BOSL2/geometry.scad
2019-08-29 18:01:05 -07:00

1936 lines
69 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: geometry.scad
// Geometry helpers.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// CommonCode:
// include <BOSL2/rounding.scad>
// Section: Lines and Triangles
// Function: point_on_segment2d()
// Usage:
// point_on_segment2d(point, edge);
// Description:
// Determine if the point is on the line segment between two points.
// Returns true if yes, and false if not.
// Arguments:
// point = The point to test.
// edge = Array of two points forming the line segment to test against.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_on_segment2d(point, edge, eps=EPSILON) =
approx(point,edge[0],eps=eps) || approx(point,edge[1],eps=eps) || // The point is an endpoint
sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
&& sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
&& approx(point_left_of_segment2d(point, edge),0,eps=eps); // and on the line defined by edge
// Function: point_left_of_segment2d()
// Usage:
// point_left_of_segment2d(point, edge);
// Description:
// Return >0 if point is left of the line defined by edge.
// Return =0 if point is on the line.
// Return <0 if point is right of the line.
// Arguments:
// point = The point to check position of.
// edge = Array of two points forming the line segment to test against.
function point_left_of_segment2d(point, edge) =
(edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y);
// Internal non-exposed function.
function _point_above_below_segment(point, edge) =
edge[0].y <= point.y? (
(edge[1].y > point.y && point_left_of_segment2d(point, edge) > 0)? 1 : 0
) : (
(edge[1].y <= point.y && point_left_of_segment2d(point, edge) < 0)? -1 : 0
);
// Function: collinear()
// Usage:
// collinear(a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// a = First point.
// b = Second point.
// c = Third point.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function collinear(a, b, c, eps=EPSILON) =
distance_from_line([a,b], c) < eps;
// Function: collinear_indexed()
// Usage:
// collinear_indexed(points, a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// points = A list of points.
// a = Index in `points` of first point.
// b = Index in `points` of second point.
// c = Index in `points` of third point.
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
function collinear_indexed(points, a, b, c, eps=EPSILON) =
let(
p1=points[a],
p2=points[b],
p3=points[c]
) collinear(p1, p2, p3, eps);
// Function: distance_from_line()
// Usage:
// distance_from_line(line, pt);
// Description:
// Finds the perpendicular distance of a point `pt` from the line `line`.
// Arguments:
// line = A list of two points, defining a line that both are on.
// pt = A point to find the distance of from the line.
// Example:
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
function distance_from_line(line, pt) =
let(a=line[0], n=normalize(line[1]-a), d=a-pt)
norm(d - ((d * n) * n));
// Function: line_normal()
// Usage:
// line_normal([P1,P2])
// line_normal(p1,p2)
// Description:
// Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray.
// Arguments:
// p1 = First point on 2D line.
// p2 = Second point on 2D line.
// Example(2D):
// p1 = [10,10];
// p2 = [50,30];
// n = line_normal(p1,p2);
// stroke([p1,p2], endcap2="arrow2");
// color("green") stroke([p1,p1+10*n], endcap2="arrow2");
// color("blue") place_copies([p1,p2]) circle(d=2, $fn=12);
function line_normal(p1,p2) =
is_undef(p2)? line_normal(p1[0],p1[1]) :
normalize([p1.y-p2.y,p2.x-p1.x]);
// 2D Line intersection from two segments.
// This function returns [p,t,u] where p is the intersection point of
// the lines defined by the two segments, t is the bezier parameter
// for the intersection point on s1 and u is the bezier parameter for
// the intersection point on s2. The bezier parameter runs over [0,1]
// for each segment, so if it is in this range, then the intersection
// lies on the segment. Otherwise it lies somewhere on the extension
// of the segment.
function _general_line_intersection(s1,s2,eps=EPSILON) =
let(
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
) approx(denominator,0,eps=eps)? [undef,undef,undef] : let(
t = det2([s1[0],s2[0]]-s2) / denominator,
u = det2([s1[0],s1[0]]-[s1[1],s2[1]]) /denominator
) [s1[0]+t*(s1[1]-s1[0]), t, u];
// Function: line_intersection()
// Usage:
// line_intersection(l1, l2);
// Description:
// Returns the 2D intersection point of two unbounded 2D lines.
// Returns `undef` if the lines are parallel.
// Arguments:
// l1 = First 2D line, given as a list of two 2D points on the line.
// l2 = Second 2D line, given as a list of two 2D points on the line.
function line_intersection(l1,l2,eps=EPSILON) =
let(isect = _general_line_intersection(l1,l2,eps=eps)) isect[0];
// Function: segment_intersection()
// Usage:
// segment_intersection(s1, s2);
// Description:
// Returns the 2D intersection point of two 2D line segments.
// Returns `undef` if they do not intersect.
// Arguments:
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function segment_intersection(s1,s2,eps=EPSILON) =
let(
isect = _general_line_intersection(s1,s2,eps=eps)
) isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
// Function: line_segment_intersection()
// Usage:
// line_segment_intersection(line, segment);
// Description:
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function line_segment_intersection(line,segment,eps=EPSILON) =
let(
isect = _general_line_intersection(line,segment,eps=eps)
) isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
// Function: line_closest_point()
// Usage:
// line_closest_point(line,pt);
// Description:
// Returns the point on the given `line` that is closest to the given point `pt`.
// Arguments:
// line = A list of two points that are on the unbounded line.
// pt = The point to find the closest point on the line to.
function line_closest_point(line,pt) =
let(
n = line_normal(line),
isect = _general_line_intersection(line,[pt,pt+n])
) isect[0];
// Function: segment_closest_point()
// Usage:
// segment_closest_point(seg,pt);
// Description:
// Returns the point on the given line segment `seg` that is closest to the given point `pt`.
// Arguments:
// seg = A list of two points that are the endpoints of the bounded line segment.
// pt = The point to find the closest point on the segment to.
function segment_closest_point(seg,pt) =
let(
n = line_normal(seg),
isect = _general_line_intersection(seg,[pt,pt+n])
)
norm(n)==0? seg[0] :
isect[1]<=0? seg[0] :
isect[1]>=1? seg[1] :
isect[0];
// Function: find_circle_2tangents()
// Usage:
// find_circle_2tangents(pt1, pt2, pt3, r|d);
// Description:
// Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point.
// Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`.
// If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle.
// Arguments:
// pt1 = A point that the first ray passes though.
// pt2 = The starting point of both rays.
// pt3 = A point that the second ray passes though.
// r = The radius of the circle to find.
// d = The diameter of the circle to find.
// Example(2D):
// pts = [[60,40], [10,10], [65,5]];
// rad = 10;
// stroke([pts[1],pts[0]], endcap2="arrow2");
// stroke([pts[1],pts[2]], endcap2="arrow2");
// circ = find_circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad);
// translate(circ[0]) {
// color("green") {
// stroke(circle(r=rad),closed=true);
// stroke([[0,0],rad*[cos(315),sin(315)]]);
// }
// }
// place_copies(pts) color("blue") circle(d=2, $fn=12);
// translate(circ[0]) color("red") circle(d=2, $fn=12);
// labels = [[pts[0], "pt1"], [pts[1],"pt2"], [pts[2],"pt3"], [circ[0], "CP"], [circ[0]+[cos(315),sin(315)]*rad*0.7, "r"]];
// for(l=labels) translate(l[0]+[0,2]) color("black") text(text=l[1], size=2.5, halign="center");
function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) =
let(
r = get_radius(r=r, d=d, dflt=undef),
v1 = normalize(pt1 - pt2),
v2 = normalize(pt3 - pt2)
) approx(norm(v1+v2))? undef :
assert(r!=undef, "Must specify either r or d.")
let(
a = vector_angle(v1,v2),
n = vector_axis(v1,v2),
v = normalize(mean([v1,v2])),
s = r/sin(a/2),
cp = pt2 + s*v/norm(v)
) [cp, n];
// Function: find_circle_3points()
// Usage:
// find_circle_3points(pt1, pt2, pt3);
// Description:
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
// points. The centerpoint will be a 2D or 3D vector, depending on the points input. If all three
// points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]).
// If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are
// collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D
// vector with a non-negative Z axis.
// Arguments:
// pt1 = The first point.
// pt2 = The second point.
// pt3 = The third point.
// Example(2D):
// pts = [[60,40], [10,10], [65,5]];
// circ = find_circle_3points(pts[0], pts[1], pts[2]);
// translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72);
// translate(circ[0]) color("red") circle(d=3, $fn=12);
// place_copies(pts) color("blue") circle(d=3, $fn=12);
function find_circle_3points(pt1, pt2, pt3) =
collinear(pt1,pt2,pt3)? [undef,undef,undef] :
let(
v1 = pt1-pt2,
v2 = pt3-pt2,
n = vector_axis(v1,v2),
n2 = n.z<0? -n : n
) len(pt1)+len(pt2)+len(pt3)>6? (
let(
a = project_plane(pt1, pt1, pt2, pt3),
b = project_plane(pt2, pt1, pt2, pt3),
c = project_plane(pt3, pt1, pt2, pt3),
res = find_circle_3points(a, b, c)
) res[0]==undef? [undef,undef,undef] : let(
cp = lift_plane(res[0], pt1, pt2, pt3),
r = norm(p2-cp)
) [cp, r, n2]
) : let(
mp1 = pt2 + v1/2,
mp2 = pt2 + v2/2,
mpv1 = rot(90, v=n, p=v1),
mpv2 = rot(90, v=n, p=v2),
l1 = [mp1, mp1+mpv1],
l2 = [mp2, mp2+mpv2],
isect = line_intersection(l1,l2)
) is_undef(isect)? [undef,undef,undef] : let(
r = norm(pt2-isect)
) [isect, r, n2];
// Function: tri_calc()
// Usage:
// tri_calc(ang,ang2,adj,opp,hyp);
// Description:
// Given a side length and an angle, or two side lengths, calculates the rest of the side lengths
// and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where
// ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side
// opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees.
// This is certainly more verbose and slower than writing your own calculations, but has the nice
// benefit that you can just specify the info you have, and don't have to figure out which trig
// formulas you need to use.
// Figure(2D):
// color("#ccc") {
// stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]);
// stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30));
// stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58));
// }
// color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]);
// color("#0c0") {
// translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center");
// translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center");
// }
// color("blue") {
// translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center");
// translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center");
// translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center");
// }
// Arguments:
// ang = The angle in degrees of the primary corner of the triangle.
// ang2 = The angle in degrees of the other non-right corner of the triangle.
// adj = The length of the side adjacent to the primary corner.
// opp = The length of the side opposite to the primary corner.
// hyp = The length of the hypotenuse.
// Example:
// tri = tri_calc(opp=15,hyp=30);
// echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]);
// Examples:
// adj = tri_calc(ang=30,opp=10)[0];
// opp = tri_calc(ang=20,hyp=30)[1];
// hyp = tri_calc(ang2=50,adj=20)[2];
// ang = tri_calc(adj=20,hyp=30)[3];
// ang2 = tri_calc(adj=20,hyp=40)[4];
function tri_calc(ang,ang2,adj,opp,hyp) =
assert(num_defined([ang,ang2])<2,"You cannot specify both ang and ang2.")
assert(num_defined([ang,ang2,adj,opp,hyp])==2, "You must specify exactly two arguments.")
let(
ang = ang!=undef? assert(ang>0&&ang<90) ang :
ang2!=undef? (90-ang2) :
adj==undef? asin(constrain(opp/hyp,-1,1)) :
opp==undef? acos(constrain(adj/hyp,-1,1)) :
atan2(opp,adj),
ang2 = ang2!=undef? assert(ang2>0&&ang2<90) ang2 : (90-ang),
adj = adj!=undef? assert(adj>0) adj :
(opp!=undef? (opp/tan(ang)) : (hyp*cos(ang))),
opp = opp!=undef? assert(opp>0) opp :
(adj!=undef? (adj*tan(ang)) : (hyp*sin(ang))),
hyp = hyp!=undef? assert(hyp>0) assert(adj<hyp) assert(opp<hyp) hyp :
(adj!=undef? (adj/cos(ang)) : (opp/sin(ang)))
)
[adj, opp, hyp, ang, ang2];
// Function: triangle_area()
// Usage:
// triangle_area(a,b,c);
// Description:
// Returns the area of a triangle formed between three 2D or 3D vertices.
// Result will be negative if the points are 2D and in in clockwise order.
// Examples:
// triangle_area([0,0], [5,10], [10,0]); // Returns -50
// triangle_area([10,0], [5,10], [0,0]); // Returns 50
function triangle_area(a,b,c) =
len(a)==3? 0.5*norm(cross(c-a,c-b)) : (
a.x * (b.y - c.y) +
b.x * (c.y - a.y) +
c.x * (a.y - b.y)
) / 2;
// Section: Planes
// Function: plane3pt()
// Usage:
// plane3pt(p1, p2, p3);
// Description:
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// p1 = The first point on the plane.
// p2 = The second point on the plane.
// p3 = The third point on the plane.
function plane3pt(p1, p2, p3) =
let(
p1=point3d(p1),
p2=point3d(p2),
p3=point3d(p3),
normal = normalize(cross(p3-p1, p2-p1))
) concat(normal, [normal*p1]);
// Function: plane3pt_indexed()
// Usage:
// plane3pt_indexed(points, i1, i2, i3);
// Description:
// Given a list of points, and the indexes of three of those points,
// generates the cartesian equation of a plane that those points all
// lie on. Requires that the three indexed points be non-collinear.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// points = A list of points.
// i1 = The index into `points` of the first point on the plane.
// i2 = The index into `points` of the second point on the plane.
// i3 = The index into `points` of the third point on the plane.
function plane3pt_indexed(points, i1, i2, i3) =
let(
p1 = points[i1],
p2 = points[i2],
p3 = points[i3]
) plane3pt(p1,p2,p3);
// Function: plane_from_pointslist()
// Usage:
// plane_from_pointslist(points);
// Description:
// Given a list of coplanar points, returns the cartesian equation of a plane.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of the plane.
function plane_from_pointslist(points) =
let(
points = deduplicate(points),
indices = find_noncollinear_points(points),
p1 = points[indices[0]],
p2 = points[indices[1]],
p3 = points[indices[2]]
) plane3pt(p1,p2,p3);
// Function: plane_normal()
// Usage:
// plane_normal(plane);
// Description:
// Returns the normal vector for the given plane.
function plane_normal(plane) = [for (i=[0:2]) plane[i]];
// Function: distance_from_plane()
// Usage:
// distance_from_plane(plane, point)
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
// The returned distance will be positive if the point is in front of the
// plane; on the same side of the plane as the normal of that plane points
// towards. If the point is behind the plane, then the distance returned
// will be negative. The normal of the plane is the same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function distance_from_plane(plane, point) =
[plane.x, plane.y, plane.z] * point - plane[3];
// Function: coplanar()
// Usage:
// coplanar(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
// Returns true if the point is on that plane.
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function coplanar(plane, point) =
abs(distance_from_plane(plane, point)) <= EPSILON;
// Function: in_front_of_plane()
// Usage:
// in_front_of_plane(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
// plane that the normal points towards. The normal of the plane is the
// same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function in_front_of_plane(plane, point) =
distance_from_plane(plane, point) > EPSILON;
// Section: Paths and Polygons
// Function: is_path()
// Usage:
// is_path(x);
// Description:
// Returns true if the given item looks like a path. A path is defined as a list of two or more points.
function is_path(x) = is_list(x) && is_vector(x.x) && len(x)>1;
// Function: is_closed_path()
// Usage:
// is_closed_path(path, [eps]);
// Description:
// Returns true if the first and last points in the given path are coincident.
function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps);
// Function: close_path()
// Usage:
// close_path(path);
// Description:
// If a path's last point does not coincide with its first point, closes the path so it does.
function close_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? path : concat(path,[path[0]]);
// Function: cleanup_path()
// Usage:
// cleanup_path(path);
// Description:
// If a path's last point coincides with its first point, deletes the last point in the path.
function cleanup_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? select(path,0,-2) : path;
// Function: path_subselect()
// Usage:
// path_subselect(path,s1,u1,s2,u2):
// Description:
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
// Arguments:
// s1 = The number of the starting segment.
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
// s2 = The number of the ending segment.
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
function path_subselect(path,s1,u1,s2,u2) =
let(
l = len(path)-1,
u1 = s1<0? 0 : s1>l? 1 : u1,
u2 = s2<0? 0 : s2>l? 1 : u2,
s1 = constrain(s1,0,l),
s2 = constrain(s2,0,l),
pathout = concat(
(s1<l)? [lerp(path[s1],path[s1+1],u1)] : [],
[for (i=[s1+1:1:s2]) path[i]],
(s2<l)? [lerp(path[s2],path[s2+1],u2)] : []
)
) pathout;
// Function: polygon_area()
// Usage:
// area = polygon_area(vertices);
// Description:
// Given a polygon, returns the area of that polygon. If the polygon is self-crossing, the results are undefined.
function polygon_area(vertices) =
0.5*sum([for(i=[0:len(vertices)-1]) det2(select(vertices,i,i+1))]);
// Function: polygon_shift()
// Usage:
// polygon_shift(poly, i);
// Description:
// Given a polygon `poly`, rotates the point ordering so that the first point in the polygon path is the one at index `i`.
// Arguments:
// poly = The list of points in the polygon path.
// i = The index of the point to shift to the front of the path.
// Example:
// polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]]
function polygon_shift(poly, i) =
assert(i<len(poly))
let(
poly = cleanup_path(poly)
) select(poly,i,i+len(poly)-1);
// Function: polygon_shift_to_closest_point()
// Usage:
// polygon_shift_to_closest_point(path, pt);
// Description:
// Given a polygon `path`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
function polygon_shift_to_closest_point(path, pt) =
let(
path = cleanup_path(path),
closest = path_closest_point(path,pt),
seg = select(path,closest[0],closest[0]+1),
u = norm(closest[1]-seg[0]) / norm(seg[1]-seg[0]),
segnum = closest[0] + (u>0.5? 1 : 0)
) select(path,segnum,segnum+len(path)-1);
// Function: first_noncollinear()
// Usage:
// first_noncollinear(i1, i2, points);
// Description:
// Finds the first point in `points` that is not collinear with the points indexed by `i1` and `i2`. Returns the index of the found point.
// Arguments:
// i1 = The first point.
// i2 = The second point.
// points = The list of points to find a non-collinear point from.
function first_noncollinear(i1, i2, points, _i) =
(_i>=len(points) || !collinear_indexed(points, i1, i2, _i))? _i :
find_first_noncollinear(i1, i2, points, _i=_i+1);
// Function: noncollinear_points()
// Usage:
// find_noncollinear_points(points);
// Description:
// Finds the indexes of three good points in the points list `points` that are not collinear.
function find_noncollinear_points(points) =
let(
a = 0,
b = furthest_point(a, points),
c = first_noncollinear(a, b, points)
) [a, b, c];
// Function: centroid()
// Usage:
// centroid(vertices)
// Description:
// Given a simple 2D polygon, returns the coordinates of the polygon's centroid.
// If the polygon is self-intersecting, the results are undefined.
function centroid(vertices) =
sum([
for(i=[0:len(vertices)-1])
let(segment=select(vertices,i,i+1))
det2(segment)*sum(segment)
]) / 6 / polygon_area(vertices);
// Function: assemble_path_fragments()
// Usage:
// assemble_path_fragments(subpaths);
// Description:
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
function assemble_path_fragments(subpaths,eps=EPSILON,_finished=[]) =
len(subpaths)<=1? concat(_finished, subpaths) :
let(
path = subpaths[0]
) is_closed_path(path, eps=eps)? (
assemble_path_fragments(
[for (i=[1:1:len(subpaths)-1]) subpaths[i]],
eps=eps,
_finished=concat(_finished, [path])
)
) : let(
matches = [
for (i=[1:1:len(subpaths)-1], rev1=[0,1], rev2=[0,1]) let(
idx1 = rev1? 0 : len(path)-1,
idx2 = rev2? len(subpaths[i])-1 : 0
) if (approx(path[idx1], subpaths[i][idx2], eps=eps)) [
i, concat(
rev1? reverse(path) : path,
select(rev2? reverse(subpaths[i]) : subpaths[i], 1,-1)
)
]
]
) len(matches)==0? (
assemble_path_fragments(
select(subpaths,1,-1),
eps=eps,
_finished=concat(_finished, [path])
)
) : is_closed_path(matches[0][1], eps=eps)? (
assemble_path_fragments(
[for (i=[1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]],
eps=eps,
_finished=concat(_finished, [matches[0][1]])
)
) : let(
subpath = matches[0][1],
splen = len(subpath),
conn1 = [for (i=[1:splen-1]) if (approx(subpath[0],subpath[i])) i],
conn2 = [for (i=[0:splen-2]) if (approx(subpath[splen-1],subpath[i])) i]
) (conn1 != [] || conn2 != [])? let(
finpath = select(subpath, 0, conn1!=[]? conn1[0] : conn2[0]),
subpath2 = select(subpath, conn1!=[]? conn1[0] : conn2[0], -1)
) (
assemble_path_fragments(
concat(
[subpath2],
[for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]]
),
eps=eps,
_finished=concat(_finished, [finpath])
)
) : (
assemble_path_fragments(
concat(
[matches[0][1]],
[for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]]
),
eps=eps,
_finished=_finished
)
);
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Usage:
// simplify_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path(path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
// Function: simplify_path_indexed()
// Description:
// Takes a list of points, and a path as a list of indexes into `points`,
// and removes all path points that are unecessarily collinear.
// Usage:
// simplify_path_indexed(path, eps)
// Arguments:
// points = A list of points.
// path = A list of indexes into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
function simplify_path_indexed(points, path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
// Function: point_in_polygon()
// Usage:
// point_in_polygon(point, path)
// Description:
// This function tests whether the given point is inside, outside or on the boundary of
// the specified 2D polygon using the Winding Number method.
// The polygon is given as a list of 2D points, not including the repeated end point.
// Returns -1 if the point is outside the polyon.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies in the interior.
// The polygon does not need to be simple: it can have self-intersections.
// But the polygon cannot have holes (it must be simply connected).
// Rounding error may give mixed results for points on or near the boundary.
// Arguments:
// point = The point to check position of.
// path = The list of 2D path points forming the perimeter of the polygon.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_polygon(point, path, eps=EPSILON) =
// Original algorithm from http://geomalgorithms.com/a03-_inclusion.html
// Does the point lie on any edges? If so return 0.
sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) point_on_segment2d(point, seg, eps=eps)?1:0]) > 0? 0 :
// Otherwise compute winding number and return 1 for interior, -1 for exterior
sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) _point_above_below_segment(point, seg)]) != 0? 1 : -1;
// Function: pointlist_bounds()
// Usage:
// pointlist_bounds(pts);
// Description:
// Finds the bounds containing all the 2D or 3D points in `pts`.
// Returns `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]`
// Arguments:
// pts = List of points.
function pointlist_bounds(pts) = [
[for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ],
[for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ]
];
// Function: closest_point()
// Usage:
// closest_point(pt, points);
// Description:
// Given a list of `points`, finds the point that is closest to the given point `pt`, and returns the index of it.
// Arguments:
// pt = The point to find the closest point to.
// points = The list of points to search.
function closest_point(pt, points) =
let(
i = min_index([for (j=idx(points)) norm(points[j]-pt)])
) i;
// Function: furthest_point()
// Usage:
// furthest_point(pt, points);
// Description:
// Given a list of `points`, finds the point that is farthest from the given point `pt`, and returns the index of it.
// Arguments:
// pt = The point to find the farthest point from.
// points = The list of points to search.
function furthest_point(pt, points) =
let(
i = max_index([for (j=idx(points)) norm(points[j]-pt)])
) i;
// Function: polygon_is_clockwise()
// Usage:
// polygon_is_clockwise(path);
// Description:
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
// Results for complex (self-intersecting) polygon are indeterminate.
// Arguments:
// path = The list of 2D path points for the perimeter of the polygon.
function polygon_is_clockwise(path) =
let(
minx = min(subindex(path,0)),
lowind = search(minx, path, 0, 0),
lowpts = select(path, lowind),
miny = min(subindex(lowpts, 1)),
extreme_sub = search(miny, lowpts, 1, 1)[0],
extreme = select(lowind,extreme_sub)
) det2([select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
// Function: clockwise_polygon()
// Usage:
// clockwise_polygon(path);
// Description:
// Given a polygon path, returns the clockwise winding version of that path.
function clockwise_polygon(path) =
polygon_is_clockwise(path)? path : reverse(path);
// Function: ccw_polygon()
// Usage:
// ccw_polygon(path);
// Description:
// Given a polygon path, returns the counter-clockwise winding version of that path.
function ccw_polygon(path) =
polygon_is_clockwise(path)? reverse(path) : path;
// Section: Regions and Boolean 2D Geometry
// Function: is_region()
// Usage:
// is_region(x);
// Description:
// Returns true if the given item looks like a region. A region is defined as a list of zero or more paths.
function is_region(x) = is_list(x) && is_path(x.x);
// Function: close_region()
// Usage:
// close_region(region);
// Description:
// Closes all paths within a given region.
function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)];
// Function: check_and_fix_path()
// Usage:
// check_and_fix_path(path, [valid_dim], [closed])
// Description:
// Checks that the input is a path. If it is a region with one component, converts it to a path.
// valid_dim specfies the allowed dimension of the points in the path.
// If the path is closed, removed duplicate endpoint if present.
// Arguments:
// path = path to process
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
// closed = set to true if the path is closed, which enables a check for endpoint duplication
function check_and_fix_path(path,valid_dim=undef,closed=false) =
let( path = is_region(path) ?
assert(len(path)==1,"Region supplied as path does not have exactly one component")
path[0] :
assert(is_path(path), "Input is not a path") path,
dim = array_dim(path))
assert(dim[0]>1,"Path must have at least 2 points")
assert(len(dim)==2,"Invalid path: path is either a list of scalars or a list of matrices")
assert(is_def(dim[1]), "Invalid path: entries in the path have variable length")
let(valid=is_undef(valid_dim) || in_list(dim[1],valid_dim))
assert(valid, str("The points on the path have length ",dim[1]," but length must be ",
len(valid_dim)==1? valid_dim[0] : str("one of ",valid_dim)))
closed && approx(path[0],select(path,-1)) ? slice(path,0,-2) : path;
// Function: cleanup_region()
// Usage:
// cleanup_region(region);
// Description:
// For all paths in the given region, if the last point coincides with the first point, removes the last point.
function cleanup_region(region, eps=EPSILON) = [for (path=region) cleanup_path(path, eps=eps)];
// Function: point_in_region()
// Usage:
// point_in_region(point, region);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
(_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let(
pip = point_in_polygon(point, region[_i], eps=eps)
) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0));
// Function: region_path_crossings()
// Usage:
// region_path_crossings(path, region);
// Description:
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
// Arguments:
// path = The path to find crossings on.
// region = Region to test for crossings of.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function region_path_crossings(path, region, eps=EPSILON) = sort([
for (
s1=enumerate(pair(close_path(path))),
p=close_region(region),
s2=pair(p)
) let(
isect = _general_line_intersection(s1[1],s2,eps=eps)
) if (
!is_undef(isect) &&
isect[1] >= 0-eps && isect[1] < 1+eps &&
isect[2] >= 0-eps && isect[2] < 1+eps
)
[s1[0], isect[1]]
]);
function _offset_chamfer(center, points, delta) =
let(
dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])),
endline = _shift_segment(select(points,[0,2]), delta-dist)
) [
line_intersection(endline, select(points,[0,1])),
line_intersection(endline, select(points,[1,2]))
];
function _shift_segment(segment, d) =
move(d*line_normal(segment),segment);
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension(s1,s2) =
norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2);
function _makefaces(direction, startind, good, pointcount, closed) =
let(
lenlist = list_bset(good, pointcount),
numfirst = len(lenlist),
numsecond = sum(lenlist),
prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed)
)
direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces;
function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces :
_makefaces_recurse(
startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind],
lenlist[firstind]==0? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]])
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat(faces,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]],
// Finish (unconditionally) with a quadrilateral face
[
[
firstind+startind1,
(firstind+1)%numfirst+startind1,
(secondind+lenlist[firstind])%numsecond+startind2,
(secondind+lenlist[firstind]-1)%numsecond+startind2
]
]
)
)
);
// Determine which of the shifted segments are good
function _good_segments(path, d, shiftsegs, closed, quality) =
let(
maxind = len(path)-(closed ? 1 : 2),
pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]],
pathseg_len = [for(seg=pathseg) norm(seg)],
pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]],
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1])
) [
for (i=[0:len(shiftsegs)-1])
(i>maxind)? true :
_segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha)
];
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) =
index == len(alpha) ? false :
_point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true :
_segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1);
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist(path,pathseg_unit,pathseg_len,pt) =
min([
for(i=[0:len(pathseg_unit)-1]) let(
v = pt-path[i],
projection = v*pathseg_unit[i],
segdist = projection < 0? norm(pt-path[i]) :
projection > pathseg_len[i]? norm(pt-select(path,i+1)) :
norm(v-projection*pathseg_unit[i])
) segdist
]);
function _offset_region(
paths, r, delta, chamfer, closed,
maxstep, check_valid, quality,
return_faces, firstface_index,
flip_faces, _acc=[], _i=0
) =
_i>=len(paths)? _acc :
_offset_region(
paths, _i=_i+1,
_acc = (paths[_i].x % 2 == 0)? (
union(_acc, [
offset(
paths[_i].y,
r=r, delta=delta, chamfer=chamfer, closed=closed,
maxstep=maxstep, check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
)
])
) : (
difference(_acc, [
offset(
paths[_i].y,
r=-r, delta=-delta, chamfer=chamfer, closed=closed,
maxstep=maxstep, check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
)
])
),
r=r, delta=delta, chamfer=chamfer, closed=closed,
maxstep=maxstep, check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces
);
// Function: offset()
//
// Description:
// Takes an input path and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. Positive offsets shift the path to the left (relative to the direction of the path).
//
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
// increases the number of samples on the segment that are checked.) Run time will increase. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
//
// For construction of polyhedra `offset()` can also return face lists. These list faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
// Arguments:
// path = the path to process. A list of 2d points.
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = path is a closed curve. Default: False.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=-10, closed=true));
// Example(2D): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
// %down(.1)polygon(test);
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
// stroke(star,width=.2,closed=true);
// color("green")
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
// color("red")
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.2,closed=true);
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
// color("red")
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
// Example(2D): The triangles are removed by the validity check
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath);
// stroke(offset(sinpath, r=17.5));
// Example(2D): Region
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
// region(offset(rgn, r=-5));
function offset(
path, r=undef, delta=undef, chamfer=false,
maxstep=0.1, closed=false, check_valid=true,
quality=1, return_faces=false, firstface_index=0,
flip_faces=false
) =
is_region(path)? (
assert(!return_faces, "return_faces not supported for regions.")
let(
path = [for (p=path) polygon_is_clockwise(p)? p : reverse(p)],
rgn = exclusive_or([for (p = path) [p]]),
pathlist = sort(idx=0,[
for (i=[0:1:len(rgn)-1]) [
sum(concat([0],[
for (j=[0:1:len(rgn)-1]) if (i!=j)
point_in_polygon(rgn[i][0],rgn[j])>=0? 1 : 0
])),
rgn[i]
]
])
) _offset_region(
pathlist, r=r, delta=delta, chamfer=chamfer, closed=true,
maxstep=maxstep, check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
)
) : let(rcount = num_defined([r,delta]))
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
let(
chamfer = is_def(r) ? false : chamfer,
quality = max(0,round(quality)),
flip_dir = closed && !polygon_is_clockwise(path) ? -1 : 1,
d = flip_dir * (is_def(r) ? r : delta),
shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)],
// good segments are ones where no point on the segment is less than distance d from any point on the path
good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : replist(true,len(shiftsegs)),
goodsegs = bselect(shiftsegs, good),
goodpath = bselect(path,good)
)
assert(len(goodsegs)>0,"Offset of path is degenerate")
let(
// Extend the shifted segments to their intersection points
sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))],
// If some segments are parallel then the extended segments are undefined. This case is not handled
// Note if !closed the last corner doesn't matter, so exclude it
parallelcheck =
(len(sharpcorners)==2 && !closed) ||
all_defined(select(sharpcorners,closed?0:1,-1))
)
assert(parallelcheck, "Path turns back on itself (180 deg turn)")
let(
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = [
for(i=[0:len(goodsegs)-1]) let(
prevseg=select(goodsegs,i-1)
) (
(goodsegs[i][1]-goodsegs[i][0]) *
(goodsegs[i][0]-sharpcorners[i]) > 0
) && (
(prevseg[1]-prevseg[0]) *
(sharpcorners[i]-prevseg[1]) > 0
)
],
steps = is_def(delta) ? [] : [
for(i=[0:len(goodsegs)-1])
ceil(
abs(r)*vector_angle(
select(goodsegs,i-1)[1]-goodpath[i],
goodsegs[i][0]-goodpath[i]
)*PI/180/maxstep
)
],
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
// Otherwise it's the same as sharpcorners
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
// plain sharpcorners back.
newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [
for(i=[0:len(goodsegs)-1]) (
(!chamfer && steps[i] <=2) //Chamfer all points but only round if steps is 3 or more
|| !outsidecorner[i] // Don't round inside corners
|| (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path
)? [sharpcorners[i]] : (
chamfer?
_offset_chamfer(
goodpath[i], [
select(goodsegs,i-1)[1],
sharpcorners[i],
goodsegs[i][0]
], d
) :
arc(
cp=goodpath[i],
points=[
select(goodsegs,i-1)[1],
goodsegs[i][0]
],
N=steps[i]
)
)
],
pointcount = (is_def(delta) && !chamfer)?
replist(1,len(sharpcorners)) :
[for(i=[0:len(goodsegs)-1]) len(newcorners[i])],
start = [goodsegs[0][0]],
end = [goodsegs[len(goodsegs)-2][1]],
edges = closed?
flatten(newcorners) :
concat(start,slice(flatten(newcorners),1,-2),end),
faces = !return_faces? [] :
_makefaces(
flip_faces, firstface_index, good,
pointcount, closed
)
) return_faces? [edges,faces] : edges;
function _split_path_at_region_crossings(path, region, eps=EPSILON) =
let(
path = deduplicate(path, eps=eps),
region = [for (path=region) deduplicate(path, eps=eps)],
xings = region_path_crossings(path, region, eps=eps),
crossings = deduplicate(
concat(
[[0,0]],
xings,
[[len(path)-2,1]]
),
eps=eps
),
subpaths = [
for (p = pair(crossings))
deduplicate(eps=eps,
path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1])
)
]
)
subpaths;
function _tag_subpaths(path, region, eps=EPSILON) =
let(
subpaths = _split_path_at_region_crossings(path, region, eps=eps),
tagged = [
for (sub = subpaths) let(
subpath = deduplicate(sub)
) if (len(sub)>1) let(
midpt = lerp(subpath[0], subpath[1], 0.5),
rel = point_in_region(midpt,region,eps=eps)
) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let(
vec = normalize(subpath[1]-subpath[0]),
perp = rot(90, planar=true, p=vec),
sidept = midpt + perp*0.01,
rel1 = point_in_polygon(sidept,path,eps=eps)>0,
rel2 = point_in_region(sidept,region,eps=eps)>0
) rel1==rel2? ["S", subpath] : ["U", subpath]
]
) tagged;
function _tag_region_subpaths(region1, region2, eps=EPSILON) =
[for (path=region1) each _tag_subpaths(path, region2, eps=eps)];
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
let(
region1 = close_region(region1, eps=eps),
region2 = close_region(region2, eps=eps),
tagged1 = _tag_region_subpaths(region1, region2, eps=eps),
tagged2 = _tag_region_subpaths(region2, region1, eps=eps),
tagged = concat(
[for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]],
[for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]]
),
outregion = assemble_path_fragments(tagged, eps=eps)
) outregion;
// Function&Module: union()
// Usage:
// union() {...}
// region = union(regions);
// region = union(REGION1,REGION2);
// region = union(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean union of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean union of the given children.
// Arguments:
// regions = List of regions to union. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(union(shape1,shape2));
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)<=1? regions[0] :
union(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
[_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
// Function&Module: difference()
// Usage:
// difference() {...}
// region = difference(regions);
// region = difference(REGION1,REGION2);
// region = difference(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, takes the first region and differences away all other regions from it. The resulting
// region is returned.
// When called as the built-in module, makes the boolean difference of the given children.
// Arguments:
// regions = List of regions to difference. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(difference(shape1,shape2));
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)<=1? regions[0] :
difference(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
[_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
// Function&Module: intersection()
// Usage:
// intersection() {...}
// region = intersection(regions);
// region = intersection(REGION1,REGION2);
// region = intersection(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean intersection of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean intersection of all the given children.
// Arguments:
// regions = List of regions to intersection. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(intersection(shape1,shape2));
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
len(regions)<=1? regions[0] :
intersection(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
[_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
// Function&Module: exclusive_or()
// Usage:
// exclusive_or() {...}
// region = exclusive_or(regions);
// region = exclusive_or(REGION1,REGION2);
// region = exclusive_or(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region.
// When called as a module, performs a boolean exclusive-or of up to 10 children.
// Arguments:
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
// Example(2D): As Function
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2])
// color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(exclusive_or(shape1,shape2));
// Example(2D): As Module
// exclusive_or() {
// square(40,center=false);
// circle(d=40);
// }
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
len(regions)<=1? regions[0] :
exclusive_or(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
[union([
difference([regions[0],regions[1]], eps=eps),
difference([regions[1],regions[0]], eps=eps)
], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
module exclusive_or() {
if ($children==1) {
children();
} else if ($children==2) {
difference() {
children(0);
children(1);
}
difference() {
children(1);
children(0);
}
} else if ($children==3) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
children(2);
}
} else if ($children==4) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
exclusive_or() {
children(2);
children(3);
}
}
} else if ($children==5) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
}
} else if ($children==6) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
}
} else if ($children==7) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
children(6);
}
} else if ($children==8) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
}
} else if ($children==9) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
}
} else if ($children==10) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
children(9);
}
} else {
assert($children<=10, "exclusive_or() can only handle up to 10 children.");
}
}
// Module: region()
// Usage:
// region(r);
// Description:
// Creates 2D polygons for the given region. The region given is a list of closed 2D paths.
// Each path will be effectively exclusive-ORed from all other paths in the region, so if a
// path is inside another path, it will be effectively subtracted from it.
// Example(2D):
// region([circle(d=50), square(25,center=true)]);
// Example(2D):
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
module region(r)
{
points = flatten(r);
paths = [
for (i=[0:1:len(r)-1]) let(
start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0)
) [for (k=[0:1:len(r[i])-1]) start+k]
];
polygon(points=points, paths=paths);
}
// Section: Creating Polyhedrons with VNF Structures
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
// first item is a list of vertex points, and the second is a list of face indices into the vertex
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
// merge the various VNFs to get the completed polyhedron vertex list and faces.
// Function: is_vnf()
// Description: Returns true if the given value looks passingly like a VNF structure.
function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || is_vector(x[0][0])) && (x[1]==[] || is_vector(x[1][0]));
// Function: is_vnf_list()
// Description: Returns true if the given value looks passingly like a list of VNF structures.
function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]);
// Function: vnf_vertices()
// Description: Given a VNF structure, returns the list of vertex points.
function vnf_vertices(vnf) = vnf[0];
// Function: vnf_faces()
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
function vnf_faces(vnf) = vnf[1];
// Function: vnf_get_vertex()
// Usage:
// vvnf = vnf_get_vertex(vnf, p);
// Description:
// Finds the index number of the given vertex point `p` in the given VNF structure `vnf`. If said
// point does not already exist in the VNF vertex list, it is added. Returns: `[INDEX, VNF]` where
// INDEX if the index of the point, and VNF is the possibly modified new VNF structure.
// If `p` is given as a list of points, then INDEX will be a list of indices.
// Arguments:
// vnf = The VNF structue to get the point index from.
// p = The point, or list of points to get the index of.
// Example:
// vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]]
// vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]]
// vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]]
// vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]]
function vnf_get_vertex(vnf=[[],[]], p) =
is_path(p)? _vnf_get_vertices(vnf, p) :
let(
p = quant(p,1/1024), // OpenSCAD internally quantizes objects to 1/1024.
v = search([p], vnf[0])[0]
) [
v != []? v : len(vnf[0]),
[
concat(vnf[0], v != []? [] : [p]),
vnf[1]
]
];
// Internal use only
function _vnf_get_vertices(vnf=[[],[]], pts, _i=0, _idxs=[]) =
_i>=len(pts)? [_idxs, vnf] :
let(
vvnf = vnf_get_vertex(vnf, pts[_i])
) _vnf_get_vertices(vvnf[1], pts, _i=_i+1, _idxs=concat(_idxs,[vvnf[0]]));
// Function: vnf_add_face()
// Usage:
// vnf_add_face(vnf, pts);
// Description:
// Given a VNF structure and a list of face vertex points, adds the face to the VNF structure.
// Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make
// sure that the points are in the correct order to make the face normal point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// pts = The vertex points for the face.
function vnf_add_face(vnf=[[],[]], pts) =
let(
vvnf = vnf_get_vertex(vnf, pts),
face = deduplicate(vvnf[0], closed=true),
vnf2 = vvnf[1]
) [
vnf_vertices(vnf2),
concat(vnf_faces(vnf2), len(face)>2? [face] : [])
];
// Function: vnf_add_faces()
// Usage:
// vnf_add_faces(vnf, faces);
// Description:
// Given a VNF structure and a list of faces, where each face is given as a list of vertex points,
// adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`.
// It is up to the caller to make sure that the points are in the correct order to make the face
// normals point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// faces = The list of faces, where each face is given as a list of vertex points.
function vnf_add_faces(vnf=[[],[]], faces, _i=0) =
_i<len(faces)? vnf_add_faces(vnf_add_face(vnf, faces[_i]), faces, _i=_i+1) : vnf;
// Function: vnf_merge()
// Usage:
// vnf = vnf_merge([VNF, VNF, VNF, ...]);
// Description:
// Given a list of VNF structures, merges them all into a single VNF structure.
function vnf_merge(vnfs=[],_i=0,_acc=[[],[]]) = _i>=len(vnfs)? _acc :
vnf_merge(
vnfs, _i=_i+1,
_acc = let(base=len(_acc[0])) [
concat(_acc[0], vnfs[_i][0]),
concat(_acc[1], [for (f=vnfs[_i][1]) [for (i=f) i+base]]),
]
);
// Function: vnf_triangulate()
// Usage:
// vnf2 = vnf_triangulate(vnf);
// Description:
// Forces triangulation of faces in the VNF that have more than 3 vertices.
function vnf_triangulate(vnf) =
let(
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf
) [vnf[0], triangulate_faces(vnf[0], vnf[1])];
// Function: vnf_vertex_array()
// Usage:
// vnf = vnf_vertex_array(points, cols, [caps], [cap1], [cap2], [reverse], [col_wrap], [row_wrap], [vnf]);
// Description:
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
// the first and/or last rows.
// Arguments:
// points = A list of vertices to divide into columns and rows.
// cols = The number of points in a column.
// caps = If true, add endcap faces to the first AND last rows.
// cap1 = If true, add an endcap face to the first row.
// cap2 = If true, add an endcap face to the last row.
// col_wrap = If true, add faces to connect the last column to the first.
// row_wrap = If true, add faces to connect the last row to the first.
// reverse = If true, reverse all face normals.
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
// vnf = If given, add all the vertices and faces to this existing VNF structure.
// Example(3D):
// vnf = vnf_vertex_array(
// points=[
// for (h = [0:5:180-EPSILON]) [
// for (t = [0:5:360-EPSILON])
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
// ]
// ],
// col_wrap=true, caps=true, reverse=true, style="alt"
// );
// vnf_polyhedron(vnf);
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360-EPSILON])
// affine3d_apply(
// circle(d=20),
// [xrot(90), right(30), zrot(a)]
// )
// ],
// col_wrap=true, row_wrap=true, reverse=true
// );
// vnf_polyhedron(vnf);
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360]) affine3d_apply(
// square([1,10], center=true),
// [zrot(a/2+60), xrot(90), right(30), zrot(a)]
// )
// ],
// col_wrap=true, reverse=true
// );
// vnf_polyhedron(vnf);
// Example(3D): Assembling a Polyhedron from Multiple Parts
// wall_points = [
// for (a = [-90:2:90]) affine3d_apply(
// circle(d=100),
// [scale([1-0.1*cos(a*6), 1-0.1*cos((a+90)*6), 1]), up(a)]
// )
// ];
// cap = [
// for (a = [0:0.01:1+EPSILON]) affine3d_apply(
// wall_points[0],
// [scale([a,a,1]), up(90-5*sin(a*360*2))]
// )
// ];
// cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))];
// cap2 = [for (p=cap) up(90, p=p)];
// vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true);
// vnf2 = vnf_vertex_array(points=cap1, col_wrap=true);
// vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true);
// vnf_polyhedron([vnf1, vnf2, vnf3]);
function vnf_vertex_array(
points,
caps, cap1, cap2,
col_wrap=false,
row_wrap=false,
reverse=false,
style="default",
vnf=[[],[]]
) =
assert((!caps)||(caps&&col_wrap))
assert(in_list(style,["default","alt","quincunx"]))
let(
pts = flatten(points),
rows = len(points),
cols = len(points[0]),
errchk = [for (row=points) assert(len(row)==cols, "All rows much have the same number of columns.") 0],
cap1 = first_defined([cap1,caps,false]),
cap2 = first_defined([cap2,caps,false]),
colcnt = cols - (col_wrap?0:1),
rowcnt = rows - (row_wrap?0:1)
)
vnf_merge([
vnf, [
concat(
pts,
style!="quincunx"? [] : [
for (r = [0:1:rowcnt-1]) (
for (c = [0:1:colcnt-1]) (
let(
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
) mean([pts[i1], pts[i2], pts[i3], pts[i4]])
)
)
]
),
concat(
[
for (r = [0:1:rowcnt-1]) (
for (c = [0:1:colcnt-1]) each (
let(
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
)
style=="quincunx"? (
let(i5 = pcnt + r*colcnt + c)
reverse? [[i1,i2,i5],[i2,i3,i5],[i3,i4,i5],[i4,i1,i5]] : [[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
) : style=="alt"? (
reverse? [[i1,i2,i4],[i2,i3,i4]] : [[i1,i4,i2],[i2,i4,i3]]
) : (
reverse? [[i1,i2,i3],[i1,i3,i4]] : [[i1,i3,i2],[i1,i4,i3]]
)
)
)
],
!cap1? [] : [
reverse?
[for (c = [0:1:cols-1]) c] :
[for (c = [cols-1:-1:0]) c]
],
!cap2? [] : [
reverse?
[for (c = [cols-1:-1:0]) (rows-1)*cols + c] :
[for (c = [0:1:cols-1]) (rows-1)*cols + c]
]
)
]
]);
// Module: vnf_polyhedron()
// Usage:
// vnf_polyhedron(vnf);
// vnf_polyhedron([VNF, VNF, VNF, ...]);
// Description:
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
// Arguments:
// vnf = A VNF structure, or list of VNF structures.
module vnf_polyhedron(vnf) {
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf;
polyhedron(vnf[0], vnf[1]);
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap