOM);
// attach(RIGHT, BOTTOM) down(1.5) cyl(l=11.5, d1=10, d2=5);
// attach(FRONT, BOTTOM, overlap=1.5) cyl(l=11.5, d1=10, d2=5);
// }
module attach(from, to=undef, overlap=undef, norot=false)
{
assert($parent_size != undef, "No object to attach to!");
overlap = (overlap!=undef)? overlap : $overlap;
anchors = (is_vector(from)||is_string(from))? [from] : from;
for (anchr = anchors) {
anch = find_anchor(anchr, $parent_size.z, point2d($parent_size), size2=$parent_size2, shift=$parent_shift, offset=$parent_offset, anchors=$parent_anchors, geometry=$parent_geom, two_d=$parent_2d);
$attach_to = to;
$attach_anchor = anch;
$attach_norot = norot;
if (norot || (norm(anch[2]-UP)<1e-9 && anch[3]==0)) {
translate(anch[1]) translate([0,0,-overlap]) children();
} else {
fromvec = $parent_2d? BACK : UP;
translate(anch[1]) rot(anch[3],from=fromvec,to=anch[2]) translate([0,0,-overlap]) children();
}
}
}
// Module: tags()
// Usage:
// tags(tags) ...
// Description:
// Marks all children with the given tags.
// Arguments:
// tags = String containing space delimited set of tags to apply.
module tags(tags)
{
$tags = tags;
children();
}
// Module: recolor()
// Usage:
// recolor(c) ...
// Description:
// Sets the color for children that can use the $color special variable.
// Arguments:
// c = Color name or RGBA vector.
// Example:
// recolor("red") cyl(l=20, d=10);
module recolor(c)
{
$color = c;
children();
}
// Module: hide()
// Usage:
// hide(tags) ...
// Description:
// Hides all children with the given tags.
// Example:
// hide("A") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module hide(tags="")
{
$tags_hidden = tags==""? [] : _str_char_split(tags, " ");
children();
}
// Module: show()
// Usage:
// show(tags) ...
// Description:
// Shows only children with the given tags.
// Example:
// show("A B") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
module show(tags="")
{
$tags_shown = tags==""? [] : _str_char_split(tags, " ");
children();
}
// Module: diff()
// Usage:
// diff(neg, [keep]) ...
// diff(neg, pos, [keep]) ...
// Description:
// If `neg` is given, takes the union of all children with tags
// that are in `neg`, and differences them from the union of all
// children with tags in `pos`. If `pos` is not given, then all
// items in `neg` are differenced from all items not in `neg`. If
// `keep` is given, all children with tags in `keep` are then unioned
// with the result. If `keep` is not given, all children without
// tags in `pos` or `neg` are then unioned with the result.
// Arguments:
// neg = String containing space delimited set of tag names of children to difference away.
// pos = String containing space delimited set of tag names of children to be differenced away from.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// diff("neg", "pos", keep="axle")
// sphere(d=100, $tags="pos") {
// attach(CENTER) xcyl(d=40, h=120, $tags="axle");
// attach(CENTER) cube([40,120,100], anchor=CENTER, $tags="neg");
// }
// Example: Masking
// diff("mask")
// cube([80,90,100], center=true) {
// let(p = $parent_size*1.01, $tags="mask") {
// position([for (y=[-1,1],z=[-1,1]) [0,y,z]])
// rounding_mask_x(l=p.x, r=25);
// position([for (x=[-1,1],z=[-1,1]) [x,0,z]])
// rounding_mask_y(l=p.y, r=20);
// position([for (x=[-1,1],y=[-1,1]) [x,y,0]])
// rounding_mask_z(l=p.z, r=25);
// }
// }
module diff(neg, pos=undef, keep=undef)
{
difference() {
if (pos != undef) {
show(pos) children();
} else {
if (keep == undef) {
hide(neg) children();
} else {
hide(str(neg," ",keep)) children();
}
}
show(neg) children();
}
if (keep!=undef) {
show(keep) children();
} else if (pos!=undef) {
hide(str(pos," ",neg)) children();
}
}
// Module: intersect()
// Usage:
// intersect(a, [keep]) ...
// intersect(a, b, [keep]) ...
// Description:
// If `a` is given, takes the union of all children with tags that
// are in `a`, and intersection()s them with the union of all
// children with tags in `b`. If `b` is not given, then the union
// of all items with tags in `a` are intersection()ed with the union
// of all items without tags in `a`. If `keep` is given, then the
// result is unioned with all the children with tags in `keep`. If
// `keep` is not given, all children without tags in `a` or `b` are
// unioned with the result.
// Arguments:
// a = String containing space delimited set of tag names of children.
// b = String containing space delimited set of tag names of children.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// intersect("wheel", "mask", keep="axle")
// sphere(d=100, $tags="wheel") {
// attach(CENTER) cube([40,100,100], anchor=CENTER, $tags="mask");
// attach(CENTER) xcyl(d=40, h=100, $tags="axle");
// }
module intersect(a, b=undef, keep=undef)
{
intersection() {
if (b != undef) {
show(b) children();
} else {
if (keep == undef) {
hide(a) children();
} else {
hide(str(a," ",keep)) children();
}
}
show(a) children();
}
if (keep!=undef) {
show(keep) children();
} else if (b!=undef) {
hide(str(a," ",b)) children();
}
}
// Module: hulling()
// Usage:
// hulling(a, [keep]) ...
// Description:
// Takes the union of all children with tags that are in `a`, and hull()s them.
// If `keep` is given, then the result is unioned with all the children with
// tags in `keep`. If `keep` is not given, all children without tags in `a` are
// unioned with the result.
// Arguments:
// a = String containing space delimited set of tag names of children.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
// hulling("body")
// sphere(d=100, $tags="body") {
// attach(CENTER) cube([40,90,90], anchor=CENTER, $tags="body");
// attach(CENTER) xcyl(d=40, h=120, $tags="other");
// }
module hulling(a)
{
hull() show(a) children();
children();
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap