BOSL2/skin.scad

702 lines
32 KiB
OpenSCAD
Raw Normal View History

2019-11-04 03:12:50 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: skin.scad
// Functions to skin arbitrary 2D profiles/paths in 3-space.
// To use, add the following line to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/skin.scad>
// ```
// Derived from list-comprehension-demos skin():
// - https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad
//////////////////////////////////////////////////////////////////////
include <vnf.scad>
// Section: Skinning
// Function&Module: skin()
// Usage: As Module
// skin(profiles, [closed], [method]);
2019-11-04 03:12:50 +00:00
// Usage: As Function
// vnf = skin(profiles, [closed], [caps], [method]);
2019-11-04 03:12:50 +00:00
// Description
// Given a list of two or more path `profiles` in 3D-space, produces faces to skin a surface between
// consecutive profiles. Optionally, the first and last profiles can have endcaps, or the last and
// first profiles can be skinned together. Each profile should be roughly planar, but some variance
// is allowed. The orientation of the first vertex of each profile should be relatively aligned with
// that of the next profile. Each profile should rotate the same clockwise direction.
// If called as a function, returns a [VNF structure](vnf.scad) like `[VERTICES, FACES]`.
2019-11-04 03:12:50 +00:00
// If called as a module, creates a polyhedron of the skinned profiles.
// The vertex matching methods are as follows:
2020-01-30 03:40:02 +00:00
// - `"distance"`: Chooses face configurations with shorter edge lengths.
// - `"angle"`: Chooses face configurations with edge angles closest to vertical.
// - `"convex"`: Chooses the more convex of possible face configurations.
// - `"uniform"`: Vertices are uniformly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count.
2019-11-04 03:12:50 +00:00
// Arguments:
// profiles = A list of 2D paths that have been moved and/or rotated into 3D-space.
// closed = If true, the last profile is skinned to the first profile, to allow for making a closed loop. Assumes `caps=false`. Default: false
// caps = If true, endcap faces are created. Assumes `closed=false`. Default: true
// method = Specifies the method used to match up vertices between profiles, to create faces. Given as a string, one of `"distance"`, `"angle"`, or `"uniform"`. If given as a list of strings, equal in number to the number of profile transitions, lets you specify the method used for each transition. Default: "uniform"
// convexity = Max number of times a line could intersect a wall of the shape. (Module use only.) Default: 2.
2019-11-04 03:12:50 +00:00
// Example(FlatSpin):
// skin([
// scale([2,1,1], p=path3d(circle(d=100,$fn=48))),
// path3d(circle(d=100,$fn=4),100),
// path3d(circle(d=100,$fn=12),200),
2019-11-14 06:16:50 +00:00
// ], method="distance");
2019-11-04 03:12:50 +00:00
// Example(FlatSpin):
// skin([
// for (ang = [0:10:90])
// rot([0,ang,0], cp=[200,0,0], p=path3d(circle(d=100,$fn=3+(ang/10))))
// ]);
// Example(FlatSpin): Möbius Strip
// skin([
// for (ang = [0:10:360])
// rot([0,ang,0], cp=[100,0,0], p=rot(ang/2, p=path3d(square([1,30],center=true))))
// ], caps=false);
// Example(FlatSpin): Closed Loop
// skin([
// for (i = [0:5])
// rot([0,i*60,0], cp=[100,0,0], p=path3d(circle(d=30,$fn=3+i%3)))
// ], closed=true, caps=false);
// Example(FlatSpin): Method "distance" is a good general purpose vertex matching method.
// method = "distance";
// xdistribute(150) {
// $fn=24;
// skin([
// yscale(2, p=path3d(circle(d=75))),
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
// ], method=method);
// skin([
// for (b=[0,90]) [
// for (a=[360:-360/$fn:0.01])
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
// ]
// ], method=method);
// skin([
// scale([1,2,1],p=path3d(circle(d=50))),
// scale([2,1,1],p=path3d(circle(d=50),100))
// ], method=method);
// }
// Example(FlatSpin): Method "angle" works subtly better with profiles created from a polar function.
// method = "angle";
// xdistribute(150) {
// $fn=24;
// skin([
// yscale(2, p=path3d(circle(d=75))),
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
// ], method=method);
// skin([
// for (b=[0,90]) [
// for (a=[360:-360/$fn:0.01])
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
// ]
// ], method=method);
// skin([
// scale([1,2,1],p=path3d(circle(d=50))),
// scale([2,1,1],p=path3d(circle(d=50),100))
// ], method=method);
// }
2020-01-30 03:40:02 +00:00
// Example(FlatSpin): Method "convex" maximizes convexity.
// method = "convex";
// xdistribute(150) {
// $fn=24;
// skin([
// yscale(2, p=path3d(circle(d=75))),
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
// ], method=method);
// skin([
// for (b=[0,90]) [
// for (a=[360:-360/$fn:0.01])
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
// ]
// ], method=method);
// skin([
// scale([1,2,1],p=path3d(circle(d=50))),
// scale([2,1,1],p=path3d(circle(d=50),100))
// ], method=method);
// }
// Example(FlatSpin): Method "uniform" works well with symmetrical profiles that are regularly spaced.
// method = "uniform";
// xdistribute(150) {
// $fn=24;
// skin([
// yscale(2, p=path3d(circle(d=75))),
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
// ], method=method);
// skin([
// for (b=[0,90]) [
// for (a=[360:-360/$fn:0.01])
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
// ]
// ], method=method);
// skin([
// scale([1,2,1],p=path3d(circle(d=50))),
// scale([2,1,1],p=path3d(circle(d=50),100))
// ], method=method);
// }
// Example:
// include <BOSL2/rounding.scad>
// fn=32;
// base = round_corners(square([2,4],center=true), measure="radius", size=0.5, $fn=fn);
// skin([
// path3d(base,0),
// path3d(base,2),
// path3d(circle($fn=fn,r=0.5),3),
// path3d(circle($fn=fn,r=0.5),4),
// path3d(circle($fn=fn,r=0.6),4),
// path3d(circle($fn=fn,r=0.5),5),
// path3d(circle($fn=fn,r=0.6),5),
// path3d(circle($fn=fn,r=0.5),6),
// path3d(circle($fn=fn,r=0.6),6),
// path3d(circle($fn=fn,r=0.5),7),
// ],method="uniform");
// Example: Forma Candle Holder
// r = 50;
// height = 140;
// layers = 10;
// wallthickness = 5;
// holeradius = r - wallthickness;
// difference() {
// skin([for (i=[0:layers-1]) zrot(-30*i,p=path3d(hexagon(ir=r),i*height/layers))]);
// up(height/layers) cylinder(r=holeradius, h=height);
// }
2019-11-13 06:51:13 +00:00
// Example: Beware Self-intersecting Creases!
// skin([
// for (a = [0:30:180]) let(
// pos = [-60*sin(a), 0, a ],
// pos2 = [-60*sin(a+0.1), 0, a+0.1]
// ) move(pos,
// p=rot(from=UP, to=pos2-pos,
// p=path3d(circle(d=150))
// )
// )
// ]);
// color("red") {
// zrot(25) fwd(130) xrot(75) {
// linear_extrude(height=0.1) {
// ydistribute(25) {
// text(text="BAD POLYHEDRONS!", size=20, halign="center", valign="center");
// text(text="CREASES MAKE", size=20, halign="center", valign="center");
// }
// }
// }
// up(160) zrot(25) fwd(130) xrot(75) {
// stroke(zrot(30, p=yscale(0.5, p=circle(d=120))),width=10,closed=true);
// }
// }
// Example: Beware Making Incomplete Polyhedrons!
// skin([
// move([0,0, 0], p=path3d(circle(d=100,$fn=36))),
// move([0,0,50], p=path3d(circle(d=100,$fn=6)))
// ], caps=false);
function _skin_core(profiles, closed=false, caps=true) =
2019-11-04 03:12:50 +00:00
assert(is_list(profiles))
2020-01-30 03:40:02 +00:00
assert(all([for (profile=profiles) is_list(profile) && len(profile[0])==3]), "All profiles must be 3D paths.")
2019-11-04 03:12:50 +00:00
assert(is_bool(closed))
assert(is_bool(caps))
assert(!closed||!caps)
2020-01-30 23:36:39 +00:00
let(
vertices = [for (prof=profiles) each prof],
plens = [for (prof=profiles) len(prof)]
)
let(
sidefaces = [
2019-11-04 03:12:50 +00:00
for(pidx=idx(profiles,end=closed? -1 : -2))
let(
prof1 = profiles[pidx%len(profiles)],
prof2 = profiles[(pidx+1)%len(profiles)],
2020-01-30 23:36:39 +00:00
voff = default(sum([for (i=[0:1:pidx-1]) plens[i]]),0),
2019-11-04 03:12:50 +00:00
faces = [
for(
first = true,
finishing = false,
finished = false,
2020-01-31 00:35:30 +00:00
plen1 = len(prof1),
plen2 = len(prof2),
2019-11-04 03:12:50 +00:00
i=0, j=0, side=0;
!finished;
2020-01-30 03:40:02 +00:00
side =
let(
p1a = prof1[(i+0)%plen1],
p1b = prof1[(i+1)%plen1],
p2a = prof2[(j+0)%plen2],
p2b = prof2[(j+1)%plen2],
2020-02-03 03:33:09 +00:00
dist1 = norm(p1a-p2b),
dist2 = norm(p1b-p2a)
) (i==j) ? (dist1>dist2? 1 : 0) : (i<j ? 1 : 0) ,
2020-01-30 23:36:39 +00:00
p1 = voff + (i%plen1),
p2 = voff + (j%plen2) + plen1,
p3 = voff + (side? ((i+1)%plen1) : (((j+1)%plen2) + plen1)),
2019-11-04 03:12:50 +00:00
face = [p1, p3, p2],
i = i + (side? 1 : 0),
j = j + (side? 0 : 1),
first = false,
finished = finishing,
finishing = i>=plen1 && j>=plen2
) if (!first) face
]
2020-01-30 23:36:39 +00:00
) each faces
],
capfaces = closed||!caps? [] : let(
2019-11-04 03:12:50 +00:00
prof1 = profiles[0],
2020-01-30 23:36:39 +00:00
prof2 = select(profiles,-1),
eoff = sum(select(plens,0,-2))
2019-11-04 03:12:50 +00:00
) [
2020-01-30 23:36:39 +00:00
[for (i=idx(prof1)) plens[0]-1-i],
[for (i=idx(prof2)) eoff+i]
],
vnfout = [vertices, concat(sidefaces,capfaces)]
) vnfout;
2019-11-04 03:12:50 +00:00
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
//
// Developmental skin wrapper, called superskin() for now, but this
// is not meant to be the final name.
// Function&Module: superskin()
// Usage: As module:
// skin(profiles, [slices], [samples|refine], [method], [sampling], [caps], [closed], [z]);
// Usage: As function:
// vnf = skin(profiles, [slices], [samples|refine], [method], [sampling], [caps], [closed], [z]);
// Description:
// Given a list of two ore more path `profiles` in 3d space, produces faces to skin a surface between
// the profiles. Optionally the first and last profiles can have endcaps, or the first and last profiles
// can be connected together. Each profile should be roughly planar, but some variation is allowed.
// Each profile must rotate in the same clockwise direction. If called as a function, returns a
// [VNF structure](vnf.scad) like `[VERTICES, FACES]`. If called as a module, creates a polyhedron
// of the skined profiles.
//
// The profiles can be specified either as a list of 3d curves or they can be specified as
// 2d curves with heights given in the `z` parameter.
//
// For this operation to be well-defined, we the profiles must all have the same vertex count and
// we must assume that profiles are aligned so that vertex `i` links to vertex `i` on all polygons.
// Many interesting cases do not comply with this restriction. To handle these cases, you can
// specify various matching methods (listed below). You can also adjust non-matching profiles
// by either resampling them using `subdivide_path` or by duplicating vertices using
// `repeat_entries`. It is OK to pass a profile that has the same vertex repeated, such as
// a square with 5 points (two of which are identical), so that it can match up to a pentagon.
// Such a combination would create a triangular face at the location of the duplicated vertex.
//
// In order for skinned surfaces to look good it is usually necessary to use a fine sampling of
// points on all of the profiles, and a large number of extra interpolated slices between the
// profiles that you specify. The `slices` parameter specifies the number of slices to insert
// between each pair of profiles, either a scalar to insert the same number everywhere, or a vector
// to insert a different number between each pair. To resample the profiles you can specify the
// number of samples at each profiles with the `samples` argument or you can use `refine`. The
// `refine` parameter specifies a multiplication factor relative to the largest profile, so
// if refine is 10 and the largest profile has length 6 then you will get a total of 60 points,
// or 10 points per side of the longest profile. The default is `samples` equal to the size
// of the largest profile, which will do nothing if all profiles are the same size.
//
// Two methods are available for resampling, `"length"` and `"segment"`. Specify them using
// the `sampling` argument. The length resampling method resamples proportional to length.
// The segment method divides each segment of a profile into the same number of points.
// A uniform division may be impossible, in which case the code computes an approximation.
// See `subdivide_path` for more details.
//
// You can choose from four methods for specifying alignment for incomensurate profiles.
// The available methods are `"distance"`, `"tangent"`, `"uniform"` and `"align"`.
// The "distance" method finds the global minimum distance method for connecting two
// profiles. This algorithm generally produces a good result when both profiles have
// a small number of vertices. It is computationally intensive (O(N^3)) and may be
// slow on large inputs. The `"tangent"` method generally produces good results when
// connecting a discrete polygon to a convex, finely sampled curve. It works by finding
// a plane that passed through each edge of the polygon that is tangent to
// the curve. The `"uniform"` method simply connects the vertices, after resampling
// if it is required. The `"align"` method resamples the vertices and then reindexes
// to find the shortest distance alignment. This will result in the faces with the
// smallest amount of twist. The align algorithm has quadratic run time and can be slow
// with large profiles.
//
// Arguments:
// profiles = list of 2d or 3d profiles to be skinned. (If 2d must also give `z`.)
// slices = scalar or vector number of slices to insert between each pair of profiles. Default: 8.
// samples = resample each profile to this many points. If `method` is distance default is undef, otherwise default is the length of longest profile.
// refine = resample profiles to this number of points per side. If `method` is "distance" default is 10, otherwise undef.
// sampling = sampling method, either "length" or "segment". If `method` is "distance" or tangent default is "segment", otherwise "length".
// caps = true to create endcap faces. Default is true if closed is false.
// method = method for aligning and connecting profiles
// closed = set to true to connect first and last profile. Default: false
// z = array of height values for each profile if the profiles are 2d
module skin(profiles, slices=8, samples, refine, method="uniform", sampling, caps, closed=false, z)
{
vnf_polyhedron(skin(profiles, slices, samples, refine, method, sampling, caps, closed, z));
}
function skin(profiles, slices=8, samples, refine, method="uniform", sampling, caps, closed=false, z) =
assert(is_list(profiles) && len(profiles)>1, "Must provide at least two profiles")
let( bad = [for(i=[0:len(profiles)-1]) if (!(is_path(profiles[i]) && len(profiles[i])>2)) i])
assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3"))
let(
legal_methods = ["uniform","align","distance","tangent","sym_distance"],
caps = is_def(caps) ? caps :
closed ? false : true,
default_refine = 10,
maxsize = list_longest(profiles),
samples = is_def(samples) && is_def(refine) ? undef :
is_def(samples) ? samples :
is_def(refine) ? maxsize*refine :
method=="distance" || method=="sym_distance" ? maxsize*default_refine :
maxsize,
methodok = is_list(method) || in_list(method, legal_methods),
methodlistok = is_list(method) ? [for(i=[0:len(method)-1]) if (!in_list(method[i], legal_methods)) i] : [],
method = is_string(method) ? replist(method, len(profiles)+ (closed?1:0)) : method,
sampling = is_def(sampling)? sampling :
all([for(m=method) m=="distance" || m=="sym_distance" || m=="tangent"]) ? "segment" : "length"
)
assert(methodok,str("method must be one of ",legal_methods,". Got ",method))
assert(methodlistok==[], str("method list contains invalid method at ",methodlistok))
assert(!closed || !caps, "Cannot make closed shape with caps")
assert(is_def(samples),"Specify only one of `refine` and `samples`")
assert(samples>=maxsize,str("Requested number of samples ",samples," is smaller than size of largest profile, ",maxsize))
let(
profile_dim=array_dim(profiles,2),
profiles_ok = (profile_dim==2 && is_list(z) && len(z)==len(profiles)) || profile_dim==3
)
assert(profiles_ok,"Profiles must all be 3d or must all be 2d, with matching length z parameter.")
assert(is_undef(z) || profile_dim==2, "Do not specify z with 3d profiles")
assert(profile_dim==3 || len(z)==len(profiles),"Length of z does not match length of profiles.")
let(
profiles = profile_dim==3 ? profiles :
[for(i=[0:len(profiles)-1]) path3d(profiles[i], z[i])],
full_list =
[for(i=[0:len(profiles)-(closed?1:2)])
let(
pair =
method[i]=="distance" ? minimum_distance_match(profiles[i],select(profiles,i+1)) :
method[i]=="sym_distance" ? sym_minimum_distance_match(profiles[i],select(profiles,i+1)) :
method[i]=="tangent" ? tangent_align(profiles[i],select(profiles,i+1)) :
/*method[i]=="align" || method[i]=="uniform" ?*/
let( p1 = subdivide_path(profiles[i],samples, method=sampling),
p2 = subdivide_path(select(profiles,i+1),samples, method=sampling)
) (method[i]=="uniform" ? [p1,p2] : [p1, reindex_polygon(p1, p2)]),
nsamples = is_def(refine) && method=="sym_distance" ? refine * len(pair[0]) : samples
)
each interp_and_slice(pair,slices, nsamples, submethod=sampling)]
)
_skin_core(full_list,closed=closed,caps=caps);
// plist is list of polygons, N is list or value for number of slices to insert
// numpoints can be "max", "lcm" or a number
function interp_and_slice(plist, N, numpoints="max", align=false,submethod="length") =
let(
maxsize = list_longest(plist),
numpoints = numpoints == "max" ? maxsize :
numpoints == "lcm" ? lcmlist([for(p=plist) len(p)]) :
is_num(numpoints) ? round(numpoints) : undef
)
assert(is_def(numpoints), "Parameter numpoints must be \"max\", \"lcm\" or a positive number")
assert(numpoints>=maxsize, "Number of points requested is smaller than largest profile")
let(fixpoly = [for(poly=plist) subdivide_path(poly, numpoints,method=submethod)])
add_slices(fixpoly, N);
function add_slices(plist,N) =
assert(is_num(N) || is_list(N))
let(listok = !is_list(N) || len(N)==len(plist)-1)
assert(listok, "Input N to add_slices is a list with the wrong length")
let(
count = is_num(N) ? replist(N,len(plist)-1) : N,
slicelist = [for (i=[0:len(plist)-2])
each [for(j = [0:count[i]]) lerp(plist[i],plist[i+1],j/(count[i]+1))]
]
)
concat(slicelist, [plist[len(plist)-1]]);
// Function: unique_count()
// Usage:
// unique_count(arr);
// Description:
// Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `arr` and `counts` is a list such
// that `count[i]` gives the number of times that `sorted[i]` appears in `arr`.
// Arguments:
// arr = The list to analyze.
function unique_count(arr) =
assert(is_list(arr)||is_string(list))
len(arr)==0 ? [[],[]] :
len(arr)==1 ? [arr,[1]] :
_unique_count(sort(arr), ulist=[], counts=[], ind=1, curtot=1);
function _unique_count(arr, ulist, counts, ind, curtot) =
ind == len(arr)+1 ? [ulist, counts] :
ind==len(arr) || arr[ind] != arr[ind-1] ? _unique_count(arr,concat(ulist,[arr[ind-1]]), concat(counts,[curtot]),ind+1,1) :
_unique_count(arr,ulist,counts,ind+1,curtot+1);
///////////////////////////////////////////////////////
//
// Given inputs of a small polygon (`small`) and a larger polygon (`big`), computes an onto mapping of
// the the vertices of `big` onto `small` that minimizes the sum of the distances between every matched
// pair of vertices. The algorithm uses quadratic programming to calculate the optimal mapping under
// the assumption that big[0]->small[0] and big[len(big)-1] does NOT map to small[0]. We then
// rotate through all the possible indexings of `big`. The theoretical run time is quadratic
// in len(big) and linear in len(small).
//
// The top level function, nbest_dmatch() cycles through all the of the indexings of `big`, computes
// all of the optimal values, and chooses the overall best result. It then interprets the result to
// produce the index mapping. The function _qp_extract_map() threads back through the quadratic programming
// array to identify the actual mapping.
//
// The function _qp_distance_array builds up the rows of the quadratic programming matrix with reference
// to the previous rows, where `tdist` holds the total distance for a given mapping, and `map`
// holds the information about which path was optimal for each position.
//
// The function _qp_distance_row constructs each row of the quadratic programming matrix. Note that
// in this problem we can delete entries from `big` but we cannot insert. This means we can only
// move to the right, or diagonally, and not down. This in turn means that only a portion of the
// quadratic programming matrix is reachable, so we fill in the unreachable lefthand triangular portion
// with zeros and we just don't compute the righthand portion (meaning that each row of the output
// has a different length).
// This function builds up the quadratic programming distance array where each entry in the
// array gives the optimal distance for aligning the corresponding subparts of the two inputs.
// When the array is fully populated, the bottom right corner gives the minimum distance
// for matching the full input lists. The `map` array contains a 0 when the optimal value came from
// the left (a "deletion") which means you match the next vertex in `big` with the previous, already
// used vertex of `small`, or a 1 when the optimal value came from the diagonal, which means you
// match the next vertex of `big` with the next vertex of `small`.
//
// Return value is [min_distance, map], where map is the array that is used to extract the actual
// vertex map.
function _qp_distance_array(small, big, small_ind=0, tdist=[], map=[]) =
let(
N = len(small),
M = len(big)
)
small_ind == N ? [tdist[N-1][M-1], map] :
let(
row_results = small_ind == 0 ? [cumsum([for(i=[0:M-N+1]) norm(big[i]-small[0])]), replist(0,M-N+1)] :
_qp_distance_row(small, big, small_ind, small_ind, tdist, replist(0,small_ind), replist(0, small_ind))
)
_qp_distance_array(small, big, small_ind+1, concat(tdist, [row_results[0]]), concat(map, [row_results[1]]));
function _qp_distance_row(small,big,small_ind, big_ind, tdist, newrow, maprow) =
big_ind == len(big)-len(small) + small_ind + 1 ? [newrow,maprow] :
_qp_distance_row(small,big, small_ind, big_ind+1, tdist,
concat(newrow, [norm(small[small_ind]-big[big_ind]) +
(small_ind==big_ind ? tdist[small_ind-1][big_ind-1] : min(tdist[small_ind-1][big_ind-1],newrow[big_ind-1]))]),
concat(maprow, [small_ind!=big_ind && newrow[big_ind-1] < tdist[small_ind-1][big_ind-1] ? 0 : 1]));
function _qp_extract_map(map,i,j,result) =
is_undef(i) ? _qp_extract_map(map,len(map)-1,len(select(map,-1))-1,[]) :
i==0 && j==0 ? concat([0], result) :
_qp_extract_map(map,i-map[i][j],j-1,concat([i],result));
function minimum_distance_match(poly1,poly2) =
let(
swap = len(poly1)>len(poly2),
big = swap ? poly1 : poly2,
small = swap ? poly2 : poly1,
matchres = [for(i=[0:len(big)-1]) _qp_distance_array(small,polygon_shift(big,i))],
best = min_index(subindex(matchres,0)),
newbig = polygon_shift(big,best),
newsmall = repeat_entries(small,unique_count(_qp_extract_map(matchres[best][1]))[1])
)
swap ? [newbig, newsmall] : [newsmall,newbig];
function tangent_align(poly1, poly2) =
let(
swap = len(poly1)>len(poly2),
big = swap ? poly1 : poly2,
small = swap ? poly2 : poly1,
curve_offset = centroid(small)-centroid(big),
cutpts = [for(i=[0:len(small)-1]) find_one_tangent(big, select(small,i,i+1),curve_offset=curve_offset)],
d=echo(cutpts = cutpts),
shift = select(cutpts,-1)+1,
newbig = polygon_shift(big, shift),
repeat_counts = [for(i=[0:len(small)-1]) posmod(cutpts[i]-select(cutpts,i-1),len(big))],
newsmall = repeat_entries(small,repeat_counts)
)
assert(len(newsmall)==len(newbig), "Tangent alignment failed, probably because of insufficient points or a concave curve")
swap ? [newbig, newsmall] : [newsmall, newbig];
function find_one_tangent(curve, edge, curve_offset=[0,0,0], closed=true) =
let(
angles =
[for(i=[0:len(curve)-(closed?1:2)])
let(
plane = plane3pt( edge[0], edge[1], curve[i]),
tangent = [curve[i], select(curve,i+1)]
)
plane_line_angle(plane,tangent)],
zero_cross = [for(i=[0:len(curve)-(closed?1:2)]) if (sign(angles[i]) != sign(select(angles,i+1))) i],
d = [for(i=zero_cross) distance_from_line(edge, curve[i]+curve_offset)]
)
zero_cross[min_index(d)];//zcross;
function plane_line_angle(plane, line) =
let(
vect = line[1]-line[0],
zplane = select(plane,0,2),
sin_angle = vect*zplane/norm(zplane)/norm(vect)
)
asin(constrain(sin_angle,-1,1));
2019-11-04 03:12:50 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
_MAP_DIAG = 0;
_MAP_LEFT = 1;
_MAP_UP = 2;
/* // recursive version
function sym_qp_distance_array(small, big, abort_thresh=1/0, small_ind=0, tdist=[], map=[]) =
small_ind == len(small) ? [tdist[len(small)-1][len(big)-1], map] :
// small_ind == len(small) ? [tdist, map] :
let( row_results = sym_qp_distance_row(small, big, small_ind, tdist) )
min(row_results[0])> abort_thresh ? [tdist[len(tdist)-1][len(big)-1],map] :
sym_qp_distance_array(small, big, abort_thresh, small_ind+1, concat(tdist, [row_results[0]]), concat(map, [row_results[1]]));
*/
function sym_qp_distance_array(small, big, abort_thresh=1/0) =
[for(
small_ind = 0,
tdist = [],
map = []
;
small_ind<=len(small)+1
;
newrow =small_ind==len(small)+1 ? [0,0,0] : // dummy end case
sym_qp_distance_row(small,big,small_ind,tdist),
tdist = concat(tdist, [newrow[0]]),
map = concat(map, [newrow[1]]),
small_ind = min(newrow[0])>abort_thresh ? len(small)+1 : small_ind+1
)
if (small_ind==len(small)+1) each [tdist[len(tdist)-1][len(big)], map]];
//[tdist,map]];
function sym_qp_distance_row(small, big, small_ind, tdist) =
// Top left corner is zero because it gets counted at the end in bottom right corner
small_ind == 0 ? [cumsum([0,for(i=[1:len(big)]) norm(big[i%len(big)]-small[0])]), replist(_MAP_LEFT,len(big)+1)] :
[for(big_ind=1,
newrow=[ norm(big[0] - small[small_ind%len(small)]) + tdist[small_ind-1][0] ],
newmap = [_MAP_UP]
;
big_ind<=len(big)+1
;
costs = big_ind == len(big)+1 ? [0] : // handle extra iteration
[tdist[small_ind-1][big_ind-1], // diag
newrow[big_ind-1], // left
tdist[small_ind-1][big_ind]], // up
newrow = concat(newrow, [min(costs)+norm(big[big_ind%len(big)]-small[small_ind%len(small)])]),
newmap = concat(newmap, [min_index(costs)]),
big_ind = big_ind+1
) if (big_ind==len(big)+1) each [newrow,newmap]];
function nsym_qp_distance_row(small, big, small_ind, tdist) =
// Top left corner is zero because it gets counted at the end in bottom right corner
small_ind == 0 ? [cumsum([0,for(i=[1:len(big)]) triangle_area(big[i-1],big[i%len(big)], small[0])]), replist(_MAP_LEFT,len(big)+1)] :
[for(big_ind=1,
newrow=[triangle_area(big[0], small[small_ind%len(small)], small[small_ind-1]) + tdist[small_ind-1][0] ],
newmap = [_MAP_UP]
;
big_ind<=len(big)+1
;
costs = big_ind == len(big)+1 ? [0] : // handle extra iteration
[tdist[small_ind-1][big_ind-1] + //diag
quad_area(big[big_ind-1],big[big_ind%len(big)], small[small_ind%len(small)], small[small_ind-1]),
newrow[big_ind-1] + triangle_area(big[big_ind-1],big[big_ind%len(big)], small[small_ind%len(small)]), // left
tdist[small_ind-1][big_ind] + triangle_area(big[big_ind%len(big)], small[small_ind%len(small)], small[small_ind-1])],
newrow = concat(newrow, [min(costs)]),
newmap = concat(newmap, [min_index(costs)]),
big_ind = big_ind+1
) if (big_ind==len(big)+1) each [newrow,newmap]];
function sym_qp_one_map(map) =
[for(
i=len(map)-1,
j=len(map[0])-1,
smallmap=[],
bigmap = []
;
j >= 0
;
advance_i = map[i][j]==_MAP_UP || map[i][j]==_MAP_DIAG,
advance_j = map[i][j]==_MAP_LEFT || map[i][j]==_MAP_DIAG,
i = i - (advance_i ? 1 : 0),
j = j - (advance_j ? 1 : 0),
bigmap = concat( [j%(len(map[0])-1)] , bigmap),
smallmap = concat( [i%(len(map)-1)] , smallmap)
)
if (i==0 && j==0) each [smallmap,bigmap]];
function sym_minimum_distance_match(poly1,poly2) =
let(
swap = len(poly1)>len(poly2),
big = swap ? poly1 : poly2,
small = swap ? poly2 : poly1,
map_poly = [ for(
i=0,
bestcost = 1/0,
bestmap = -1,
bestpoly = -1
;
i<=len(big)
;
shifted = polygon_shift(big,i),
result =sym_qp_distance_array(small, shifted, abort_thresh = bestcost),
bestmap = result[0]<bestcost ? result[1] : bestmap,
bestpoly = result[0]<bestcost ? shifted : bestpoly,
best_i = result[0]<bestcost ? i : best_i,
bestcost = min(result[0], bestcost),
i=i+1
)
if (i==len(big)) each [bestmap,bestpoly,best_i]],
map = sym_qp_one_map(map_poly[0]),
eew = echo(map_poly[2],map_poly[0]),
dade= echo(map=map),
smallmap = map[0],
bigmap = map[1],
// These shifts are needed to handle the case when points from both ends of one curve map to a single point on the other
bigshift = len(bigmap) - max(max_index(bigmap,all=true))-1,
smallshift = len(smallmap) - max(max_index(smallmap,all=true))-1,
fdas= echo(smallmap=smallmap, bigmap=bigmap),
newsmall = polygon_shift(repeat_entries(small,unique_count(smallmap)[1]),smallshift),
newbig = polygon_shift(repeat_entries(map_poly[1],unique_count(bigmap)[1]),bigshift)
)
swap ? [newbig, newsmall] : [newsmall,newbig];