mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
312 lines
9.1 KiB
OpenSCAD
312 lines
9.1 KiB
OpenSCAD
///////////////////////////////////////////
|
|
// LibFile: quaternions.scad
|
|
// Support for Quaternions.
|
|
// To use, add the following line to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// ```
|
|
///////////////////////////////////////////
|
|
|
|
|
|
// Section: Quaternions
|
|
// Quaternions are fast methods of storing and calculating arbitrary rotations.
|
|
// Quaternions contain information on both axis of rotation, and rotation angle.
|
|
// You can chain multiple rotation together by multiplying quaternions together.
|
|
// They don't suffer from the gimbal-lock issues that `[X,Y,Z]` rotation angles do.
|
|
// Quaternions are stored internally as a 4-value vector:
|
|
// `[X,Y,Z,W]`, where the quaternion formula is `W+Xi+Yj+Zk`
|
|
|
|
|
|
// Internal
|
|
function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
|
|
|
|
|
|
// Function: Quat()
|
|
// Usage:
|
|
// Quat(ax, ang);
|
|
// Description: Create a new Quaternion from axis and angle of rotation.
|
|
// Arguments:
|
|
// ax = Vector of axis of rotation.
|
|
// ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function Quat(ax=[0,0,1], ang=0) = _Quat(ax/norm(ax), sin(ang/2), cos(ang/2));
|
|
|
|
|
|
// Function: QuatX()
|
|
// Usage:
|
|
// QuatX(a);
|
|
// Description: Create a new Quaternion for rotating around the X axis [1,0,0].
|
|
// Arguments:
|
|
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function QuatX(a=0) = Quat([1,0,0],a);
|
|
|
|
|
|
// Function: QuatY()
|
|
// Usage:
|
|
// QuatY(a);
|
|
// Description: Create a new Quaternion for rotating around the Y axis [0,1,0].
|
|
// Arguments:
|
|
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function QuatY(a=0) = Quat([0,1,0],a);
|
|
|
|
// Function: QuatZ()
|
|
// Usage:
|
|
// QuatZ(a);
|
|
// Description: Create a new Quaternion for rotating around the Z axis [0,0,1].
|
|
// Arguments:
|
|
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
|
|
function QuatZ(a=0) = Quat([0,0,1],a);
|
|
|
|
|
|
// Function: QuatXYZ()
|
|
// Usage:
|
|
// QuatXYZ([X,Y,Z])
|
|
// Description:
|
|
// Creates a quaternion from standard [X,Y,Z] rotation angles in degrees.
|
|
// Arguments:
|
|
// a = The triplet of rotation angles, [X,Y,Z]
|
|
function QuatXYZ(a=[0,0,0]) =
|
|
let(
|
|
qx = QuatX(a[0]),
|
|
qy = QuatY(a[1]),
|
|
qz = QuatZ(a[2])
|
|
)
|
|
Q_Mul(qz, Q_Mul(qy, qx));
|
|
|
|
|
|
// Function: Q_Ident()
|
|
// Description: Returns the "Identity" zero-rotation Quaternion.
|
|
function Q_Ident() = [0, 0, 0, 1];
|
|
|
|
|
|
// Function: Q_Add_S()
|
|
// Usage:
|
|
// Q_Add_S(q, s)
|
|
// Description: Adds a scalar value `s` to the W part of a quaternion `q`.
|
|
function Q_Add_S(q, s) = q+[0,0,0,s];
|
|
|
|
|
|
// Function: Q_Sub_S()
|
|
// Usage:
|
|
// Q_Sub_S(q, s)
|
|
// Description: Subtracts a scalar value `s` from the W part of a quaternion `q`.
|
|
function Q_Sub_S(q, s) = q-[0,0,0,s];
|
|
|
|
|
|
// Function: Q_Mul_S()
|
|
// Usage:
|
|
// Q_Mul_S(q, s)
|
|
// Description: Multiplies each part of a quaternion `q` by a scalar value `s`.
|
|
function Q_Mul_S(q, s) = q*s;
|
|
|
|
|
|
// Function: Q_Div_S()
|
|
// Usage:
|
|
// Q_Div_S(q, s)
|
|
// Description: Divides each part of a quaternion `q` by a scalar value `s`.
|
|
function Q_Div_S(q, s) = q/s;
|
|
|
|
|
|
// Function: Q_Add()
|
|
// Usage:
|
|
// Q_Add(a, b)
|
|
// Description: Adds each part of two quaternions together.
|
|
function Q_Add(a, b) = a+b;
|
|
|
|
|
|
// Function: Q_Sub()
|
|
// Usage:
|
|
// Q_Sub(a, b)
|
|
// Description: Subtracts each part of quaternion `b` from quaternion `a`.
|
|
function Q_Sub(a, b) = a-b;
|
|
|
|
|
|
// Function: Q_Mul()
|
|
// Usage:
|
|
// Q_Mul(a, b)
|
|
// Description: Multiplies quaternion `a` by quaternion `b`.
|
|
function Q_Mul(a, b) = [
|
|
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
|
|
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
|
|
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
|
|
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z,
|
|
];
|
|
|
|
|
|
// Function: Q_Dot()
|
|
// Usage:
|
|
// Q_Dot(a, b)
|
|
// Description: Calculates the dot product between quaternions `a` and `b`.
|
|
function Q_Dot(a, b) = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
|
|
|
|
|
|
// Function: Q_Neg()
|
|
// Usage:
|
|
// Q_Neg(q)
|
|
// Description: Returns the negative of quaternion `q`.
|
|
function Q_Neg(q) = -q;
|
|
|
|
|
|
// Function: Q_Conj()
|
|
// Usage:
|
|
// Q_Conj(q)
|
|
// Description: Returns the conjugate of quaternion `q`.
|
|
function Q_Conj(q) = [-q.x, -q.y, -q.z, q[3]];
|
|
|
|
|
|
// Function: Q_Norm()
|
|
// Usage:
|
|
// Q_Norm(q)
|
|
// Description: Returns the `norm()` "length" of quaternion `q`.
|
|
function Q_Norm(q) = norm(q);
|
|
|
|
|
|
// Function: Q_Normalize()
|
|
// Usage:
|
|
// Q_Normalize(q)
|
|
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
|
|
function Q_Normalize(q) = q/norm(q);
|
|
|
|
|
|
// Function: Q_Dist()
|
|
// Usage:
|
|
// Q_Dist(q1, q2)
|
|
// Description: Returns the "distance" between two quaternions.
|
|
function Q_Dist(q1, q2) = norm(q2-q1);
|
|
|
|
|
|
// Function: Q_Slerp()
|
|
// Usage:
|
|
// Q_Slerp(q1, q2, u);
|
|
// Description:
|
|
// Returns a quaternion that is a spherical interpolation between two quaternions.
|
|
// Arguments:
|
|
// q1 = The first quaternion. (u=0)
|
|
// q2 = The second quaternion. (u=1)
|
|
// u = The proportional value, from 0 to 1, of what part of the interpolation to return.
|
|
// Example(3D): Giving `u` as a Scalar
|
|
// a = QuatY(-135);
|
|
// b = QuatXYZ([0,-30,30]);
|
|
// for (u=[0:0.1:1])
|
|
// Qrot(Q_Slerp(a, b, u))
|
|
// right(80) cube([10,10,1]);
|
|
// #sphere(r=80);
|
|
// Example(3D): Giving `u` as a Range
|
|
// a = QuatZ(-135);
|
|
// b = QuatXYZ([90,0,-45]);
|
|
// for (q = Q_Slerp(a, b, [0:0.1:1]))
|
|
// Qrot(q) right(80) cube([10,10,1]);
|
|
// #sphere(r=80);
|
|
function Q_Slerp(q1, q2, u) =
|
|
assert(is_num(u) || is_num(u[0]))
|
|
!is_num(u)? [for (uu=u) Q_Slerp(q1,q2,uu)] :
|
|
let(
|
|
q1 = Q_Normalize(q1),
|
|
q2 = Q_Normalize(q2),
|
|
dot = Q_Dot(q1, q2)
|
|
) let(
|
|
q2 = dot<0? Q_Neg(q2) : q2,
|
|
dot = dot<0? -dot : dot
|
|
) (dot>0.9995)? Q_Normalize(q1 + (u * (q2-q1))) :
|
|
let(
|
|
dot = constrain(dot,-1,1),
|
|
theta_0 = acos(dot),
|
|
theta = theta_0 * u,
|
|
q3 = Q_Normalize(q2 - q1*dot),
|
|
out = q1*cos(theta) + q3*sin(theta)
|
|
) out;
|
|
|
|
|
|
// Function: Q_Matrix3()
|
|
// Usage:
|
|
// Q_Matrix3(q);
|
|
// Description:
|
|
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
|
|
function Q_Matrix3(q) = [
|
|
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
|
|
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
|
|
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]]
|
|
];
|
|
|
|
|
|
// Function: Q_Matrix4()
|
|
// Usage:
|
|
// Q_Matrix4(q);
|
|
// Description:
|
|
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
|
|
function Q_Matrix4(q) = [
|
|
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
|
|
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
|
|
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: Q_Axis()
|
|
// Usage:
|
|
// Q_Axis(q)
|
|
// Description:
|
|
// Returns the axis of rotation of a normalized quaternion `q`.
|
|
function Q_Axis(q) = let(d = sqrt(1-(q[3]*q[3]))) (d==0)? [0,0,1] : [q[0]/d, q[1]/d, q[2]/d];
|
|
|
|
|
|
// Function: Q_Angle()
|
|
// Usage:
|
|
// Q_Angle(q)
|
|
// Description:
|
|
// Returns the angle of rotation (in degrees) of a normalized quaternion `q`.
|
|
function Q_Angle(q) = 2 * acos(q[3]);
|
|
|
|
|
|
// Function&Module: Qrot()
|
|
// Usage: As Module
|
|
// Qrot(q) ...
|
|
// Usage: As Function
|
|
// pts = Qrot(q,p);
|
|
// Description:
|
|
// When called as a module, rotates all children by the rotation stored in quaternion `q`.
|
|
// When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`.
|
|
// When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`.
|
|
// Example(FlatSpin):
|
|
// module shape() translate([80,0,0]) cube([10,10,1]);
|
|
// q = QuatXYZ([90,-15,-45]);
|
|
// Qrot(q) shape();
|
|
// #shape();
|
|
// Example(NORENDER):
|
|
// q = QuatXYZ([45,35,10]);
|
|
// mat4x4 = Qrot(q);
|
|
// Example(NORENDER):
|
|
// q = QuatXYZ([45,35,10]);
|
|
// pt = Qrot(q, p=[4,5,6]);
|
|
// Example(NORENDER):
|
|
// q = QuatXYZ([45,35,10]);
|
|
// pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
|
|
module Qrot(q) {
|
|
multmatrix(Q_Matrix4(q)) {
|
|
children();
|
|
}
|
|
}
|
|
|
|
function Qrot(q,p) =
|
|
is_undef(p)? Q_Matrix4(q) :
|
|
is_vector(p)? Qrot(q,[p])[0] :
|
|
affine3d_apply(p,[Q_Matrix4(q)]);
|
|
|
|
|
|
// Module: Qrot_copies()
|
|
// Usage:
|
|
// Qrot_copies(quats) ...
|
|
// Description:
|
|
// For each quaternion given in the list `quats`, rotates to that orientation and creates a copy
|
|
// of all children. This is equivalent to `for (q=quats) Qrot(q) ...`.
|
|
// Arguments:
|
|
// quats = A list containing all quaternions to rotate to and create copies of all children for.
|
|
// Example:
|
|
// a = QuatZ(-135);
|
|
// b = QuatXYZ([0,-30,30]);
|
|
// Qrot_copies(Q_Slerp(a, b, [0:0.1:1]))
|
|
// right(80) cube([10,10,1]);
|
|
// #sphere(r=80);
|
|
module Qrot_copies(quats) for (q=quats) Qrot(q) children();
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|