2019-11-04 03:12:50 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: skin.scad
// Functions to skin arbitrary 2D profiles/paths in 3-space.
// To use, add the following line to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/skin.scad>
// ```
2020-02-13 01:08:21 +00:00
// Inspired by list-comprehension-demos skin():
2019-11-04 03:12:50 +00:00
// - https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad
//////////////////////////////////////////////////////////////////////
include < vnf.scad >
// Section: Skinning
2020-02-03 03:43:49 +00:00
//
2020-02-11 02:02:24 +00:00
// Function&Module: skin()
2020-02-03 03:43:49 +00:00
// Usage: As module:
2020-02-11 02:02:24 +00:00
// skin(profiles, [slices], [refine], [method], [sampling], [caps], [closed], [z]);
2020-02-03 03:43:49 +00:00
// Usage: As function:
2020-02-11 02:02:24 +00:00
// vnf = skin(profiles, [slices], [refine], [method], [sampling], [caps], [closed], [z]);
2020-02-03 03:43:49 +00:00
// Description:
// Given a list of two ore more path `profiles` in 3d space, produces faces to skin a surface between
// the profiles. Optionally the first and last profiles can have endcaps, or the first and last profiles
// can be connected together. Each profile should be roughly planar, but some variation is allowed.
// Each profile must rotate in the same clockwise direction. If called as a function, returns a
// [VNF structure](vnf.scad) like `[VERTICES, FACES]`. If called as a module, creates a polyhedron
// of the skined profiles.
//
// The profiles can be specified either as a list of 3d curves or they can be specified as
2020-02-13 01:08:21 +00:00
// 2d curves with heights given in the `z` parameter. It is your responsibility to ensure
// that the resulting polyhedron is free from self-intersections, which would make it invalid
// and can result in cryptic CGAL errors upon rendering, even though the polyhedron appears
// OK during preview.
2020-02-03 03:43:49 +00:00
//
2020-02-11 02:02:24 +00:00
// For this operation to be well-defined, the profiles must all have the same vertex count and
2020-02-03 03:43:49 +00:00
// we must assume that profiles are aligned so that vertex `i` links to vertex `i` on all polygons.
2020-02-11 02:02:24 +00:00
// Many interesting cases do not comply with this restriction. Two basic methods can handle
// these cases: either add points to edges (resample) so that the profiles are compatible,
// or repeat vertices. Repeating vertices allows two edges to terminate at the same point, creating
// triangular faces. You can adjust non-matchines profiles yourself
// either by resampling them using `subdivide_path` or by duplicating vertices using
2020-02-03 03:43:49 +00:00
// `repeat_entries`. It is OK to pass a profile that has the same vertex repeated, such as
// a square with 5 points (two of which are identical), so that it can match up to a pentagon.
// Such a combination would create a triangular face at the location of the duplicated vertex.
2020-02-11 02:02:24 +00:00
// Alternatively, `skin` provides methods (described below) for matching up incompatible paths.
2020-02-03 03:43:49 +00:00
//
// In order for skinned surfaces to look good it is usually necessary to use a fine sampling of
// points on all of the profiles, and a large number of extra interpolated slices between the
2020-02-11 02:02:24 +00:00
// profiles that you specify. It is generally best if the triangules forming your polyhedron
// are approximately equilateral. The `slices` parameter specifies the number of slices to insert
2020-02-03 03:43:49 +00:00
// between each pair of profiles, either a scalar to insert the same number everywhere, or a vector
2020-02-11 02:02:24 +00:00
// to insert a different number between each pair. To resample the profiles you can use set
// `refine=N` which will place `N` points on each edge of your profile. This has the effect of
// muliplying the number of points by N, so a profile with 8 points will have 8*N points afer
// refinement. Note that when dealing with continuous curves it is always better to adjust the
// sampling in your code to generate the desired sampling rather than using the `refine` argument.
2020-02-03 03:43:49 +00:00
//
// Two methods are available for resampling, `"length"` and `"segment"`. Specify them using
2020-02-04 02:36:06 +00:00
// the `sampling` argument. The length resampling method resamples proportional to length.
2020-02-03 03:43:49 +00:00
// The segment method divides each segment of a profile into the same number of points.
// A uniform division may be impossible, in which case the code computes an approximation.
// See `subdivide_path` for more details.
2020-02-11 02:02:24 +00:00
//
2020-02-03 03:43:49 +00:00
// You can choose from four methods for specifying alignment for incomensurate profiles.
2020-02-11 02:02:24 +00:00
// The available methods are `"distance"`, `"tangent"`, `"direct"` and `"reindex"`.
// It is useful to distinguish between continuous curves like a circle and discrete profiles
// like a hexagon or star, because the algorithms' suitability depend on this distinction.
//
// The "direct" and "reindex" methods work by resampling the profiles if necessary. As noted above,
// for continuous input curves, it is better to generate your curves directly at the desired sample size,
// but for mapping between a discrete profile like a hexagon and a circle, the hexagon must be resampled
// to match the circle. You can do this in two different ways using the `sampling` parameter. The default
// of `sampling="length"` approximates a uniform length sampling of the profile. The other option
// is `sampling="segment"` which attempts to place the same number of new points on each segment.
// If the segments are of varying length, this will produce a different result. Note that "direct" is
// the default method. If you simply supply a list of compatible profiles it will link them up
// exactly as you have provided them. You may find that profiles you want to connect define the
// right shapes but the point lists don't start from points that you want aligned in your skinned
// polyhedron. You can correct this yourself using `reindex_polygon`, or you can use the "reindex"
// method which will look for the index choice that will minimize the length of all of the edges
// in the polyhedron---in will produce the least twisted possible result. This algorithm has quadratic
// run time so it can be slow with very large profiles.
//
// The "distance" and "tangent" methods are work by duplicating vertices to create
// triangular faces. The "distance" method finds the global minimum distance method for connecting two
// profiles. This algorithm generally produces a good result when both profiles are discrete ones with
2020-02-03 03:43:49 +00:00
// a small number of vertices. It is computationally intensive (O(N^3)) and may be
2020-02-11 02:02:24 +00:00
// slow on large inputs. The resulting surfaces generally have curves faces, so be
// sure to select a sufficiently large value for `slices` and `refine`.
// The `"tangent"` method generally produces good results when
2020-02-03 03:43:49 +00:00
// connecting a discrete polygon to a convex, finely sampled curve. It works by finding
// a plane that passed through each edge of the polygon that is tangent to
2020-02-11 02:02:24 +00:00
// the curve. It may fail if the curved profile is non-convex, or doesn't have enough points to distinguish
// all of the tangent points from each other. It connects all of the points of the curve to the corners of the discrete
// polygon using triangular faces. Using `refine` with this method will have little effect on the model, so
// you should do it only for agreement with other profiles, and these models are linear, so extra slices also
// have no effect. For best efficiency set `refine=1` and `slices=0`. When you use refinement with either
// of these methods, it is always the "segment" based resampling described above. This is necessary because
// sampling by length will ignore the repeated vertices and break the alignment.
//
// It is possible to specify `method` and `refine` as arrays, but it is important to observe
// matching rules when you do this. If a pair of profiles is connected using "tangent" or "distance"
// then the `refine` values for those two profiles must be equal. If a profile is connected by
// a vertex duplicating method on one side and a resampling method on the other side, then
// `refine` must be set so that the resulting number of vertices matches the number that is
// used for the resampled profiles. The best way to avoid confusion is to ensure that the
// profiles connected by "direct" or "realign" all have the same number of points and at the
// transition, the refined number of points matches.
2020-02-03 03:43:49 +00:00
//
// Arguments:
// profiles = list of 2d or 3d profiles to be skinned. (If 2d must also give `z`.)
2020-02-11 02:02:24 +00:00
// slices = scalar or vector number of slices to insert between each pair of profiles. Set to zero to use only the profiles you provided. Recommend starting with a value around 10.
// refine = resample profiles to this number of points per edge. Can be a list to give a refinement for each profile. Recommend using a value above 10 when using the "distance" method. Default: 1.
// sampling = sampling method to use with "direct" and "reindex" methods. Can be "length" or "segment". Ignored if any profile pair uses either the "distance" or "tangent" methods. Default: "length".
// closed = set to true to connect first and last profile (to make a torus). Default: false
// caps = true to create endcap faces when closed is false. Can be a length 2 boolean array. Default is true if closed is false.
// method = method for connecting profiles, one of "distance", "tangent", "direct" or "reindex". Default: "direct".
2020-02-03 03:43:49 +00:00
// z = array of height values for each profile if the profiles are 2d
2020-02-11 02:02:24 +00:00
// Example(FlatSpin):
// skin([octagon(4), regular_ngon(n=70,r=2)], z=[0,3], slices=10);
// Example(FlatSpin): The circle() and pentagon() modules place the zero index at different locations, giving a twist
// skin([pentagon(4), circle($fn=80,r=2)], z=[0,3], slices=10);
// Example(FlatSpin): You can untwist it with the "reindex" method
// skin([pentagon(4), circle($fn=80,r=2)], z=[0,3], slices=10, method="reindex");
// Example(FlatSpin): Offsetting the starting edge connects to circles in an interesting way:
// circ = circle($fn=80, r=3);
// skin([circ, rot(110,p=circ)], z=[0,5], slices=20);
// Example(FlatSpin):
// skin([ yrot(37,p=path3d(circle($fn=128, r=4))), path3d(square(3),3)], method="reindex",slices=10);
// Example(FlatSpin): Ellipses connected with twist
// ellipse = xscale(2.5,p=circle($fn=80));
// skin([ellipse, rot(45,p=ellipse)], z=[0,1.5], slices=10);
// Example(FlatSpin): Ellipses connected without a twist. (Note ellipses stay in the same position: just the connecting edges are different.)
// ellipse = xscale(2.5,p=circle($fn=80));
// skin([ellipse, rot(45,p=ellipse)], z=[0,1.5], slices=10, method="reindex");
// Example(FlatSpin):
// $fn=24;
// skin([
2020-02-13 01:08:21 +00:00
// yrot(0, p=yscale(2,p=path3d(circle(d=75)))),
2020-02-11 02:02:24 +00:00
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
// ],slices=10);
// Example(FlatSpin):
// $fn=48;
// skin([
// for (b=[0,90]) [
// for (a=[360:-360/$fn:0.01])
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
// ]
// ], slices=20);
// Example(FlatSpin): Vaccum connector example from list-comprehension-demos
// include <BOSL2/rounding.scad>
// $fn=32;
// base = round_corners(square([2,4],center=true), measure="radius", size=0.5);
// skin([
// path3d(base,0),
// path3d(base,2),
// path3d(circle(r=0.5),3),
// path3d(circle(r=0.5),4),
// for(i=[0:2]) each [path3d(circle(r=0.6), i+4),
// path3d(circle(r=0.5), i+5)]
// ],slices=0);
// Example(FlatSpin): Vaccum nozzle example from list-comprehension-demos, using "length" sampling (the default)
// xrot(90)down(1.5)
// difference() {
// skin(
// [square([2,.2],center=true),
// circle($fn=64,r=0.5)], z=[0,3],
// slices=40,sampling="length",method="reindex");
// skin(
// [square([1.9,.1],center=true),
// circle($fn=64,r=0.45)], z=[-.01,3.01],
// slices=40,sampling="length",method="reindex");
// }
// Example(FlatSpin): Same thing with "segment" sampling
// xrot(90)down(1.5)
// difference() {
// skin(
// [square([2,.2],center=true),
// circle($fn=64,r=0.5)], z=[0,3],
// slices=40,sampling="segment",method="reindex");
// skin(
// [square([1.9,.1],center=true),
// circle($fn=64,r=0.45)], z=[-.01,3.01],
// slices=40,sampling="segment",method="reindex");
// }
// Example(FlatSpin): Forma Candle Holder (from list-comprehension-demos)
// r = 50;
// height = 140;
// layers = 10;
// wallthickness = 5;
// holeradius = r - wallthickness;
// difference() {
// skin([for (i=[0:layers-1]) zrot(-30*i,p=path3d(hexagon(ir=r),i*height/layers))],slices=0);
// up(height/layers) cylinder(r=holeradius, h=height);
// }
2020-02-11 22:15:43 +00:00
// Example(FlatSpin): A box that is octagonal on the outside and circular on the inside
// height = 45;
// sub_base = octagon(d=71, rounding=2, $fn=128);
// base = octagon(d=75, rounding=2, $fn=128);
// interior = regular_ngon(n=len(base), d=60);
// right_half()
// skin([ sub_base, base, base, sub_base, interior], z=[0,2,height, height, 2], slices=0, refine=1, method="reindex");
2020-02-11 02:02:24 +00:00
// Example(FlatSpin): Connecting a pentagon and circle with the "tangent" method produces triangular faces.
// skin([pentagon(4), circle($fn=80,r=2)], z=[0,3], slices=10, method="tangent");
// Example(FlatSpin): Another "tangent" example with non-parallel profiles
// skin([path3d(pentagon(4)),
// yrot(35,p=path3d(right(4,p=circle($fn=80,r=2)),5))], slices=10, method="tangent");
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): rounding corners of a square. Note that $fn makes the number of points constant, and avoiding the `rounding=0` case keeps everything simple. In this case, the connections between profiles are linear, so there is no benefit to setting `slices` bigger than zero.
2020-02-11 22:15:43 +00:00
// shapes = [for(i=[.01:.045:2])zrot(-i*180/2,cp=[-8,0,0],p=xrot(90,p=path3d(regular_ngon(n=4, side=4, rounding=i, $fn=64))))];
// skin( shapes, slices=0);
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): Here's a simplified version of the above, with `i=0` included. That first layer doesn't look good.
2020-02-11 22:15:43 +00:00
// shapes = [for(i=[0:.2:1]) path3d(regular_ngon(n=4, side=4, rounding=i, $fn=32),i*5)];
// skin( shapes, slices=0);
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): You can fix it by specifying "tangent" for the first method, but you still need "direct" for the rest.
2020-02-11 22:15:43 +00:00
// shapes = [for(i=[0:.2:1]) path3d(regular_ngon(n=4, side=4, rounding=i, $fn=32),i*5)];
// skin( shapes, slices=0, method=concat(["tangent"],replist("direct",len(shapes)-2)));
2020-02-11 02:02:24 +00:00
// Example(FlatSpin): Connecting square to pentagon using "direct" method.
// skin([regular_ngon(n=4, r=4), regular_ngon(n=5,r=5)], z=[0,4], refine=10, slices=10);
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): Connecting square to shifted pentagon using "direct" method.
// skin([regular_ngon(n=4, r=4), right(4,p=regular_ngon(n=5,r=5))], z=[0,4], refine=10, slices=10);
2020-02-11 02:02:24 +00:00
// Example(FlatSpin): To improve the look, you can actually rotate the polygons for a more symmetric pattern of lines. You have to resample yourself before calling `align_polygon` and you should choose a length that is a multiple of both polygon lengths.
// sq = subdivide_path(regular_ngon(n=4, r=4),40);
// pent = subdivide_path(regular_ngon(n=5,r=5),40);
// skin([sq, align_polygon(sq,pent,[0:1:360/5])], z=[0,4], slices=10);
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): For the shifted pentagon we can also align, making sure to pass an appropriate centerpoint to `align_polygon`.
// sq = subdivide_path(regular_ngon(n=4, r=4),40);
// pent = right(4,p=subdivide_path(regular_ngon(n=5,r=5),40));
// skin([sq, align_polygon(sq,pent,[0:1:360/5],cp=[4,0])], z=[0,4], refine=10, slices=10);
2020-02-11 02:02:24 +00:00
// Example(FlatSpin): The "distance" method is a completely different approach.
// skin([regular_ngon(n=4, r=4), regular_ngon(n=5,r=5)], z=[0,4], refine=10, slices=10, method="distance");
// Example(FlatSpin): Connecting pentagon to heptagon inserts two triangular faces on each side
// small = path3d(circle(r=3, $fn=5));
// big = up(2,p=yrot( 0,p=path3d(circle(r=3, $fn=7), 6)));
// skin([small,big],method="distance", slices=10, refine=10);
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): But just a slight rotation of the top profile moves the two triangles to one end
2020-02-11 02:02:24 +00:00
// small = path3d(circle(r=3, $fn=5));
// big = up(2,p=yrot(14,p=path3d(circle(r=3, $fn=7), 6)));
// skin([small,big],method="distance", slices=10, refine=10);
// Example(FlatSpin): Another "distance" example:
// off = [0,2];
// shape = turtle(["right",45,"move", "left",45,"move", "left",45, "move", "jump", [.5+sqrt(2)/2,8]]);
// rshape = rot(180,cp=centroid(shape)+off, p=shape);
// skin([shape,rshape],z=[0,4], method="distance",slices=10,refine=15);
// Example(FlatSpin): Slightly shifting the profile changes the optimal linkage
// off = [0,1];
// shape = turtle(["right",45,"move", "left",45,"move", "left",45, "move", "jump", [.5+sqrt(2)/2,8]]);
// rshape = rot(180,cp=centroid(shape)+off, p=shape);
// skin([shape,rshape],z=[0,4], method="distance",slices=10,refine=15);
// Example(FlatSpin): This optimal solution doesn't look terrible:
// prof1 = path3d([[50,-50], [-50,-50], [-50,50], [-25,25], [0,50], [25,25], [50,50]]);
// prof2 = path3d(regular_ngon(n=7, r=50),100);
// skin([prof1, prof2], method="distance", slices=10, refine=10);
// Example(FlatSpin): But this one looks better. The "distance" method doesn't find it because it uses two more edges, so it clearly has a higher total edge distance. We force it by doubling the first two vertices of one of the profiles.
// prof1 = path3d([[50,-50], [-50,-50], [-50,50], [-25,25], [0,50], [25,25], [50,50]]);
// prof2 = path3d(regular_ngon(n=7, r=50),100);
// skin([repeat_entries(prof1,[2,2,1,1,1,1,1]),
// prof2],
// method="distance", slices=10, refine=10);
2020-02-11 22:15:43 +00:00
// Example(FlatSpin): The "distance" method will often produces results similar to the "tangent" method if you use it with a polygon and a curve, but the results can also look like this:
// skin([path3d(circle($fn=128, r=10)), xrot(39, p=path3d(square([8,10]),10))], method="distance", slices=0);
// Example(FlatSpin): Using the "tangent" method produces:
// skin([path3d(circle($fn=128, r=10)), xrot(39, p=path3d(square([8,10]),10))], method="tangent", slices=0);
2020-02-11 02:02:24 +00:00
// Example(FlatSpin): Torus using hexagons and pentagons, where `closed=true`
// hex = back(7,p=path3d(hexagon(r=3)));
// pent = back(7,p=path3d(pentagon(r=3)));
// N=5;
// skin(
// [for(i=[0:2*N-1]) xrot(360*i/2/N, p=(i%2==0 ? hex : pent))],
// refine=1,slices=0,method="distance",closed=true);
// Example(FlatSpin): A smooth morph is achieved when you can calculate all the slices yourself. Since you provide all the slices, set `slices=0`.
// skin([for(n=[.1:.02:.5])
// yrot(n*60-.5*60,p=path3d(supershape(step=360/128,m1=5,n1=n, n2=1.7),5-10*n))],
// slices=0);
// Example(FlatSpin): Another smooth supershape morph:
// skin([for(alpha=[-.2:.05:1.5])
// path3d(supershape(step=360/256,m1=7, n1=lerp(2,3,alpha),
// n2=lerp(8,4,alpha), n3=lerp(4,17,alpha)),alpha*5)],
// slices=0);
// Example(FlatSpin): Several polygons connected using "distance"
// skin([regular_ngon(n=4, r=3),
// regular_ngon(n=6, r=3),
// regular_ngon(n=9, r=4),
// rot(17,p=regular_ngon(n=6, r=3)),
// rot(37,p=regular_ngon(n=4, r=3))],
// z=[0,2,4,6,9], method="distance", slices=10, refine=10);
2020-02-13 01:08:21 +00:00
// Example(FlatSpin): Vertex count of the polygon changes at every profile
2020-02-11 02:02:24 +00:00
// skin([
// for (ang = [0:10:90])
// rot([0,ang,0], cp=[200,0,0], p=path3d(circle(d=100,$fn=12-(ang/10))))
// ],method="distance",slices=10,refine=10);
2020-02-11 22:15:43 +00:00
// Example: If you create a self-intersecting polyhedron the result is invalid. In some cases self-intersection may be obvous. Here is a more subtle example.
// skin([
// for (a = [0:30:180]) let(
// pos = [-60*sin(a), 0, a ],
// pos2 = [-60*sin(a+0.1), 0, a+0.1]
// ) move(pos,
// p=rot(from=UP, to=pos2-pos,
// p=path3d(circle(d=150))
// )
// )
// ],refine=1,slices=0);
// color("red") {
// zrot(25) fwd(130) xrot(75) {
// linear_extrude(height=0.1) {
// ydistribute(25) {
// text(text="BAD POLYHEDRONS!", size=20, halign="center", valign="center");
// text(text="CREASES MAKE", size=20, halign="center", valign="center");
// }
// }
// }
// up(160) zrot(25) fwd(130) xrot(75) {
// stroke(zrot(30, p=yscale(0.5, p=circle(d=120))),width=10,closed=true);
// }
// }
2020-02-11 02:02:24 +00:00
module skin ( profiles , slices , refine = 1 , method = "direct" , sampling , caps , closed = false , z , convexity = 10 )
2020-02-03 03:43:49 +00:00
{
2020-02-11 02:02:24 +00:00
vnf_polyhedron ( skin ( profiles , slices , refine , method , sampling , caps , closed , z ) , convexity = convexity ) ;
2020-02-03 03:43:49 +00:00
}
2020-02-11 02:02:24 +00:00
function skin ( profiles , slices , refine = 1 , method = "direct" , sampling , caps , closed = false , z ) =
2020-02-04 02:36:06 +00:00
assert ( is_list ( profiles ) && len ( profiles ) > 1 , "Must provide at least two profiles" )
2020-02-11 02:02:24 +00:00
let ( bad = [ for ( i = idx ( profiles ) ) if ( ! ( is_path ( profiles [ i ] ) && len ( profiles [ i ] ) > 2 ) ) i ] )
2020-02-04 02:36:06 +00:00
assert ( len ( bad ) = = 0 , str ( "Profiles " , bad , " are not a paths or have length less than 3" ) )
2020-02-03 03:43:49 +00:00
let (
2020-02-13 01:08:21 +00:00
profcount = len ( profiles ) - ( closed ? 0 : 1 ) ,
2020-02-11 02:02:24 +00:00
legal_methods = [ "direct" , "reindex" , "distance" , "tangent" ] ,
2020-02-03 03:43:49 +00:00
caps = is_def ( caps ) ? caps :
closed ? false : true ,
2020-02-11 02:02:24 +00:00
capsOK = is_bool ( caps ) || ( is_list ( caps ) && len ( caps ) = = 2 && is_bool ( caps [ 0 ] ) && is_bool ( caps [ 1 ] ) ) ,
fullcaps = is_bool ( caps ) ? [ caps , caps ] : caps ,
2020-02-11 22:15:43 +00:00
refine = is_list ( refine ) ? refine : replist ( refine , len ( profiles ) ) ,
2020-02-13 01:08:21 +00:00
slices = is_list ( slices ) ? slices : replist ( slices , profcount ) ,
2020-02-11 02:02:24 +00:00
refineOK = [ for ( i = idx ( refine ) ) if ( refine [ i ] < = 0 || ! is_integer ( refine [ i ] ) ) i ] ,
2020-02-11 22:15:43 +00:00
slicesOK = [ for ( i = idx ( slices ) ) if ( ! is_integer ( slices [ i ] ) || slices [ i ] < 0 ) i ] ,
2020-02-03 03:43:49 +00:00
maxsize = list_longest ( profiles ) ,
methodok = is_list ( method ) || in_list ( method , legal_methods ) ,
2020-02-11 02:02:24 +00:00
methodlistok = is_list ( method ) ? [ for ( i = idx ( method ) ) if ( ! in_list ( method [ i ] , legal_methods ) ) i ] : [ ] ,
2020-02-13 01:08:21 +00:00
method = is_string ( method ) ? replist ( method , profcount ) : method ,
2020-02-11 02:02:24 +00:00
// Define to be zero where a resampling method is used and 1 where a vertex duplicator is used
RESAMPLING = 0 ,
DUPLICATOR = 1 ,
method_type = [ for ( m = method ) m = = "direct" || m = = "reindex" ? 0 : 1 ] ,
sampling = is_def ( sampling ) ? sampling :
in_list ( DUPLICATOR , method_type ) ? "segment" : "length"
)
assert ( len ( refine ) = = len ( profiles ) , "refine list is the wrong length" )
2020-02-13 01:08:21 +00:00
assert ( len ( slices ) = = profcount , "slices list is the wrong length" )
2020-02-11 22:15:43 +00:00
assert ( slicesOK = = [ ] , str ( "slices must be nonnegative integers" ) )
assert ( refineOK = = [ ] , str ( "refine must be postive integer" ) )
2020-02-03 03:43:49 +00:00
assert ( methodok , str ( "method must be one of " , legal_methods , ". Got " , method ) )
assert ( methodlistok = = [ ] , str ( "method list contains invalid method at " , methodlistok ) )
2020-02-13 01:08:21 +00:00
assert ( len ( method ) = = profcount , "Method list is the wrong length" )
2020-02-11 02:02:24 +00:00
assert ( in_list ( sampling , [ "length" , "segment" ] ) , "sampling must be set to \"length\" or \"segment\"" )
assert ( sampling = = "segment" || ( ! in_list ( "distance" , method ) && ! in_list ( "tangent" , method ) ) , "sampling is set to \"length\" which is only allowed iwith methods \"direct\" and \"reindex\"" )
assert ( capsOK , "caps must be boolean or a list of two booleans" )
2020-02-03 03:43:49 +00:00
assert ( ! closed || ! caps , "Cannot make closed shape with caps" )
let (
profile_dim = array_dim ( profiles , 2 ) ,
profiles_ok = ( profile_dim = = 2 && is_list ( z ) && len ( z ) = = len ( profiles ) ) || profile_dim = = 3
)
assert ( profiles_ok , "Profiles must all be 3d or must all be 2d, with matching length z parameter." )
assert ( is_undef ( z ) || profile_dim = = 2 , "Do not specify z with 3d profiles" )
assert ( profile_dim = = 3 || len ( z ) = = len ( profiles ) , "Length of z does not match length of profiles." )
let (
2020-02-11 02:02:24 +00:00
// Adjoin Z coordinates to 2d profiles
2020-02-03 03:43:49 +00:00
profiles = profile_dim = = 3 ? profiles :
2020-02-11 02:02:24 +00:00
[ for ( i = idx ( profiles ) ) path3d ( profiles [ i ] , z [ i ] ) ] ,
// True length (not counting repeated vertices) of profiles after refinement
refined_len = [ for ( i = idx ( profiles ) ) refine [ i ] * len ( profiles [ i ] ) ] ,
// Define this to be 1 if a profile is used on either side by a resampling method, zero otherwise.
profile_resampled = [ for ( i = idx ( profiles ) )
1 - (
i = = 0 ? method_type [ 0 ] * ( closed ? select ( method_type , - 1 ) : 1 ) :
i = = len ( profiles ) - 1 ? select ( method_type , - 1 ) * ( closed ? select ( method_type , - 2 ) : 1 ) :
method_type [ i ] * method_type [ i - 1 ] ) ] ,
parts = search ( 1 , [ 1 , for ( i = [ 0 : 1 : len ( profile_resampled ) - 2 ] ) profile_resampled [ i ] ! = profile_resampled [ i + 1 ] ? 1 : 0 ] , 0 ) ,
plen = [ for ( i = idx ( parts ) ) ( i = = len ( parts ) - 1 ? len ( refined_len ) : parts [ i + 1 ] ) - parts [ i ] ] ,
max_list = [ for ( i = idx ( parts ) ) each replist ( max ( select ( refined_len , parts [ i ] , parts [ i ] + plen [ i ] - 1 ) ) , plen [ i ] ) ] ,
2020-02-13 01:08:21 +00:00
transition_profiles = [ for ( i = [ ( closed ? 0 : 1 ) : 1 : profcount - 1 ] ) if ( select ( method_type , i - 1 ) ! = method_type [ i ] ) i ] ,
2020-02-11 02:02:24 +00:00
badind = [ for ( tranprof = transition_profiles ) if ( refined_len [ tranprof ] ! = max_list [ tranprof ] ) tranprof ]
)
assert ( badind = = [ ] , str ( "Profile length mismatch at method transition at indices " , badind , " in skin()" ) )
let (
2020-02-13 01:08:21 +00:00
full_list = // If there are no duplicators then use more efficient where the whole input is treated together
! in_list ( DUPLICATOR , method_type ) ?
let (
resampled = [ for ( i = idx ( profiles ) ) subdivide_path ( profiles [ i ] , max_list [ i ] , method = sampling ) ] ,
fixedprof = [ for ( i = idx ( profiles ) )
i = = 0 || method [ i - 1 ] = = "direct" ? resampled [ i ]
: echo ( "reindexing" ) reindex_polygon ( resampled [ i - 1 ] , resampled [ i ] ) ] ,
sliced = slice_profiles ( fixedprof , slices , closed )
)
! closed ? sliced : concat ( sliced , [ sliced [ 0 ] ] )
: // There are duplicators, so use approach where each pair is treated separately
[ for ( i = [ 0 : profcount - 1 ] )
2020-02-03 03:43:49 +00:00
let (
pair =
2020-02-13 23:06:35 +00:00
method [ i ] = = "distance" ? _skin_distance_match ( profiles [ i ] , select ( profiles , i + 1 ) ) :
method [ i ] = = "tangent" ? _skin_tangent_match ( profiles [ i ] , select ( profiles , i + 1 ) ) :
2020-02-11 02:02:24 +00:00
/*method[i]=="reindex" || method[i]=="direct" ?*/
let ( p1 = subdivide_path ( profiles [ i ] , max_list [ i ] , method = sampling ) ,
p2 = subdivide_path ( select ( profiles , i + 1 ) , max_list [ i ] , method = sampling )
) ( method [ i ] = = "direct" ? [ p1 , p2 ] : [ p1 , reindex_polygon ( p1 , p2 ) ] ) ,
nsamples = method_type [ i ] = = RESAMPLING ? len ( pair [ 0 ] ) :
assert ( refine [ i ] = = select ( refine , i + 1 ) , str ( "Refine value mismatch at indices " , [ i , ( i + 1 ) % len ( refine ) ] ,
". Method " , method [ i ] , " requires equal values" ) )
refine [ i ] * len ( pair [ 0 ] )
2020-02-03 03:43:49 +00:00
)
2020-02-13 01:08:21 +00:00
each subdivide_and_slice ( pair , slices [ i ] , nsamples , method = sampling ) ]
2020-02-03 03:43:49 +00:00
)
2020-02-11 02:02:24 +00:00
_skin_core ( full_list , caps = fullcaps ) ;
function _skin_core ( profiles , caps ) =
let (
vertices = [ for ( prof = profiles ) each prof ] ,
plens = [ for ( prof = profiles ) len ( prof ) ] ,
sidefaces = [
for ( pidx = idx ( profiles , end = - 2 ) )
let (
prof1 = profiles [ pidx % len ( profiles ) ] ,
prof2 = profiles [ ( pidx + 1 ) % len ( profiles ) ] ,
voff = default ( sum ( [ for ( i = [ 0 : 1 : pidx - 1 ] ) plens [ i ] ] ) , 0 ) ,
faces = [
for (
first = true ,
finishing = false ,
finished = false ,
plen1 = len ( prof1 ) ,
plen2 = len ( prof2 ) ,
i = 0 , j = 0 , side = 0 ;
! finished ;
side =
let (
p1a = prof1 [ ( i + 0 ) % plen1 ] ,
p1b = prof1 [ ( i + 1 ) % plen1 ] ,
p2a = prof2 [ ( j + 0 ) % plen2 ] ,
p2b = prof2 [ ( j + 1 ) % plen2 ] ,
dist1 = norm ( p1a - p2b ) ,
dist2 = norm ( p1b - p2a )
) ( i = = j ) ? ( dist1 > dist2 ? 1 : 0 ) : ( i < j ? 1 : 0 ) ,
p1 = voff + ( i % plen1 ) ,
p2 = voff + ( j % plen2 ) + plen1 ,
p3 = voff + ( side ? ( ( i + 1 ) % plen1 ) : ( ( ( j + 1 ) % plen2 ) + plen1 ) ) ,
face = [ p1 , p3 , p2 ] ,
i = i + ( side ? 1 : 0 ) ,
j = j + ( side ? 0 : 1 ) ,
first = false ,
finished = finishing ,
finishing = i >= plen1 && j >= plen2
) if ( ! first ) face
]
) each faces
] ,
firstcap = ! caps [ 0 ] ? [ ] : let (
prof1 = profiles [ 0 ]
) [ [ for ( i = idx ( prof1 ) ) plens [ 0 ] - 1 - i ] ] ,
secondcap = ! caps [ 1 ] ? [ ] : let (
prof2 = select ( profiles , - 1 ) ,
eoff = sum ( select ( plens , 0 , - 2 ) )
) [ [ for ( i = idx ( prof2 ) ) eoff + i ] ]
) [ vertices , concat ( sidefaces , firstcap , secondcap ) ] ;
2020-02-03 03:43:49 +00:00
2020-02-13 01:08:21 +00:00
// Function: subdivide_and_slice()
// Usage: subdivide_and_slice(profiles, slices, [numpoints], [method], [closed])
// Description: Subdivides the input profiles to have length `numpoints` where
// `numpoints` must be at least as big as the largest input profile.
// By default `numpoints` is set equal to the length of the largest profile.
// You can set `numpoints="lcm"` to sample to the least common multiple of
// all curves, which will avoid sampling artifacts but may produce a huge output.
// After subdivision, profiles are sliced.
// Arguments:
// profiles = profiles to operate on
// slices = number of slices to insert between each pair of profiles. May be a vector
// numpoints = number of points after sampling.
// method = method used for calling `subdivide_path`, either `"length"` or `"segment"`. Default: `"length"`
// closed = the first and last profile are connected. Default: false
function subdivide_and_slice ( profiles , slices , numpoints , method = "length" , closed = false ) =
2020-02-03 03:43:49 +00:00
let (
2020-02-13 01:08:21 +00:00
maxsize = list_longest ( profiles ) ,
numpoints = is_undef ( numpoints ) ? maxsize :
numpoints = = "lcm" ? lcmlist ( [ for ( p = profiles ) len ( p ) ] ) :
2020-02-03 03:43:49 +00:00
is_num ( numpoints ) ? round ( numpoints ) : undef
)
assert ( is_def ( numpoints ) , "Parameter numpoints must be \"max\", \"lcm\" or a positive number" )
assert ( numpoints >= maxsize , "Number of points requested is smaller than largest profile" )
2020-02-13 01:08:21 +00:00
let ( fixpoly = [ for ( poly = profiles ) subdivide_path ( poly , numpoints , method = method ) ] )
slice_profiles ( fixpoly , slices , closed ) ;
2020-02-03 03:43:49 +00:00
2020-02-13 01:08:21 +00:00
// Function slice_profiles()
// Usage: slice_profiles(profiles,slices,[closed])
// Description:
// Given an input list of profiles, linearly interpolate between each pair to produce a
// more finely sampled list. The parameters `slices` specifies the number of slices to
// be inserted between each pair of profiles and can be a number or a list.
// Arguments:
// profiles = list of paths to operate on. They must be lists of the same shape and length.
// slices = number of slices to insert between each pair, or a list to vary the number inserted.
// closed = set to true if last profile connects to first one. Default: false
function slice_profiles ( profiles , slices , closed = false ) =
assert ( is_num ( slices ) || is_list ( slices ) )
let ( listok = ! is_list ( slices ) || len ( slices ) = = len ( profiles ) - ( closed ? 0 : 1 ) )
assert ( listok , "Input slices to slice_profiles is a list with the wrong length" )
2020-02-03 03:43:49 +00:00
let (
2020-02-13 01:08:21 +00:00
count = is_num ( slices ) ? replist ( slices , len ( profiles ) - ( closed ? 0 : 1 ) ) : slices ,
slicelist = [ for ( i = [ 0 : len ( profiles ) - ( closed ? 1 : 2 ) ] )
each [ for ( j = [ 0 : count [ i ] ] ) lerp ( profiles [ i ] , select ( profiles , i + 1 ) , j / ( count [ i ] + 1 ) ) ]
2020-02-03 03:43:49 +00:00
]
)
2020-02-13 01:08:21 +00:00
concat ( slicelist , closed ? [ ] : [ profiles [ len ( profiles ) - 1 ] ] ) ;
2020-02-03 03:43:49 +00:00
2020-02-13 01:08:21 +00:00
//////////////////////////////////////////////////////////////////
//
// Minimum Distance Mapping using Dynamic Programming
2020-02-03 03:43:49 +00:00
//
2020-02-11 02:02:24 +00:00
// Given inputs of a two polygons, computes a mapping between their vertices that minimizes the sum the sum of
// the distances between every matched pair of vertices. The algorithm uses dynamic programming to calculate
// the optimal mapping under the assumption that poly1[0] <-> poly2[0]. We then rotate through all the
// possible indexings of the longer polygon. The theoretical run time is quadratic in the longer polygon and
// linear in the shorter one.
2020-02-03 03:43:49 +00:00
//
2020-02-13 23:06:35 +00:00
// The top level function, _skin_distance_match(), cycles through all the of the indexings of the larger
2020-02-11 02:02:24 +00:00
// polygon, computes the optimal value for each indexing, and chooses the overall best result. It uses
// _dp_extract_map() to thread back through the dynamic programming array to determine the actual mapping, and
// then converts the result to an index repetition count list, which is passed to repeat_entries().
2020-02-03 03:43:49 +00:00
//
2020-02-11 02:02:24 +00:00
// The function _dp_distance_array builds up the rows of the dynamic programming matrix with reference
2020-02-03 03:43:49 +00:00
// to the previous rows, where `tdist` holds the total distance for a given mapping, and `map`
// holds the information about which path was optimal for each position.
//
2020-02-11 02:02:24 +00:00
// The function _dp_distance_row constructs each row of the dynamic programming matrix in the usual
// way where entries fill in based on the three entries above and to the left. Note that we duplicate
// entry zero so account for wrap-around at the ends, and we initialize the distance to zero to avoid
// double counting the length of the 0-0 pair.
//
// This function builds up the dynamic programming distance array where each entry in the
2020-02-03 03:43:49 +00:00
// array gives the optimal distance for aligning the corresponding subparts of the two inputs.
// When the array is fully populated, the bottom right corner gives the minimum distance
2020-02-11 02:02:24 +00:00
// for matching the full input lists. The `map` array contains a the three key values for the three
// directions, where _MAP_DIAG means you map the next vertex of `big` to the next vertex of `small`,
// _MAP_LEFT means you map the next vertex of `big` to the current vertex of `small`, and _MAP_UP
// means you map the next vertex of `small` to the current vertex of `big`.
2020-02-03 03:43:49 +00:00
//
// Return value is [min_distance, map], where map is the array that is used to extract the actual
// vertex map.
2020-02-06 03:24:30 +00:00
_MAP_DIAG = 0 ;
_MAP_LEFT = 1 ;
_MAP_UP = 2 ;
2020-02-11 02:02:24 +00:00
/*
function _dp_distance_array ( small , big , abort_thresh = 1 / 0 , small_ind = 0 , tdist = [ ] , map = [ ] ) =
small_ind = = len ( small ) + 1 ? [ tdist [ len ( tdist ) - 1 ] [ len ( big ) - 1 ] , map ] :
let ( newrow = _dp_distance_row ( small , big , small_ind , tdist ) )
min ( newrow [ 0 ] ) > abort_thresh ? [ tdist [ len ( tdist ) - 1 ] [ len ( big ) - 1 ] , map ] :
_dp_distance_array ( small , big , abort_thresh , small_ind + 1 , concat ( tdist , [ newrow [ 0 ] ] ) , concat ( map , [ newrow [ 1 ] ] ) ) ;
2020-02-06 03:24:30 +00:00
* /
2020-02-06 23:51:28 +00:00
2020-02-11 02:02:24 +00:00
function _dp_distance_array ( small , big , abort_thresh = 1 / 0 ) =
2020-02-06 03:24:30 +00:00
[ for (
small_ind = 0 ,
tdist = [ ] ,
map = [ ]
;
2020-02-06 23:51:28 +00:00
small_ind < = len ( small ) + 1
2020-02-06 03:24:30 +00:00
;
2020-02-06 23:51:28 +00:00
newrow = small_ind = = len ( small ) + 1 ? [ 0 , 0 , 0 ] : // dummy end case
2020-02-11 02:02:24 +00:00
_dp_distance_row ( small , big , small_ind , tdist ) ,
2020-02-06 03:24:30 +00:00
tdist = concat ( tdist , [ newrow [ 0 ] ] ) ,
map = concat ( map , [ newrow [ 1 ] ] ) ,
2020-02-06 23:51:28 +00:00
small_ind = min ( newrow [ 0 ] ) > abort_thresh ? len ( small ) + 1 : small_ind + 1
2020-02-06 03:24:30 +00:00
)
2020-02-06 23:51:28 +00:00
if ( small_ind = = len ( small ) + 1 ) each [ tdist [ len ( tdist ) - 1 ] [ len ( big ) ] , map ] ] ;
2020-02-06 03:24:30 +00:00
//[tdist,map]];
2020-02-06 23:51:28 +00:00
2020-02-11 02:02:24 +00:00
function _dp_distance_row ( small , big , small_ind , tdist ) =
2020-02-06 23:51:28 +00:00
// Top left corner is zero because it gets counted at the end in bottom right corner
small_ind = = 0 ? [ cumsum ( [ 0 , for ( i = [ 1 : len ( big ) ] ) norm ( big [ i % len ( big ) ] - small [ 0 ] ) ] ) , replist ( _MAP_LEFT , len ( big ) + 1 ) ] :
2020-02-06 03:24:30 +00:00
[ for ( big_ind = 1 ,
2020-02-06 23:51:28 +00:00
newrow = [ norm ( big [ 0 ] - small [ small_ind % len ( small ) ] ) + tdist [ small_ind - 1 ] [ 0 ] ] ,
2020-02-06 03:24:30 +00:00
newmap = [ _MAP_UP ]
;
2020-02-06 23:51:28 +00:00
big_ind < = len ( big ) + 1
2020-02-06 03:24:30 +00:00
;
2020-02-06 23:51:28 +00:00
costs = big_ind = = len ( big ) + 1 ? [ 0 ] : // handle extra iteration
2020-02-06 03:24:30 +00:00
[ tdist [ small_ind - 1 ] [ big_ind - 1 ] , // diag
newrow [ big_ind - 1 ] , // left
tdist [ small_ind - 1 ] [ big_ind ] ] , // up
2020-02-06 23:51:28 +00:00
newrow = concat ( newrow , [ min ( costs ) + norm ( big [ big_ind % len ( big ) ] - small [ small_ind % len ( small ) ] ) ] ) ,
newmap = concat ( newmap , [ min_index ( costs ) ] ) ,
big_ind = big_ind + 1
) if ( big_ind = = len ( big ) + 1 ) each [ newrow , newmap ] ] ;
2020-02-11 02:02:24 +00:00
function _dp_extract_map ( map ) =
2020-02-06 03:24:30 +00:00
[ for (
i = len ( map ) - 1 ,
j = len ( map [ 0 ] ) - 1 ,
2020-02-06 23:51:28 +00:00
smallmap = [ ] ,
bigmap = [ ]
2020-02-06 03:24:30 +00:00
;
j >= 0
;
advance_i = map [ i ] [ j ] = = _MAP_UP || map [ i ] [ j ] = = _MAP_DIAG ,
advance_j = map [ i ] [ j ] = = _MAP_LEFT || map [ i ] [ j ] = = _MAP_DIAG ,
i = i - ( advance_i ? 1 : 0 ) ,
j = j - ( advance_j ? 1 : 0 ) ,
2020-02-06 23:51:28 +00:00
bigmap = concat ( [ j % ( len ( map [ 0 ] ) - 1 ) ] , bigmap ) ,
smallmap = concat ( [ i % ( len ( map ) - 1 ) ] , smallmap )
2020-02-06 03:24:30 +00:00
)
if ( i = = 0 && j = = 0 ) each [ smallmap , bigmap ] ] ;
2020-02-13 23:06:35 +00:00
// Internal Function: _skin_distance_match(poly1,poly2)
// Usage: _skin_distance_match(poly1,poly2)
2020-02-13 01:08:21 +00:00
// Description:
// Find a way of associating the vertices of poly1 and vertices of poly2
// that minimizes the sum of the length of the edges that connect the two polygons.
// Polygons can be in 2d or 3d. The algorithm has cubic run time, so it can be
// slow if you pass large polygons. The output is a pair of polygons with vertices
// duplicated as appropriate to be used as input to `skin()`.
// Arguments:
// poly1 = first polygon to match
// poly2 = second polygon to match
2020-02-13 23:06:35 +00:00
function _skin_distance_match ( poly1 , poly2 ) =
2020-02-06 03:24:30 +00:00
let (
swap = len ( poly1 ) > len ( poly2 ) ,
big = swap ? poly1 : poly2 ,
small = swap ? poly2 : poly1 ,
map_poly = [ for (
i = 0 ,
2020-02-06 23:51:28 +00:00
bestcost = 1 / 0 ,
2020-02-06 03:24:30 +00:00
bestmap = - 1 ,
bestpoly = - 1
;
i < = len ( big )
;
shifted = polygon_shift ( big , i ) ,
2020-02-11 02:02:24 +00:00
result = _dp_distance_array ( small , shifted , abort_thresh = bestcost ) ,
2020-02-06 03:24:30 +00:00
bestmap = result [ 0 ] < bestcost ? result [ 1 ] : bestmap ,
bestpoly = result [ 0 ] < bestcost ? shifted : bestpoly ,
2020-02-06 23:51:28 +00:00
best_i = result [ 0 ] < bestcost ? i : best_i ,
2020-02-06 03:24:30 +00:00
bestcost = min ( result [ 0 ] , bestcost ) ,
i = i + 1
)
2020-02-06 23:51:28 +00:00
if ( i = = len ( big ) ) each [ bestmap , bestpoly , best_i ] ] ,
2020-02-11 02:02:24 +00:00
map = _dp_extract_map ( map_poly [ 0 ] ) ,
2020-02-06 23:51:28 +00:00
smallmap = map [ 0 ] ,
bigmap = map [ 1 ] ,
// These shifts are needed to handle the case when points from both ends of one curve map to a single point on the other
bigshift = len ( bigmap ) - max ( max_index ( bigmap , all = true ) ) - 1 ,
smallshift = len ( smallmap ) - max ( max_index ( smallmap , all = true ) ) - 1 ,
newsmall = polygon_shift ( repeat_entries ( small , unique_count ( smallmap ) [ 1 ] ) , smallshift ) ,
newbig = polygon_shift ( repeat_entries ( map_poly [ 1 ] , unique_count ( bigmap ) [ 1 ] ) , bigshift )
2020-02-06 03:24:30 +00:00
)
swap ? [ newbig , newsmall ] : [ newsmall , newbig ] ;
2020-02-13 01:08:21 +00:00
//
2020-02-11 02:02:24 +00:00
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
2020-02-13 01:08:21 +00:00
//
2020-02-13 23:06:35 +00:00
// Internal Function: _skin_tangent_match()
// Usage: _skin_tangent_match(poly1, poly2)
2020-02-13 01:08:21 +00:00
// Description:
// Finds a mapping of the vertices of the larger polygon onto the smaller one. Whichever input is the
// shorter path is the polygon, and the longer input is the curve. For every edge of the polygon, the algorithm seeks a plane that contains that
// edge and is tangent to the curve. There will be more than one such point. To choose one, the algorithm centers the polygon and curve on their centroids
// and chooses the closer tangent point. The algorithm works its way around the polygon, computing a series of tangent points and then maps all of the
// points on the curve between two tangent points into one vertex of the polygon. This algorithm can fail if the curve has too few points or if it is concave.
// Arguments:
// poly1 = input polygon
// poly2 = input polygon
2020-02-13 23:06:35 +00:00
function _skin_tangent_match ( poly1 , poly2 ) =
2020-02-11 02:02:24 +00:00
let (
swap = len ( poly1 ) > len ( poly2 ) ,
big = swap ? poly1 : poly2 ,
small = swap ? poly2 : poly1 ,
curve_offset = centroid ( small ) - centroid ( big ) ,
2020-02-13 01:08:21 +00:00
cutpts = [ for ( i = [ 0 : len ( small ) - 1 ] ) _find_one_tangent ( big , select ( small , i , i + 1 ) , curve_offset = curve_offset ) ] ,
2020-02-11 02:02:24 +00:00
d = echo ( cutpts = cutpts ) ,
shift = select ( cutpts , - 1 ) + 1 ,
newbig = polygon_shift ( big , shift ) ,
repeat_counts = [ for ( i = [ 0 : len ( small ) - 1 ] ) posmod ( cutpts [ i ] - select ( cutpts , i - 1 ) , len ( big ) ) ] ,
newsmall = repeat_entries ( small , repeat_counts )
)
assert ( len ( newsmall ) = = len ( newbig ) , "Tangent alignment failed, probably because of insufficient points or a concave curve" )
swap ? [ newbig , newsmall ] : [ newsmall , newbig ] ;
2020-02-13 01:08:21 +00:00
function _find_one_tangent ( curve , edge , curve_offset = [ 0 , 0 , 0 ] , closed = true ) =
2020-02-11 02:02:24 +00:00
let (
angles =
2020-02-13 01:08:21 +00:00
[ for ( i = [ 0 : len ( curve ) - ( closed ? 1 : 2 ) ] )
let (
plane = plane3pt ( edge [ 0 ] , edge [ 1 ] , curve [ i ] ) ,
tangent = [ curve [ i ] , select ( curve , i + 1 ) ]
2020-02-11 02:02:24 +00:00
)
2020-02-13 01:08:21 +00:00
plane_line_angle ( plane , tangent ) ] ,
2020-02-11 02:02:24 +00:00
zero_cross = [ for ( i = [ 0 : len ( curve ) - ( closed ? 1 : 2 ) ] ) if ( sign ( angles [ i ] ) ! = sign ( select ( angles , i + 1 ) ) ) i ] ,
d = [ for ( i = zero_cross ) distance_from_line ( edge , curve [ i ] + curve_offset ) ]
2020-02-13 01:08:21 +00:00
)
zero_cross [ min_index ( d ) ] ;
2020-02-06 23:51:28 +00:00
2020-02-11 02:02:24 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap