2019-04-22 08:08:41 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: attachments.scad
// This is the file that handles attachments and orientation of children.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
2019-05-08 05:42:44 +00:00
// Default values for attachment code.
2019-05-26 06:31:05 +00:00
$t ags = "" ;
2019-05-08 05:42:44 +00:00
$ overlap = 0.01 ;
2019-05-26 06:31:05 +00:00
$ color = undef ;
2019-05-08 05:42:44 +00:00
$ attach_to = undef ;
$ attach_anchor = [ CENTER , CENTER , UP , 0 ] ;
$ attach_norot = false ;
2019-05-26 06:31:05 +00:00
2019-05-08 05:42:44 +00:00
$ parent_size = undef ;
$ parent_size2 = undef ;
$ parent_shift = [ 0 , 0 ] ;
$ parent_anchors = [ ] ;
2019-05-26 06:31:05 +00:00
$ parent_anchor = BOTTOM ;
$ parent_orient = UP ;
2019-05-08 05:42:44 +00:00
$t ags_shown = [ ] ;
$t ags_hidden = [ ] ;
2019-05-26 06:31:05 +00:00
// Section: Anchors, Spin, and Orientation
// This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()`
// and `sphere()` builtins, as well as to most of the shapes provided by this library itself.
// * An anchor is a place on an object which you can align the object to, or attach other objects
// to using `attach()` or `position()`. An anchor has a position, a direction, and a spin.
// The direction and spin are used to orient other objects to match when using `attach()`.
// * Spin is a simple rotation around the Z axis.
// * Orientation is rotating an object so that its top is pointed towards a given vector.
// An object will first be translated to its anchor position, then spun, then oriented.
2019-05-26 19:47:50 +00:00
//
// ## Anchor
2019-05-26 06:31:05 +00:00
// Anchoring is specified with the `anchor` argument in most shape modules.
// Specifying `anchor` when creating an object will translate the object so
// that the anchor point is at the origin (0,0,0). Anchoring always occurs
// before spin and orientation are applied.
//
// An anchor can be referred to in one of two ways; as a directional vector,
// or as a named anchor string.
//
// When given as a vector, it points, in a general way, towards the face, edge, or
// corner of the object that you want the anchor for, relative to the center of
// the object. There are directional constants named `TOP`, `BOTTOM`, `FRONT`, `BACK`,
// `LEFT`, and `RIGHT` that you can add together to specify an anchor point.
// For example:
// - `[0,0,1]` is the same as `TOP` and refers to the center of the top face.
// - `[-1,0,1]` is the same as `TOP+LEFT`, and refers to the center of the top-left edge.
// - `[1,1,-1]` is the same as `BOTTOM+BACK+RIGHT`, and refers to the bottom-back-right corner.
//
// The components of the directional vector should all be `1`, `0`, or `-1`.
// When the object is cylindrical, conical, or spherical in nature, the anchors will be
// located around the surface of the cylinder, cone, or sphere, relative to the center.
// The direction of a face anchor will be perpendicular to the face, pointing outward.
// The direction of a edge anchor will be the average of the anchor directions of the
// two faces the edge is between. The direction of a corner anchor will be the average
// of the anchor directions of the three faces the corner is on. The spin of all standard
// anchors is 0.
//
// Some more complex objects, like screws and stepper motors, have named anchors
// to refer to places on the object that are not at one of the standard faces, edges
// or corners. For example, stepper motors have anchors for `"screw1"`, `"screw2"`,
// etc. to refer to the various screwholes on the stepper motor shape. The names,
// positions, directions, and spins of these anchors will be specific to the object,
// and will be documented when they exist.
2019-05-26 19:47:50 +00:00
//
// ## Spin
2019-05-26 06:31:05 +00:00
// Spin is specified with the `spin` argument in most shape modules. Specifying `spin`
// when creating an object will rotate the object counter-clockwise around the Z axis
// by the given number of degrees. Spin is always applied after anchoring, and before
// orientation.
2019-05-26 19:47:50 +00:00
//
// ## Orient
2019-05-26 06:31:05 +00:00
// Orientation is specified with the `orient` argument in most shape modules. Specifying
// `orient` when creating an object will rotate the object such that the top of the
// object will be pointed at the vector direction given in the `orient` argument.
// Orientation is always applied after anchoring and spin. The constants `UP`, `DOWN`,
// `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be added together to form the directional
// vector for this. ie: `LEFT+BACK`
2019-05-08 05:42:44 +00:00
2019-04-22 08:08:41 +00:00
// Section: Functions
2019-04-23 03:55:03 +00:00
// Function: anchorpt()
2019-04-22 08:08:41 +00:00
// Usage:
2019-04-23 03:55:03 +00:00
// anchor(name, pos, [dir], [rot])
2019-04-22 08:08:41 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Creates a anchor data structure.
2019-04-22 08:08:41 +00:00
// Arguments:
2019-04-23 03:55:03 +00:00
// name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces.
// pos = The [X,Y,Z] position of the anchor.
2019-05-26 06:31:05 +00:00
// orient = A vector pointing in the direction parts should project from the anchor position.
// spin = If needed, the angle to rotate the part around the direction vector.
function anchorpt ( name , pos = [ 0 , 0 , 0 ] , orient = UP , spin = 0 ) = [ name , pos , orient , spin ] ;
2019-04-22 08:08:41 +00:00
2019-04-23 03:55:03 +00:00
// Function: find_anchor()
2019-04-22 08:08:41 +00:00
// Usage:
2019-04-23 03:55:03 +00:00
// find_anchor(anchor, h, size, [size2], [shift], [edges], [corners]);
2019-04-22 08:08:41 +00:00
// Description:
2019-04-23 22:59:43 +00:00
// Returns anchor data for the given vector or anchor name.
2019-04-22 08:08:41 +00:00
// Arguments:
2019-04-23 03:55:03 +00:00
// anchor = Vector or named anchor string.
2019-04-22 08:08:41 +00:00
// h = Height of the region.
// size = The [X,Y] size of the bottom of the cubical region.
// size2 = The [X,Y] size of the top of the cubical region.
// shift = The [X,Y] amount to shift the center of the top with respect to the center of the bottom.
2019-08-02 01:29:33 +00:00
// offset = If the anchor is not CENTER, this is the offset to add to the rest of the anchor points.
2019-04-22 08:08:41 +00:00
// geometry = One of "cube", "cylinder", or "sphere" to denote the overall geometry of the shape. Cones are "cylinder", and prismoids are "cube" for this purpose. Default: "cube"
2019-05-26 06:31:05 +00:00
// anchors = A list of extra non-standard named anchors.
2019-04-24 02:13:43 +00:00
// two_d = If true, object will be treated as 2D.
2019-06-25 06:53:22 +00:00
function find_anchor ( anchor , h , size , size2 = undef , shift = [ 0 , 0 ] , offset = [ 0 , 0 , 0 ] , anchors = [ ] , geometry = "cube" , two_d = false ) =
2019-04-23 03:55:03 +00:00
is_string ( anchor ) ? (
2019-05-26 06:31:05 +00:00
let ( found = search ( [ anchor ] , anchors , num_returns_per_match = 1 ) [ 0 ] )
2019-04-23 03:55:03 +00:00
assert ( found ! = [ ] , str ( "Unknown anchor: " , anchor ) )
2019-05-26 06:31:05 +00:00
anchors [ found ]
2019-04-22 08:08:41 +00:00
) : (
2019-05-26 06:31:05 +00:00
assert ( is_vector ( anchor ) , str ( "anchor=" , anchor ) )
2019-04-22 08:08:41 +00:00
let (
size = point2d ( size ) ,
size2 = ( size2 ! = undef ) ? point2d ( size2 ) : size ,
shift = point2d ( shift ) ,
oang = (
2019-04-24 02:13:43 +00:00
two_d ? 0 :
2019-04-23 03:55:03 +00:00
anchor = = UP ? 0 :
anchor = = DOWN ? 0 :
( norm ( [ anchor . x , anchor . y ] ) < EPSILON ) ? 0 :
atan2 ( anchor . y , anchor . x ) + 90
2019-04-22 08:08:41 +00:00
)
)
geometry = = "sphere" ? let (
2019-04-23 03:55:03 +00:00
phi = ( anchor = = UP || anchor = = CENTER ) ? 0 : anchor = = DOWN ? 180 : 90 + ( 45 * anchor . z ) ,
theta = anchor = = CENTER ? 90 : atan2 ( anchor . y , anchor . x ) ,
2019-04-22 08:08:41 +00:00
vec = spherical_to_xyz ( 1 , theta , phi ) ,
2019-08-02 01:29:33 +00:00
offset = anchor = = CENTER ? [ 0 , 0 , 0 ] : offset ,
2019-06-25 06:53:22 +00:00
pos = anchor = = CENTER ? CENTER : vmul ( vec , ( point3d ( size ) + h * UP ) / 2 ) + offset
2019-04-23 03:55:03 +00:00
) [ anchor , pos , vec , oang ] : let (
2019-04-22 08:08:41 +00:00
xyal = (
geometry = = "cylinder" ? (
2019-04-23 03:55:03 +00:00
let ( xy = point2d ( anchor ) )
2019-04-22 08:08:41 +00:00
norm ( xy ) > 0 ? xy / norm ( xy ) : [ 0 , 0 ]
2019-04-23 03:55:03 +00:00
) : point2d ( anchor )
2019-04-22 08:08:41 +00:00
) ,
botpt = point3d ( vmul ( size / 2 , xyal ) ) + DOWN * h / 2 ,
toppt = point3d ( vmul ( size2 / 2 , xyal ) + shift ) + UP * h / 2 ,
2019-08-01 01:48:26 +00:00
offset = anchor = = CENTER ? [ 0 , 0 , 0 ] : offset ,
2019-06-25 06:53:22 +00:00
pos = lerp ( botpt , toppt , ( anchor . z + 1 ) / 2 ) + offset ,
2019-06-24 00:42:57 +00:00
sidevec = two_d ? point3d ( xyal ) :
approx ( norm ( xyal ) , 0 ) ? [ 0 , 0 , 0 ] :
rotate_points3d ( [ point3d ( xyal ) ] , from = UP , to = toppt - botpt ) [ 0 ] ,
2019-04-22 08:08:41 +00:00
vec = (
2019-04-24 02:13:43 +00:00
two_d ? sidevec :
2019-04-23 03:55:03 +00:00
anchor = = CENTER ? UP :
norm ( [ anchor . x , anchor . y ] ) < EPSILON ? anchor :
2019-04-26 09:15:53 +00:00
norm ( size ) + norm ( size2 ) < EPSILON ? anchor :
2019-04-23 03:55:03 +00:00
abs ( anchor . z ) < EPSILON ? sidevec :
anchor . z > 0 ? ( UP + sidevec ) / 2 :
2019-04-22 08:08:41 +00:00
( DOWN + sidevec ) / 2
)
2019-04-24 02:15:34 +00:00
) [ anchor , pos , vec , oang ]
2019-04-22 08:08:41 +00:00
) ;
function _str_char_split ( s , delim , n = 0 , acc = [ ] , word = "" ) =
( n >= len ( s ) ) ? concat ( acc , [ word ] ) :
( s [ n ] = = delim ) ?
_str_char_split ( s , delim , n + 1 , concat ( acc , [ word ] ) , "" ) :
_str_char_split ( s , delim , n + 1 , acc , str ( word , s [ n ] ) ) ;
// Section: Modules
2019-04-23 03:55:03 +00:00
// Module: orient_and_anchor()
2019-04-22 08:08:41 +00:00
//
// Description:
2019-05-26 06:31:05 +00:00
// Takes a vertically oriented part and anchors, spins and orients it.
2019-04-22 08:08:41 +00:00
// This is useful for making a custom shape available in various
2019-05-26 06:31:05 +00:00
// orientations and anchorings without extra translate()s and rotate()s.
2019-04-22 08:08:41 +00:00
// Children should be vertically (Z-axis) oriented, and centered.
2019-04-23 03:55:03 +00:00
// Non-vector anchor points should be named via the `anchors` arg.
2019-05-26 06:31:05 +00:00
//
// If this is *not* run as a child of `attach()` with the `to` argument
// given, then the following transformations are performed in order:
// * Translates so the `anchor` point is at the origin (0,0,0).
// * Rotates around the Z axis by `spin` degrees counter-clockwise.
// * Rotates so the top of the part points towards the vector `orient`.
//
// If this is called as a child of `attach(from,to)`, then the info
// for the anchor points referred to by `from` and `to` are fetched,
// which will include position, direction, and spin. With that info,
// the following transformations are performed:
// * Translates this part so it's anchor position matches the parent's anchor position.
// * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector.
// * Rotates this part so it's anchor spin matches the parent's anchor spin.
2019-04-22 08:08:41 +00:00
//
// Usage:
2019-05-26 06:31:05 +00:00
// orient_and_anchor(size, [anchor], [spin], [orient], [center], [noncentered], [anchors], [chain]) ...
2019-04-22 08:08:41 +00:00
//
// Arguments:
// size = The [X,Y,Z] size of the part.
// size2 = The [X,Y] size of the top of the part.
// shift = The [X,Y] offset of the top of the part, compared to the bottom of the part.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-23 03:55:03 +00:00
// center = If given, overrides `anchor`. If true, centers vertically. If false, `anchor` will be set to the value in `noncentered`.
// noncentered = The value to set `anchor` to if `center` == `false`. Default: `BOTTOM`.
2019-06-25 06:53:22 +00:00
// offset = The offset of the center of the object from the CENTER anchor.
2019-04-22 08:08:41 +00:00
// geometry = One of "cube", "cylinder", or "sphere" to denote the overall geometry of the shape. Cones are "cylinder", and prismoids are "cube" for this purpose. Default: "cube"
2019-04-23 03:55:03 +00:00
// anchors = A list of extra, non-standard optional anchors.
2019-04-22 08:08:41 +00:00
// chain = If true, allow attachable children.
2019-05-26 06:31:05 +00:00
// two_d = If true, object will be treated as 2D.
2019-04-22 08:08:41 +00:00
//
// Side Effects:
// `$parent_size` is set to the parent object's cubical region size.
// `$parent_size2` is set to the parent object's top [X,Y] size.
// `$parent_shift` is set to the parent object's `shift` value, if any.
// `$parent_geom` is set to the parent object's `geometry` value.
2019-04-23 03:55:03 +00:00
// `$parent_orient` is set to the parent object's `orient` value.
// `$parent_anchor` is set to the parent object's `anchor` value.
// `$parent_anchors` is set to the parent object's list of non-standard extra anchors.
2019-04-26 09:15:53 +00:00
// `$parent_2d` is set to the parent object's `two_d` value.
2019-04-22 08:08:41 +00:00
//
2019-05-26 06:31:05 +00:00
// Example(Med):
// #cylinder(d1=50, d2=30, h=60);
// orient_and_anchor(size=[50,50,60], size2=[30,30], anchor=RIGHT, orient=FWD)
// cylinder(d1=50, d2=30, h=60);
2019-04-23 03:55:03 +00:00
module orient_and_anchor (
2019-05-26 06:31:05 +00:00
size = undef ,
orient = UP ,
anchor = CENTER ,
center = undef ,
noncentered = BOTTOM ,
spin = 0 ,
size2 = undef ,
shift = [ 0 , 0 ] ,
2019-06-25 06:53:22 +00:00
offset = [ 0 , 0 , 0 ] ,
2019-05-26 06:31:05 +00:00
geometry = "cube" ,
anchors = [ ] ,
chain = false ,
two_d = false
2019-04-22 08:08:41 +00:00
) {
size2 = point2d ( default ( size2 , size ) ) ;
shift = point2d ( shift ) ;
2019-05-26 06:31:05 +00:00
anchr = is_undef ( center ) ? anchor : ( center ? CENTER : noncentered ) ;
2019-06-25 06:53:22 +00:00
pos = find_anchor ( anchr , size . z , size , size2 = size2 , shift = shift , offset = offset , anchors = anchors , geometry = geometry , two_d = two_d ) [ 1 ] ;
2019-05-26 06:31:05 +00:00
2019-04-22 08:08:41 +00:00
$ parent_size = size ;
$ parent_size2 = size2 ;
$ parent_shift = shift ;
$ parent_geom = geometry ;
2019-04-23 03:55:03 +00:00
$ parent_orient = orient ;
2019-06-25 06:53:22 +00:00
$ parent_offset = offset ;
2019-04-24 02:13:43 +00:00
$ parent_2d = two_d ;
2019-05-26 06:31:05 +00:00
$ parent_anchor = anchr ;
2019-04-24 02:13:43 +00:00
$ parent_anchors = anchors ;
2019-05-26 06:31:05 +00:00
2019-04-22 08:08:41 +00:00
tags = _str_char_split ( $t ags , " " ) ;
s_tags = $t ags_shown ;
h_tags = $t ags_hidden ;
shown = ! s_tags || any ( [ for ( tag = tags ) in_list ( tag , s_tags ) ] ) ;
hidden = any ( [ for ( tag = tags ) in_list ( tag , h_tags ) ] ) ;
2019-05-26 06:31:05 +00:00
if ( $ attach_to ! = undef ) {
2019-06-25 06:53:22 +00:00
anch = find_anchor ( $ attach_to , size . z , size , size2 = size2 , shift = shift , offset = offset , anchors = anchors , geometry = geometry , two_d = two_d ) ;
2020-01-15 22:18:11 +00:00
ang = vector_angle ( anch [ 2 ] , two_d ? BACK : DOWN ) ;
axis = two_d ? UP : vector_axis ( anch [ 2 ] , DOWN ) ;
2019-05-26 06:31:05 +00:00
ang2 = ( anch [ 2 ] = = UP || anch [ 2 ] = = DOWN ) ? 0 : 180 - anch [ 3 ] ;
axis2 = rotate_points3d ( [ axis ] , [ 0 , 0 , ang2 ] ) [ 0 ] ;
$ attach_to = undef ;
rot ( ang , v = axis2 )
rotate ( ang2 + spin )
translate ( - anch [ 1 ] )
{
if ( $children > 1 && chain ) {
if ( shown && ! hidden ) {
2019-05-27 05:34:46 +00:00
color ( $ color ) for ( i = [ 0 : 1 : $children - 2 ] ) children ( i ) ;
2019-05-26 06:31:05 +00:00
}
children ( $children - 1 ) ;
} else {
if ( shown && ! hidden ) color ( $ color ) children ( ) ;
}
}
} else {
rot ( from = UP , to = orient )
rotate ( spin )
translate ( - pos )
{
if ( $children > 1 && chain ) {
if ( shown && ! hidden ) {
2019-05-27 05:34:46 +00:00
color ( $ color ) for ( i = [ 0 : 1 : $children - 2 ] ) children ( i ) ;
2019-05-26 06:31:05 +00:00
}
children ( $children - 1 ) ;
} else {
if ( shown && ! hidden ) color ( $ color ) children ( ) ;
}
2019-04-22 08:08:41 +00:00
}
}
}
2019-05-26 06:31:05 +00:00
// Module: position()
// Usage:
// position(from, [overlap]) ...
// Description:
// Attaches children to a parent object at an anchor point.
// Arguments:
// from = The vector, or name of the parent anchor point to attach to.
// Example:
// spheroid(d=20) {
// position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(RIGHT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// position(FRONT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM);
// }
2019-08-30 01:43:44 +00:00
module position ( from )
2019-05-26 06:31:05 +00:00
{
assert ( $ parent_size ! = undef , "No object to attach to!" ) ;
anchors = ( is_vector ( from ) || is_string ( from ) ) ? [ from ] : from ;
for ( anchr = anchors ) {
2019-06-25 06:53:22 +00:00
anch = find_anchor ( anchr , $ parent_size . z , point2d ( $ parent_size ) , size2 = $ parent_size2 , shift = $ parent_shift , offset = $ parent_offset , anchors = $ parent_anchors , geometry = $ parent_geom , two_d = $ parent_2d ) ;
2019-05-26 06:31:05 +00:00
$ attach_to = undef ;
$ attach_anchor = anch ;
$ attach_norot = true ;
translate ( anch [ 1 ] ) children ( ) ;
}
}
2019-04-22 08:08:41 +00:00
// Module: attach()
// Usage:
2019-05-26 06:31:05 +00:00
// attach(from, [overlap]) ...
// attach(from, to, [overlap]) ...
2019-04-22 08:08:41 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Attaches children to a parent object at an anchor point and orientation.
2020-01-14 03:06:56 +00:00
// Attached objects will be overlapped into the parent object by a little bit,
// as specified by the default `$overlap` value (0.01 by default), or by the
// overriding `overlap=` argument. This is to prevent OpenSCAD from making
// non-manifold objects. You can also define `$overlap=` as an argument in a
// parent module to set the default for all attachments to it.
2019-04-22 08:08:41 +00:00
// Arguments:
2019-05-26 06:31:05 +00:00
// from = The vector, or name of the parent anchor point to attach to.
2019-04-26 09:15:53 +00:00
// to = Optional name of the child anchor point. If given, orients the child such that the named anchors align together rotationally.
2020-01-14 03:06:56 +00:00
// overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0.01` by default.
2019-04-26 09:15:53 +00:00
// norot = If true, don't rotate children when attaching to the anchor point. Only translate to the anchor point.
2019-04-22 08:08:41 +00:00
// Example:
// spheroid(d=20) {
2019-04-26 09:15:53 +00:00
// attach(TOP) down(1.5) cyl(l=11.5, d1=10, d2=5, anchor=BOTTOM);
2019-04-22 08:08:41 +00:00
// attach(RIGHT, BOTTOM) down(1.5) cyl(l=11.5, d1=10, d2=5);
2019-04-26 09:15:53 +00:00
// attach(FRONT, BOTTOM, overlap=1.5) cyl(l=11.5, d1=10, d2=5);
2019-04-22 08:08:41 +00:00
// }
2019-05-26 06:31:05 +00:00
module attach ( from , to = undef , overlap = undef , norot = false )
2019-04-22 08:08:41 +00:00
{
assert ( $ parent_size ! = undef , "No object to attach to!" ) ;
overlap = ( overlap ! = undef ) ? overlap : $ overlap ;
2019-05-26 06:31:05 +00:00
anchors = ( is_vector ( from ) || is_string ( from ) ) ? [ from ] : from ;
for ( anchr = anchors ) {
2019-06-25 06:53:22 +00:00
anch = find_anchor ( anchr , $ parent_size . z , point2d ( $ parent_size ) , size2 = $ parent_size2 , shift = $ parent_shift , offset = $ parent_offset , anchors = $ parent_anchors , geometry = $ parent_geom , two_d = $ parent_2d ) ;
2019-05-26 06:31:05 +00:00
$ attach_to = to ;
$ attach_anchor = anch ;
$ attach_norot = norot ;
if ( norot || ( norm ( anch [ 2 ] - UP ) < 1e-9 && anch [ 3 ] = = 0 ) ) {
translate ( anch [ 1 ] ) translate ( [ 0 , 0 , - overlap ] ) children ( ) ;
} else {
fromvec = $ parent_2d ? BACK : UP ;
translate ( anch [ 1 ] ) rot ( anch [ 3 ] , from = fromvec , to = anch [ 2 ] ) translate ( [ 0 , 0 , - overlap ] ) children ( ) ;
}
2019-04-22 08:08:41 +00:00
}
}
// Module: tags()
// Usage:
// tags(tags) ...
// Description:
// Marks all children with the given tags.
// Arguments:
// tags = String containing space delimited set of tags to apply.
module tags ( tags )
{
$t ags = tags ;
children ( ) ;
}
// Module: recolor()
// Usage:
// recolor(c) ...
// Description:
// Sets the color for children that can use the $color special variable.
2019-04-26 09:15:53 +00:00
// Arguments:
// c = Color name or RGBA vector.
2019-04-22 08:08:41 +00:00
// Example:
// recolor("red") cyl(l=20, d=10);
module recolor ( c )
{
$ color = c ;
children ( ) ;
}
// Module: hide()
// Usage:
// hide(tags) ...
2019-04-26 09:15:53 +00:00
// Description:
// Hides all children with the given tags.
// Example:
// hide("A") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
2019-04-22 08:08:41 +00:00
module hide ( tags = "" )
{
$t ags_hidden = tags = = "" ? [ ] : _str_char_split ( tags , " " ) ;
children ( ) ;
}
// Module: show()
// Usage:
// show(tags) ...
2019-04-26 09:15:53 +00:00
// Description:
// Shows only children with the given tags.
// Example:
// show("A B") cube(50, anchor=CENTER, $tags="Main") {
// attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A");
// attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B");
// }
2019-04-22 08:08:41 +00:00
module show ( tags = "" )
{
$t ags_shown = tags = = "" ? [ ] : _str_char_split ( tags , " " ) ;
children ( ) ;
}
// Module: diff()
// Usage:
// diff(neg, [keep]) ...
// diff(neg, pos, [keep]) ...
// Description:
// If `neg` is given, takes the union of all children with tags
// that are in `neg`, and differences them from the union of all
// children with tags in `pos`. If `pos` is not given, then all
// items in `neg` are differenced from all items not in `neg`. If
// `keep` is given, all children with tags in `keep` are then unioned
// with the result. If `keep` is not given, all children without
// tags in `pos` or `neg` are then unioned with the result.
// Arguments:
// neg = String containing space delimited set of tag names of children to difference away.
// pos = String containing space delimited set of tag names of children to be differenced away from.
// keep = String containing space delimited set of tag names of children to keep whole.
2019-04-26 09:15:53 +00:00
// Example:
// diff("neg", "pos", keep="axle")
// sphere(d=100, $tags="pos") {
// attach(CENTER) xcyl(d=40, h=120, $tags="axle");
// attach(CENTER) cube([40,120,100], anchor=CENTER, $tags="neg");
// }
2019-05-26 06:31:05 +00:00
// Example: Masking
// diff("mask")
// cube([80,90,100], center=true) {
// let(p = $parent_size*1.01, $tags="mask") {
// position([for (y=[-1,1],z=[-1,1]) [0,y,z]])
// rounding_mask_x(l=p.x, r=25);
// position([for (x=[-1,1],z=[-1,1]) [x,0,z]])
// rounding_mask_y(l=p.y, r=20);
// position([for (x=[-1,1],y=[-1,1]) [x,y,0]])
// rounding_mask_z(l=p.z, r=25);
// }
// }
2019-04-22 08:08:41 +00:00
module diff ( neg , pos = undef , keep = undef )
{
difference ( ) {
if ( pos ! = undef ) {
show ( pos ) children ( ) ;
} else {
if ( keep = = undef ) {
hide ( neg ) children ( ) ;
} else {
hide ( str ( neg , " " , keep ) ) children ( ) ;
}
}
show ( neg ) children ( ) ;
}
if ( keep ! = undef ) {
show ( keep ) children ( ) ;
} else if ( pos ! = undef ) {
hide ( str ( pos , " " , neg ) ) children ( ) ;
}
}
// Module: intersect()
// Usage:
// intersect(a, [keep]) ...
// intersect(a, b, [keep]) ...
// Description:
// If `a` is given, takes the union of all children with tags that
// are in `a`, and intersection()s them with the union of all
// children with tags in `b`. If `b` is not given, then the union
// of all items with tags in `a` are intersection()ed with the union
// of all items without tags in `a`. If `keep` is given, then the
// result is unioned with all the children with tags in `keep`. If
// `keep` is not given, all children without tags in `a` or `b` are
// unioned with the result.
// Arguments:
// a = String containing space delimited set of tag names of children.
// b = String containing space delimited set of tag names of children.
// keep = String containing space delimited set of tag names of children to keep whole.
2019-04-26 09:15:53 +00:00
// Example:
// intersect("wheel", "mask", keep="axle")
// sphere(d=100, $tags="wheel") {
// attach(CENTER) cube([40,100,100], anchor=CENTER, $tags="mask");
// attach(CENTER) xcyl(d=40, h=100, $tags="axle");
// }
2019-04-22 08:08:41 +00:00
module intersect ( a , b = undef , keep = undef )
{
intersection ( ) {
if ( b ! = undef ) {
show ( b ) children ( ) ;
} else {
if ( keep = = undef ) {
hide ( a ) children ( ) ;
} else {
hide ( str ( a , " " , keep ) ) children ( ) ;
}
}
show ( a ) children ( ) ;
}
if ( keep ! = undef ) {
show ( keep ) children ( ) ;
} else if ( b ! = undef ) {
hide ( str ( a , " " , b ) ) children ( ) ;
}
}
2019-05-08 05:42:44 +00:00
2019-05-10 11:03:30 +00:00
// Module: hulling()
// Usage:
// hulling(a, [keep]) ...
// Description:
// Takes the union of all children with tags that are in `a`, and hull()s them.
// If `keep` is given, then the result is unioned with all the children with
// tags in `keep`. If `keep` is not given, all children without tags in `a` are
// unioned with the result.
// Arguments:
// a = String containing space delimited set of tag names of children.
// keep = String containing space delimited set of tag names of children to keep whole.
// Example:
2019-05-13 01:07:47 +00:00
// hulling("body")
2019-05-10 11:03:30 +00:00
// sphere(d=100, $tags="body") {
2019-05-17 21:41:45 +00:00
// attach(CENTER) cube([40,90,90], anchor=CENTER, $tags="body");
// attach(CENTER) xcyl(d=40, h=120, $tags="other");
2019-05-10 11:03:30 +00:00
// }
module hulling ( a )
{
hull ( ) show ( a ) children ( ) ;
children ( ) ;
}
2019-04-22 08:08:41 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap