2021-10-05 21:15:07 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: vnf.scad
// The Vertices'N'Faces structure (VNF) holds the data used by polyhedron() to construct objects: a vertex
// list and a list of faces. This library makes it easier to construct polyhedra by providing
// functions to construct, merge, and modify VNF data, while avoiding common pitfalls such as
// reversed faces.
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
// Section: Creating Polyhedrons with VNF Structures
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
// first item is a list of vertex points, and the second is a list of face indices into the vertex
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
// merge the various VNFs to get the completed polyhedron vertex list and faces.
2021-10-17 21:40:47 +00:00
/// Constant: EMPTY_VNF
/// Description:
/// The empty VNF data structure. Equal to `[[],[]]`.
2021-10-05 21:15:07 +00:00
EMPTY_VNF = [ [ ] , [ ] ] ; // The standard empty VNF with no vertices or faces.
// Function: vnf_vertex_array()
// Usage:
2021-10-17 21:40:47 +00:00
// vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [style], [reverse], [col_wrap], [row_wrap]);
2021-10-05 21:15:07 +00:00
// Description:
2021-10-17 21:40:47 +00:00
// Creates a VNF structure from a rectangular vertex list, by dividing the vertices into columns and rows,
2021-10-05 21:15:07 +00:00
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
// the first and/or last rows. The style parameter determines how the quadrilaterals are divided into
// triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style
// is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to
// subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style
// adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles
2021-10-17 21:40:47 +00:00
// chooses the locally convex/concave subdivision. Degenerate faces
// are not included in the output, but if this results in unused vertices they will still appear in the output.
2021-10-05 21:15:07 +00:00
// Arguments:
// points = A list of vertices to divide into columns and rows.
2021-10-17 21:40:47 +00:00
// ---
2021-10-05 21:15:07 +00:00
// caps = If true, add endcap faces to the first AND last rows.
// cap1 = If true, add an endcap face to the first row.
// cap2 = If true, add an endcap face to the last row.
// col_wrap = If true, add faces to connect the last column to the first.
// row_wrap = If true, add faces to connect the last row to the first.
// reverse = If true, reverse all face normals.
2021-10-17 21:40:47 +00:00
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave".
2021-10-05 21:15:07 +00:00
// Example(3D):
// vnf = vnf_vertex_array(
// points=[
// for (h = [0:5:180-EPSILON]) [
// for (t = [0:5:360-EPSILON])
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
// ]
// ],
// col_wrap=true, caps=true, reverse=true, style="alt"
// );
// vnf_polyhedron(vnf);
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360-EPSILON])
// apply(
// zrot(a) * right(30) * xrot(90),
// path3d(circle(d=20))
// )
// ],
// col_wrap=true, row_wrap=true, reverse=true
// );
// vnf_polyhedron(vnf);
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
// vnf = vnf_vertex_array(
// points=[
// for (a=[0:5:360]) apply(
// zrot(a) * right(30) * xrot(90) * zrot(a/2+60),
// path3d(square([1,10], center=true))
// )
// ],
// col_wrap=true, reverse=true
// );
// vnf_polyhedron(vnf);
// Example(3D): Assembling a Polyhedron from Multiple Parts
// wall_points = [
// for (a = [-90:2:90]) apply(
// up(a) * scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1]),
// path3d(circle(d=100))
// )
// ];
// cap = [
// for (a = [0:0.01:1+EPSILON]) apply(
// up(90-5*sin(a*360*2)) * scale([a,a,1]),
// wall_points[0]
// )
// ];
// cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))];
// cap2 = [for (p=cap) up(90, p=p)];
// vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true);
// vnf2 = vnf_vertex_array(points=cap1, col_wrap=true);
// vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true);
// vnf_polyhedron([vnf1, vnf2, vnf3]);
function vnf_vertex_array (
points ,
caps , cap1 , cap2 ,
col_wrap = false ,
row_wrap = false ,
reverse = false ,
2021-10-17 21:40:47 +00:00
style = "default"
2021-10-05 21:15:07 +00:00
) =
assert ( ! ( any ( [ caps , cap1 , cap2 ] ) && ! col_wrap ) , "col_wrap must be true if caps are requested" )
assert ( ! ( any ( [ caps , cap1 , cap2 ] ) && row_wrap ) , "Cannot combine caps with row_wrap" )
assert ( in_list ( style , [ "default" , "alt" , "quincunx" , "convex" , "concave" , "min_edge" ] ) )
2021-10-17 21:40:47 +00:00
assert ( is_matrix ( points [ 0 ] , n = 3 ) , "Point array has the wrong shape or points are not 3d" )
2021-10-05 21:15:07 +00:00
assert ( is_consistent ( points ) , "Non-rectangular or invalid point array" )
let (
pts = flatten ( points ) ,
pcnt = len ( pts ) ,
rows = len ( points ) ,
cols = len ( points [ 0 ] )
)
2021-10-17 21:40:47 +00:00
rows < = 1 || cols < = 1 ? EMPTY_VNF :
2021-10-05 21:15:07 +00:00
let (
cap1 = first_defined ( [ cap1 , caps , false ] ) ,
cap2 = first_defined ( [ cap2 , caps , false ] ) ,
colcnt = cols - ( col_wrap ? 0 : 1 ) ,
rowcnt = rows - ( row_wrap ? 0 : 1 ) ,
verts = [
each pts ,
if ( style = = "quincunx" )
for ( r = [ 0 : 1 : rowcnt - 1 ] , c = [ 0 : 1 : colcnt - 1 ] )
let (
i1 = ( ( r + 0 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i2 = ( ( r + 1 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i3 = ( ( r + 1 ) % rows ) * cols + ( ( c + 1 ) % cols ) ,
i4 = ( ( r + 0 ) % rows ) * cols + ( ( c + 1 ) % cols )
)
mean ( [ pts [ i1 ] , pts [ i2 ] , pts [ i3 ] , pts [ i4 ] ] )
2021-10-17 21:40:47 +00:00
] ,
allfaces = [
if ( cap1 ) count ( cols , reverse = ! reverse ) ,
if ( cap2 ) count ( cols , ( rows - 1 ) * cols , reverse = reverse ) ,
for ( r = [ 0 : 1 : rowcnt - 1 ] , c = [ 0 : 1 : colcnt - 1 ] )
each
let (
i1 = ( ( r + 0 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i2 = ( ( r + 1 ) % rows ) * cols + ( ( c + 0 ) % cols ) ,
i3 = ( ( r + 1 ) % rows ) * cols + ( ( c + 1 ) % cols ) ,
i4 = ( ( r + 0 ) % rows ) * cols + ( ( c + 1 ) % cols ) ,
faces =
style = = "quincunx" ?
let ( i5 = pcnt + r * colcnt + c )
[ [ i1 , i5 , i2 ] , [ i2 , i5 , i3 ] , [ i3 , i5 , i4 ] , [ i4 , i5 , i1 ] ]
: style = = "alt" ?
[ [ i1 , i4 , i2 ] , [ i2 , i4 , i3 ] ]
: style = = "min_edge" ?
let (
d42 = norm ( pts [ i4 ] - pts [ i2 ] ) ,
d13 = norm ( pts [ i1 ] - pts [ i3 ] ) ,
shortedge = d42 < = d13 ? [ [ i1 , i4 , i2 ] , [ i2 , i4 , i3 ] ]
: [ [ i1 , i3 , i2 ] , [ i1 , i4 , i3 ] ]
)
shortedge
: style = = "convex" ?
let ( // Find normal for 3 of the points. Is the other point above or below?
n = ( reverse ? - 1 : 1 ) * cross ( pts [ i2 ] - pts [ i1 ] , pts [ i3 ] - pts [ i1 ] ) ,
convexfaces = n = = 0 ? [ [ i1 , i4 , i3 ] ]
: n * pts [ i4 ] > n * pts [ i1 ] ? [ [ i1 , i4 , i2 ] , [ i2 , i4 , i3 ] ]
: [ [ i1 , i3 , i2 ] , [ i1 , i4 , i3 ] ]
)
convexfaces
: style = = "concave" ?
let ( // Find normal for 3 of the points. Is the other point above or below?
n = ( reverse ? - 1 : 1 ) * cross ( pts [ i2 ] - pts [ i1 ] , pts [ i3 ] - pts [ i1 ] ) ,
concavefaces = n = = 0 ? [ [ i1 , i4 , i3 ] ]
: n * pts [ i4 ] < = n * pts [ i1 ] ? [ [ i1 , i4 , i2 ] , [ i2 , i4 , i3 ] ]
: [ [ i1 , i3 , i2 ] , [ i1 , i4 , i3 ] ]
)
concavefaces
: [ [ i1 , i3 , i2 ] , [ i1 , i4 , i3 ] ] ,
// remove degenerate faces
culled_faces = [ for ( face = faces )
if ( norm ( verts [ face [ 0 ] ] - verts [ face [ 1 ] ] ) > EPSILON &&
norm ( verts [ face [ 1 ] ] - verts [ face [ 2 ] ] ) > EPSILON &&
norm ( verts [ face [ 2 ] ] - verts [ face [ 0 ] ] ) > EPSILON )
face
] ,
rfaces = reverse ? [ for ( face = culled_faces ) reverse ( face ) ] : culled_faces
)
rfaces ,
2021-10-05 21:15:07 +00:00
]
)
2021-10-17 21:40:47 +00:00
[ verts , allfaces ] ;
2021-10-05 21:15:07 +00:00
// Function: vnf_tri_array()
// Usage:
// vnf = vnf_tri_array(points, [row_wrap], [reverse])
// Description:
// Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables
// the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true.
2021-10-17 23:13:58 +00:00
// You cannot wrap columns: if you need to do that you'll need to merge two VNF arrays that share edges. Degenerate faces
2021-10-17 21:40:47 +00:00
// are not included in the output, but if this results in unused vertices they will still appear in the output.
2021-10-05 21:15:07 +00:00
// Arguments:
// points = List of point lists for each row
// row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length.
// reverse = Set this to reverse the direction of the faces
2021-10-07 01:16:39 +00:00
// Example(3D,NoAxes): Each row has one more point than the preceeding one.
2021-10-05 21:15:07 +00:00
// pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]];
// vnf = vnf_tri_array(pts);
2021-10-06 01:56:49 +00:00
// vnf_wireframe(vnf,width=0.1);
2021-10-05 21:15:07 +00:00
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
2021-10-07 01:16:39 +00:00
// Example(3D,NoAxes): Each row has two more points than the preceeding one.
2021-10-05 21:15:07 +00:00
// pts = [for(y=[0:2:10]) [for(x=[-y/2:y/2]) [x,y,y]]];
// vnf = vnf_tri_array(pts);
2021-10-06 01:56:49 +00:00
// vnf_wireframe(vnf,width=0.1);
2021-10-05 21:15:07 +00:00
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
2021-10-17 23:13:58 +00:00
// Example(3D): Merging two VNFs to construct a cone with one point length change between rows.
2021-10-05 21:15:07 +00:00
// pts1 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[0,180]),10-z)];
// pts2 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[180,360]),10-z)];
2021-11-11 13:45:30 +00:00
// vnf = vnf_join([vnf_tri_array(pts1),
2021-10-17 23:13:58 +00:00
// vnf_tri_array(pts2)]);
2021-10-06 01:56:49 +00:00
// color("green")vnf_wireframe(vnf,width=0.1);
2021-10-05 21:15:07 +00:00
// vnf_polyhedron(vnf);
2021-10-06 01:56:49 +00:00
// Example(3D): Cone with length change two between rows
2021-10-05 21:15:07 +00:00
// pts1 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[0,180]),10-z)];
// pts2 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[180,360]),10-z)];
2021-11-11 13:45:30 +00:00
// vnf = vnf_join([vnf_tri_array(pts1),
2021-10-17 23:13:58 +00:00
// vnf_tri_array(pts2)]);
2021-10-06 01:56:49 +00:00
// color("green")vnf_wireframe(vnf,width=0.1);
2021-10-05 21:15:07 +00:00
// vnf_polyhedron(vnf);
2021-10-07 01:16:39 +00:00
// Example(3D,NoAxes): Point count can change irregularly
2021-10-05 21:15:07 +00:00
// lens = [10,9,7,5,6,8,8,10];
// pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])];
// vnf = vnf_tri_array(pts);
2021-10-06 01:56:49 +00:00
// vnf_wireframe(vnf,width=0.1);
2021-10-05 21:15:07 +00:00
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
2021-10-17 21:40:47 +00:00
function vnf_tri_array ( points , row_wrap = false , reverse = false ) =
let (
2021-10-05 21:15:07 +00:00
lens = [ for ( row = points ) len ( row ) ] ,
rowstarts = [ 0 , each cumsum ( lens ) ] ,
faces =
[ for ( i = [ 0 : 1 : len ( points ) - 1 - ( row_wrap ? 0 : 1 ) ] ) each
let (
rowstart = rowstarts [ i ] ,
nextrow = select ( rowstarts , i + 1 ) ,
delta = select ( lens , i + 1 ) - lens [ i ]
)
delta = = 0 ?
[ for ( j = [ 0 : 1 : lens [ i ] - 2 ] ) reverse ? [ j + rowstart + 1 , j + rowstart , j + nextrow ] : [ j + rowstart , j + rowstart + 1 , j + nextrow ] ,
for ( j = [ 0 : 1 : lens [ i ] - 2 ] ) reverse ? [ j + rowstart + 1 , j + nextrow , j + nextrow + 1 ] : [ j + rowstart + 1 , j + nextrow + 1 , j + nextrow ] ] :
delta = = 1 ?
[ for ( j = [ 0 : 1 : lens [ i ] - 2 ] ) reverse ? [ j + rowstart + 1 , j + rowstart , j + nextrow + 1 ] : [ j + rowstart , j + rowstart + 1 , j + nextrow + 1 ] ,
for ( j = [ 0 : 1 : lens [ i ] - 1 ] ) reverse ? [ j + rowstart , j + nextrow , j + nextrow + 1 ] : [ j + rowstart , j + nextrow + 1 , j + nextrow ] ] :
delta = = - 1 ?
[ for ( j = [ 0 : 1 : lens [ i ] - 3 ] ) reverse ? [ j + rowstart + 1 , j + nextrow , j + nextrow + 1 ] : [ j + rowstart + 1 , j + nextrow + 1 , j + nextrow ] ,
for ( j = [ 0 : 1 : lens [ i ] - 2 ] ) reverse ? [ j + rowstart + 1 , j + rowstart , j + nextrow ] : [ j + rowstart , j + rowstart + 1 , j + nextrow ] ] :
let ( count = floor ( ( lens [ i ] - 1 ) / 2 ) )
delta = = 2 ?
[
for ( j = [ 0 : 1 : count - 1 ] ) reverse ? [ j + rowstart + 1 , j + rowstart , j + nextrow + 1 ] : [ j + rowstart , j + rowstart + 1 , j + nextrow + 1 ] , // top triangles left
for ( j = [ count : 1 : lens [ i ] - 2 ] ) reverse ? [ j + rowstart + 1 , j + rowstart , j + nextrow + 2 ] : [ j + rowstart , j + rowstart + 1 , j + nextrow + 2 ] , // top triangles right
for ( j = [ 0 : 1 : count ] ) reverse ? [ j + rowstart , j + nextrow , j + nextrow + 1 ] : [ j + rowstart , j + nextrow + 1 , j + nextrow ] , // bot triangles left
for ( j = [ count + 1 : 1 : select ( lens , i + 1 ) - 2 ] ) reverse ? [ j + rowstart - 1 , j + nextrow , j + nextrow + 1 ] : [ j + rowstart - 1 , j + nextrow + 1 , j + nextrow ] , // bot triangles right
] :
delta = = - 2 ?
[
for ( j = [ 0 : 1 : count - 2 ] ) reverse ? [ j + nextrow , j + nextrow + 1 , j + rowstart + 1 ] : [ j + nextrow , j + rowstart + 1 , j + nextrow + 1 ] ,
for ( j = [ count - 1 : 1 : lens [ i ] - 4 ] ) reverse ? [ j + nextrow , j + nextrow + 1 , j + rowstart + 2 ] : [ j + nextrow , j + rowstart + 2 , j + nextrow + 1 ] ,
for ( j = [ 0 : 1 : count - 1 ] ) reverse ? [ j + nextrow , j + rowstart + 1 , j + rowstart ] : [ j + nextrow , j + rowstart , j + rowstart + 1 ] ,
for ( j = [ count : 1 : select ( lens , i + 1 ) ] ) reverse ? [ j + nextrow - 1 , j + rowstart + 1 , j + rowstart ] : [ j + nextrow - 1 , j + rowstart , j + rowstart + 1 ] ,
] :
assert ( false , str ( "Unsupported row length difference of " , delta , " between row " , i , " and " , ( i + 1 ) % len ( points ) ) )
2021-10-17 21:40:47 +00:00
] ,
verts = flatten ( points ) ,
culled_faces =
[ for ( face = faces )
if ( norm ( verts [ face [ 0 ] ] - verts [ face [ 1 ] ] ) > EPSILON &&
norm ( verts [ face [ 1 ] ] - verts [ face [ 2 ] ] ) > EPSILON &&
norm ( verts [ face [ 2 ] ] - verts [ face [ 0 ] ] ) > EPSILON )
face
]
)
[ flatten ( points ) , culled_faces ] ;
2021-10-05 21:15:07 +00:00
2021-11-11 13:45:30 +00:00
// Function: vnf_join()
2021-10-05 21:15:07 +00:00
// Usage:
2021-11-11 13:45:30 +00:00
// vnf = vnf_join([VNF, VNF, VNF, ...]);
2021-10-05 21:15:07 +00:00
// Description:
// Given a list of VNF structures, merges them all into a single VNF structure.
2021-11-11 13:45:30 +00:00
// Combines all the points of the input VNFs and labels the faces appropriately.
// All the points in the input VNFs will appear in the output, even if they are
// duplicates of each other. It is valid to repeat points in a VNF, but if you
// with to remove the duplicates that will occur along joined edges, use {{vnf_merge_points()}}.
2021-10-05 21:15:07 +00:00
// Arguments:
2021-11-11 13:45:30 +00:00
// vnfs = a list of the VNFs to joint into one VNF.
function vnf_join ( vnfs ) =
assert ( is_vnf_list ( vnfs ) , "Input must be a list of VNFs" )
len ( vnfs ) = = 1 ? vnfs [ 0 ]
2021-10-17 21:40:47 +00:00
:
2021-10-05 21:15:07 +00:00
let (
offs = cumsum ( [ 0 , for ( vnf = vnfs ) len ( vnf [ 0 ] ) ] ) ,
verts = [ for ( vnf = vnfs ) each vnf [ 0 ] ] ,
faces =
[ for ( i = idx ( vnfs ) )
let ( faces = vnfs [ i ] [ 1 ] )
for ( face = faces )
if ( len ( face ) >= 3 )
[ for ( j = face )
assert ( j >= 0 && j < len ( vnfs [ i ] [ 0 ] ) ,
str ( "VNF number " , i , " has a face indexing an nonexistent vertex" ) )
offs [ i ] + j ]
]
)
2021-11-11 13:45:30 +00:00
[ verts , faces ] ;
2021-10-17 21:40:47 +00:00
2021-11-11 13:45:30 +00:00
2021-10-05 22:23:20 +00:00
// Function: vnf_from_polygons()
2021-10-05 21:15:07 +00:00
// Usage:
2021-10-05 22:23:20 +00:00
// vnf = vnf_from_polygons(polygons);
2021-10-05 21:15:07 +00:00
// Description:
2021-10-05 22:23:20 +00:00
// Given a list of 3d polygons, produces a VNF containing those polygons.
2021-10-05 21:15:07 +00:00
// It is up to the caller to make sure that the points are in the correct order to make the face
2021-10-05 22:23:20 +00:00
// normals point outwards. No checking for duplicate vertices is done. If you want to
2021-11-11 13:45:30 +00:00
// remove duplicate vertices use {{vnf_merge_points()}}.
2021-10-05 21:15:07 +00:00
// Arguments:
2021-10-05 22:23:20 +00:00
// polygons = The list of 3d polygons to turn into a VNF
function vnf_from_polygons ( polygons ) =
2021-10-05 22:57:46 +00:00
assert ( is_list ( polygons ) && is_path ( polygons [ 0 ] ) , "Input should be a list of polygons" )
2021-10-05 22:23:20 +00:00
let (
offs = cumsum ( [ 0 , for ( p = polygons ) len ( p ) ] ) ,
faces = [ for ( i = idx ( polygons ) )
[ for ( j = idx ( polygons [ i ] ) ) offs [ i ] + j ]
]
)
[ flatten ( polygons ) , faces ] ;
2021-10-05 21:15:07 +00:00
2021-10-15 02:36:21 +00:00
function _path_path_closest_vertices ( path1 , path2 ) =
let (
dists = [ for ( i = idx ( path1 ) ) let ( j = closest_point ( path1 [ i ] , path2 ) ) [ j , norm ( path2 [ j ] - path1 [ i ] ) ] ] ,
2021-10-26 22:30:57 +00:00
i1 = min_index ( column ( dists , 1 ) ) ,
2021-10-15 02:36:21 +00:00
i2 = dists [ i1 ] [ 0 ]
) [ dists [ i1 ] [ 1 ] , i1 , i2 ] ;
function _join_paths_at_vertices ( path1 , path2 , v1 , v2 ) =
let (
repeat_start = ! approx ( path1 [ v1 ] , path2 [ v2 ] ) ,
2021-11-11 23:50:26 +00:00
path1 = clockwise_polygon ( list_rotate ( path1 , v1 ) ) ,
path2 = ccw_polygon ( list_rotate ( path2 , v2 ) )
2021-10-15 02:36:21 +00:00
)
[
each path1 ,
if ( repeat_start ) path1 [ 0 ] ,
each path2 ,
if ( repeat_start ) path2 [ 0 ] ,
] ;
2021-11-01 04:42:02 +00:00
/// Internal Function: _cleave_connected_region(region, eps)
/// Description:
2021-11-04 12:09:29 +00:00
/// Given a region that is connected and has its outer border in region[0],
/// produces a overlapping connected path to join internal holes to
/// the outer border without adding points. Output is a single non-simple polygon.
/// Requirements:
/// It expects that all region paths be simple closed paths, with region[0] CW and
/// the other paths CCW and encircled by region[0]. The input region paths are also
/// supposed to be disjoint except for common vertices and common edges but with
/// no crossings. It may return `undef` if these conditions are not met.
/// This function implements an extension of the algorithm discussed in:
/// https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
2021-11-01 04:42:02 +00:00
function _cleave_connected_region ( region , eps = EPSILON ) =
len ( region ) = = 1 ? region [ 0 ] :
let (
2021-11-04 12:09:29 +00:00
outer = deduplicate ( region [ 0 ] ) , //
holes = [ for ( i = [ 1 : 1 : len ( region ) - 1 ] ) // deduplication possibly unneeded
deduplicate ( region [ i ] ) ] , //
2021-11-01 04:42:02 +00:00
extridx = [ for ( li = holes ) max_index ( column ( li , 0 ) ) ] ,
// the right extreme vertex for each hole sorted by decreasing x values
extremes = sort ( [ for ( i = idx ( holes ) ) [ i , extridx [ i ] , - holes [ i ] [ extridx [ i ] ] . x ] ] , idx = 2 )
)
_polyHoles ( outer , holes , extremes , eps , 0 ) ;
2021-10-15 02:36:21 +00:00
2021-11-01 04:42:02 +00:00
// connect the hole paths one at a time to the outer path.
// 'extremes' is the list of the right extreme vertex of each hole sorted by decreasing abscissas
2021-11-04 12:09:29 +00:00
// see: _cleave_connected_region(region, eps)
2021-11-01 04:42:02 +00:00
function _polyHoles ( outer , holes , extremes , eps = EPSILON , n = 0 ) =
let (
extr = extremes [ n ] , //
hole = holes [ extr [ 0 ] ] , // hole path to bridge to the outer path
ipt = extr [ 1 ] , // index of the hole point with maximum abscissa
brdg = _bridge ( hole [ ipt ] , outer , eps ) // the index of a point in outer to bridge hole[ipt] to
)
2021-11-04 12:09:29 +00:00
brdg = = undef ? undef :
2021-11-01 04:42:02 +00:00
let (
l = len ( outer ) ,
lh = len ( hole ) ,
// the new outer polygon bridging the hole to the old outer
npoly =
approx ( outer [ brdg ] , hole [ ipt ] , eps )
2021-11-04 12:09:29 +00:00
? [ for ( i = [ brdg : 1 : brdg + l ] ) outer [ i % l ] ,
for ( i = [ ipt + 1 : 1 : ipt + lh - 1 ] ) hole [ i % lh ] ]
: [ for ( i = [ brdg : 1 : brdg + l ] ) outer [ i % l ] ,
for ( i = [ ipt : 1 : ipt + lh ] ) hole [ i % lh ] ]
2021-11-01 04:42:02 +00:00
)
n = = len ( holes ) - 1 ? npoly :
_polyHoles ( npoly , holes , extremes , eps , n + 1 ) ;
// find a point in outer to be connected to pt in the interior of outer
// by a segment that not cross or touch any non adjacente edge of outer.
// return the index of a vertex in the outer path where the bridge should end
// see _polyHoles(outer, holes, extremes, eps)
function _bridge ( pt , outer , eps ) =
// find the intersection of a ray from pt to the right
// with the boundary of the outer cycle
let (
l = len ( outer ) ,
crxs =
2021-11-04 12:09:29 +00:00
let ( edges = pair ( outer , wrap = true ) )
[ for ( i = idx ( edges ) )
let ( edge = edges [ i ] )
2021-11-01 04:42:02 +00:00
// consider just descending outer edges at right of pt crossing ordinate pt.y
2021-11-04 12:09:29 +00:00
if ( ( edge [ 0 ] . y > pt . y + eps )
&& ( edge [ 1 ] . y < = pt . y )
&& _is_at_left ( pt , [ edge [ 1 ] , edge [ 0 ] ] , eps ) )
2021-11-01 04:42:02 +00:00
[ i ,
// the point of edge with ordinate pt.y
abs ( pt . y - edge [ 1 ] . y ) < eps ? edge [ 1 ] :
let ( u = ( pt - edge [ 1 ] ) . y / ( edge [ 0 ] - edge [ 1 ] ) . y )
( 1 - u ) * edge [ 1 ] + u * edge [ 0 ]
]
]
)
2021-11-04 12:09:29 +00:00
crxs = = [ ] ? undef :
2021-11-01 04:42:02 +00:00
let (
2021-11-04 12:09:29 +00:00
// the intersection point of the nearest edge to pt with minimum slope
2021-11-01 04:42:02 +00:00
minX = min ( [ for ( p = crxs ) p [ 1 ] . x ] ) ,
2021-11-04 12:09:29 +00:00
crxcand = [ for ( crx = crxs ) if ( crx [ 1 ] . x < minX + eps ) crx ] , // nearest edges
nearest = min_index ( [ for ( crx = crxcand )
( outer [ crx [ 0 ] ] . x - pt . x ) / ( outer [ crx [ 0 ] ] . y - pt . y ) ] ) , // minimum slope
2021-11-01 04:42:02 +00:00
proj = crxcand [ nearest ] ,
vert0 = outer [ proj [ 0 ] ] , // the two vertices of the nearest crossing edge
vert1 = outer [ ( proj [ 0 ] + 1 ) % l ] ,
isect = proj [ 1 ] // the intersection point
)
2021-11-04 12:09:29 +00:00
norm ( pt - vert1 ) < eps ? ( proj [ 0 ] + 1 ) % l : // if pt touches an outer vertex, return its index
// as vert0.y > pt.y then pt!=vert0
norm ( pt - isect ) < eps ? undef : // if pt touches the middle of an outer edge -> error
2021-11-01 04:42:02 +00:00
let (
// the edge [vert0, vert1] necessarily satisfies vert0.y > vert1.y
// indices of candidates to an outer bridge point
cand =
( vert0 . x > pt . x )
? [ proj [ 0 ] ,
// select reflex vertices inside of the triangle [pt, vert0, isect]
for ( i = idx ( outer ) )
if ( _tri_class ( select ( outer , i - 1 , i + 1 ) , eps ) < = 0
&& _pt_in_tri ( outer [ i ] , [ pt , vert0 , isect ] , eps ) >= 0 )
i
]
: [ ( proj [ 0 ] + 1 ) % l ,
// select reflex vertices inside of the triangle [pt, isect, vert1]
for ( i = idx ( outer ) )
if ( _tri_class ( select ( outer , i - 1 , i + 1 ) , eps ) < = 0
&& _pt_in_tri ( outer [ i ] , [ pt , isect , vert1 ] , eps ) >= 0 )
i
] ,
// choose the candidate outer[i] such that the line [pt, outer[i]] has minimum slope
// among those with minimum slope choose the nearest to pt
slopes = [ for ( i = cand ) 1 - abs ( outer [ i ] . x - pt . x ) / norm ( outer [ i ] - pt ) ] ,
min_slp = min ( slopes ) ,
cand2 = [ for ( i = idx ( cand ) ) if ( slopes [ i ] < = min_slp + eps ) cand [ i ] ] ,
nearest = min_index ( [ for ( i = cand2 ) norm ( pt - outer [ i ] ) ] )
)
cand2 [ nearest ] ;
2021-10-15 02:36:21 +00:00
// Function: vnf_from_region()
// Usage:
2021-10-17 21:40:47 +00:00
// vnf = vnf_from_region(region, [transform], [reverse]);
2021-10-15 02:36:21 +00:00
// Description:
2021-10-17 03:01:52 +00:00
// Given a (two-dimensional) region, applies the given transformation matrix to it and makes a (three-dimensional) triangulated VNF of
2021-10-15 02:36:21 +00:00
// faces for that region, reversed if desired.
// Arguments:
// region = The region to conver to a vnf.
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false
// Example(3D):
// region = [square([20,10],center=true),
// right(5,square(4,center=true)),
// left(5,square(6,center=true))];
// vnf = vnf_from_region(region);
// color("gray")down(.125)
// linear_extrude(height=.125)region(region);
// vnf_wireframe(vnf,width=.25);
2021-10-17 21:40:47 +00:00
function vnf_from_region ( region , transform , reverse = false ) =
2021-10-15 02:36:21 +00:00
let (
regions = region_parts ( force_region ( region ) ) ,
2021-11-04 12:09:29 +00:00
vnfs =
[ for ( rgn = regions )
let ( cleaved = path3d ( _cleave_connected_region ( rgn ) ) )
assert ( cleaved , "The region is invalid" )
let (
face = is_undef ( transform ) ? cleaved : apply ( transform , cleaved ) ,
faceidxs = reverse ? [ for ( i = [ len ( face ) - 1 : - 1 : 0 ] ) i ] : [ for ( i = [ 0 : 1 : len ( face ) - 1 ] ) i ]
) [ face , [ faceidxs ] ]
] ,
2021-11-11 13:45:30 +00:00
outvnf = vnf_join ( vnfs )
2021-10-15 02:36:21 +00:00
)
vnf_triangulate ( outvnf ) ;
2021-10-05 21:15:07 +00:00
// Section: VNF Testing and Access
// Function: is_vnf()
// Usage:
// bool = is_vnf(x);
// Description:
// Returns true if the given value looks like a VNF structure.
function is_vnf ( x ) =
is_list ( x ) &&
len ( x ) = = 2 &&
is_list ( x [ 0 ] ) &&
is_list ( x [ 1 ] ) &&
2021-10-21 02:44:55 +00:00
( x [ 0 ] = = [ ] || ( len ( x [ 0 ] ) >= 3 && is_vector ( x [ 0 ] [ 0 ] , 3 ) ) ) &&
2021-10-05 21:15:07 +00:00
( x [ 1 ] = = [ ] || is_vector ( x [ 1 ] [ 0 ] ) ) ;
// Function: is_vnf_list()
// Description: Returns true if the given value looks passingly like a list of VNF structures.
function is_vnf_list ( x ) = is_list ( x ) && all ( [ for ( v = x ) is_vnf ( v ) ] ) ;
// Function: vnf_vertices()
// Description: Given a VNF structure, returns the list of vertex points.
function vnf_vertices ( vnf ) = vnf [ 0 ] ;
// Function: vnf_faces()
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
function vnf_faces ( vnf ) = vnf [ 1 ] ;
// Section: Altering the VNF Internals
// Function: vnf_reverse_faces()
// Usage:
// rvnf = vnf_reverse_faces(vnf);
// Description:
2021-10-16 02:39:10 +00:00
// Reverses the orientation of all the faces in the given VNF.
2021-10-05 21:15:07 +00:00
function vnf_reverse_faces ( vnf ) =
[ vnf [ 0 ] , [ for ( face = vnf [ 1 ] ) reverse ( face ) ] ] ;
// Function: vnf_quantize()
// Usage:
// vnf2 = vnf_quantize(vnf,[q]);
// Description:
// Quantizes the vertex coordinates of the VNF to the given quanta `q`.
// Arguments:
// vnf = The VNF to quantize.
// q = The quanta to quantize the VNF coordinates to.
function vnf_quantize ( vnf , q = pow ( 2 , - 12 ) ) =
[ [ for ( pt = vnf [ 0 ] ) quant ( pt , q ) ] , vnf [ 1 ] ] ;
2021-11-11 14:09:54 +00:00
// Function: vnf_merge_points()
// Usage:
// new_vnf = vnf_merge_points(vnf, [eps]);
// Description:
// Given a VNF, consolidates all duplicate vertices with a tolerance `eps`, relabeling the faces as necessary,
// and eliminating any face with fewer than 3 vertices. Unreferenced vertices of the input VNF are not dropped.
// To remove such vertices uses {{vnf_drop_unused_points()}}.
// Arguments:
// vnf = a VNF to consolidate
// eps = the tolerance in finding duplicates. Default: EPSILON
function vnf_merge_points ( vnf , eps = EPSILON ) =
let (
verts = vnf [ 0 ] ,
dedup = vector_search ( verts , eps , verts ) , // collect vertex duplicates
map = [ for ( i = idx ( verts ) ) min ( dedup [ i ] ) ] , // remap duplic vertices
offset = cumsum ( [ for ( i = idx ( verts ) ) map [ i ] = = i ? 0 : 1 ] ) , // remaping face vertex offsets
map2 = list ( idx ( verts ) ) - offset , // map old vertex indices to new indices
nverts = [ for ( i = idx ( verts ) ) if ( map [ i ] = = i ) verts [ i ] ] , // this doesn't eliminate unreferenced vertices
nfaces =
[ for ( face = vnf [ 1 ] )
let (
nface = [ for ( vi = face ) map2 [ map [ vi ] ] ] ,
dface = [ for ( i = idx ( nface ) )
if ( nface [ i ] ! = nface [ ( i + 1 ) % len ( nface ) ] )
nface [ i ] ]
)
if ( len ( dface ) >= 3 ) dface
]
)
[ nverts , nfaces ] ;
2021-10-15 10:07:17 +00:00
// Function: vnf_drop_unused_points()
2021-10-15 02:36:21 +00:00
// Usage:
2021-10-15 10:07:17 +00:00
// clean_vnf=vnf_drop_unused_points(vnf);
2021-10-15 02:36:21 +00:00
// Description:
// Remove all unreferenced vertices from a VNF. Note that in most
// cases unreferenced vertices cause no harm, and this function may
2021-10-15 10:07:17 +00:00
// be slow on large VNFs.
function vnf_drop_unused_points ( vnf ) =
2021-10-15 02:36:21 +00:00
let (
flat = flatten ( vnf [ 1 ] ) ,
2021-10-15 10:07:17 +00:00
ind = _link_indicator ( flat , 0 , len ( vnf [ 0 ] ) - 1 ) ,
2021-10-15 02:36:21 +00:00
verts = [ for ( i = idx ( vnf [ 0 ] ) ) if ( ind [ i ] = = 1 ) vnf [ 0 ] [ i ] ] ,
map = cumsum ( ind )
)
[ verts , [ for ( face = vnf [ 1 ] ) [ for ( v = face ) map [ v ] - 1 ] ] ] ;
2021-10-15 10:07:17 +00:00
function _link_indicator ( l , imin , imax ) =
len ( l ) = = 0 ? repeat ( imax - imin + 1 , 0 ) :
imax - imin < 100 || len ( l ) < 400 ? [ for ( si = search ( list ( [ imin : 1 : imax ] ) , l , 1 ) ) si ! = [ ] ? 1 : 0 ] :
let (
pivot = floor ( ( imax + imin ) / 2 ) ,
lesser = [ for ( li = l ) if ( li < pivot ) li ] ,
greater = [ for ( li = l ) if ( li > pivot ) li ]
)
concat ( _link_indicator ( lesser , imin , pivot - 1 ) ,
2021-10-15 02:36:21 +00:00
search ( pivot , l , 1 ) ? 1 : 0 ,
2021-10-15 10:07:17 +00:00
_link_indicator ( greater , pivot + 1 , imax ) ) ;
2021-10-15 02:36:21 +00:00
2021-10-05 21:15:07 +00:00
// Function: vnf_triangulate()
// Usage:
// vnf2 = vnf_triangulate(vnf);
// Description:
2021-10-15 02:36:21 +00:00
// Triangulates faces in the VNF that have more than 3 vertices.
2021-10-17 03:01:52 +00:00
// Arguments:
// vnf = vnf to triangulate
// Example(3D):
2021-10-15 02:36:21 +00:00
// include <BOSL2/polyhedra.scad>
// vnf = zrot(33,regular_polyhedron_info("vnf", "dodecahedron", side=12));
// vnf_polyhedron(vnf);
// triangulated = vnf_triangulate(vnf);
// color("red")vnf_wireframe(triangulated,width=.3);
2021-10-05 21:15:07 +00:00
function vnf_triangulate ( vnf ) =
let (
verts = vnf [ 0 ] ,
2021-11-04 12:09:29 +00:00
faces = [ for ( face = vnf [ 1 ] )
each ( len ( face ) = = 3 ? [ face ] :
let ( tris = polygon_triangulate ( verts , face ) )
assert ( tris ! = undef , "Some `vnf` face cannot be triangulated." )
tris ) ]
)
[ verts , faces ] ;
2021-10-05 21:15:07 +00:00
2021-10-06 01:56:49 +00:00
// Function: vnf_slice()
// Usage:
// sliced = vnf_slice(vnf, dir, cuts);
// Description:
// Slice the faces of a VNF along a specified axis direction at a given list
2021-10-17 03:01:52 +00:00
// of cut points. The cut points can appear in any order. You can use this to refine the faces of a VNF before applying
2021-10-06 01:56:49 +00:00
// a nonlinear transformation to its vertex set.
2021-10-17 03:01:52 +00:00
// Arguments:
// vnf = vnf to slice
// dir = normal direction to the slices, either "X", "Y" or "Z"
// cuts = X, Y or Z values where cuts occur
2021-10-06 01:56:49 +00:00
// Example(3D):
2021-10-06 02:50:40 +00:00
// include <BOSL2/polyhedra.scad>
2021-10-06 01:56:49 +00:00
// vnf = regular_polyhedron_info("vnf", "dodecahedron", side=12);
// vnf_polyhedron(vnf);
// sliced = vnf_slice(vnf, "X", [-6,-1,10]);
// color("red")vnf_wireframe(sliced,width=.3);
function vnf_slice ( vnf , dir , cuts ) =
let (
vert = vnf [ 0 ] ,
faces = [ for ( face = vnf [ 1 ] ) select ( vert , face ) ] ,
poly_list = _slice_3dpolygons ( faces , dir , cuts )
)
2021-11-11 13:45:30 +00:00
vnf_merge_points ( vnf_from_polygons ( poly_list ) ) ;
2021-10-06 01:56:49 +00:00
function _split_polygon_at_x ( poly , x ) =
let (
2021-10-26 22:30:57 +00:00
xs = column ( poly , 0 )
2021-10-06 01:56:49 +00:00
) ( min ( xs ) >= x || max ( xs ) < = x ) ? [ poly ] :
let (
poly2 = [
for ( p = pair ( poly , true ) ) each [
p [ 0 ] ,
if (
( p [ 0 ] . x < x && p [ 1 ] . x > x ) ||
( p [ 1 ] . x < x && p [ 0 ] . x > x )
) let (
u = ( x - p [ 0 ] . x ) / ( p [ 1 ] . x - p [ 0 ] . x )
) [
x , // Important for later exact match tests
u * ( p [ 1 ] . y - p [ 0 ] . y ) + p [ 0 ] . y
]
]
] ,
out1 = [ for ( p = poly2 ) if ( p . x < = x ) p ] ,
out2 = [ for ( p = poly2 ) if ( p . x >= x ) p ] ,
out3 = [
if ( len ( out1 ) >= 3 ) each split_path_at_self_crossings ( out1 ) ,
if ( len ( out2 ) >= 3 ) each split_path_at_self_crossings ( out2 ) ,
] ,
out = [ for ( p = out3 ) if ( len ( p ) > 2 ) cleanup_path ( p ) ]
) out ;
function _split_2dpolygons_at_each_x ( polys , xs , _i = 0 ) =
_i >= len ( xs ) ? polys :
_split_2dpolygons_at_each_x (
[
for ( poly = polys )
each _split_polygon_at_x ( poly , xs [ _i ] )
] , xs , _i = _i + 1
) ;
2021-11-04 02:30:01 +00:00
/// Internal Function: _slice_3dpolygons()
2021-10-06 01:56:49 +00:00
/// Usage:
/// splitpolys = _slice_3dpolygons(polys, dir, cuts);
/// Topics: Geometry, Polygons, Intersections
/// Description:
/// Given a list of 3D polygons, a choice of X, Y, or Z, and a cut list, `cuts`, splits all of the polygons where they cross
/// X/Y/Z at any value given in cuts.
/// Arguments:
/// polys = A list of 3D polygons to split.
/// dir_ind = slice direction, 0=X, 1=Y, or 2=Z
/// cuts = A list of scalar values for locating the cuts
function _slice_3dpolygons ( polys , dir , cuts ) =
assert ( [ for ( poly = polys ) if ( ! is_path ( poly , 3 ) ) 1 ] = = [ ] , "Expects list of 3D paths." )
assert ( is_vector ( cuts ) , "The split list must be a vector." )
assert ( in_list ( dir , [ "X" , "Y" , "Z" ] ) )
let (
I = ident ( 3 ) ,
dir_ind = ord ( dir ) - ord ( "X" )
)
flatten ( [ for ( poly = polys )
let (
2021-12-05 14:08:27 +00:00
plane = plane_from_polygon ( poly )
)
assert ( plane , "Found non-coplanar face." )
let (
2021-10-06 01:56:49 +00:00
normal = point3d ( plane ) ,
pnormal = normal - ( normal * I [ dir_ind ] ) * I [ dir_ind ]
)
approx ( pnormal , [ 0 , 0 , 0 ] ) ? [ poly ] :
let (
pind = max_index ( v_abs ( pnormal ) ) , // project along this direction
otherind = 3 - pind - dir_ind , // keep dir_ind and this direction
keep = [ I [ dir_ind ] , I [ otherind ] ] , // dir ind becomes the x dir
poly2d = poly * transpose ( keep ) , // project to 2d, putting selected direction in the X position
poly_list = [ for ( p = _split_2dpolygons_at_each_x ( [ poly2d ] , cuts ) )
let (
a = p * keep , // unproject, but pind dimension data is missing
ofs = outer_product ( ( repeat ( plane [ 3 ] , len ( a ) ) - a * normal ) / plane [ pind ] , I [ pind ] )
)
a + ofs ] // ofs computes the missing pind dimension data and adds it back in
)
poly_list
] ) ;
2021-10-05 21:15:07 +00:00
// Section: Turning a VNF into geometry
// Module: vnf_polyhedron()
// Usage:
// vnf_polyhedron(vnf);
// vnf_polyhedron([VNF, VNF, VNF, ...]);
// Description:
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
// Arguments:
// vnf = A VNF structure, or list of VNF structures.
// convexity = Max number of times a line could intersect a wall of the shape.
// extent = If true, calculate anchors by extents, rather than intersection. Default: true.
2021-11-17 18:38:07 +00:00
// cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
2021-11-20 03:33:16 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
2021-11-16 23:49:37 +00:00
// atype = Select "hull" or "intersect" anchor type. Default: "hull"
module vnf_polyhedron ( vnf , convexity = 2 , extent = true , cp = "centroid" , anchor = "origin" , spin = 0 , orient = UP , atype = "hull" ) {
2021-11-11 13:45:30 +00:00
vnf = is_vnf_list ( vnf ) ? vnf_join ( vnf ) : vnf ;
2021-11-16 23:49:37 +00:00
assert ( in_list ( atype , _ANCHOR_TYPES ) , "Anchor type must be \"hull\" or \"intersect\"" ) ;
attachable ( anchor , spin , orient , vnf = vnf , extent = atype = = "hull" , cp = cp ) {
2021-10-05 21:15:07 +00:00
polyhedron ( vnf [ 0 ] , vnf [ 1 ] , convexity = convexity ) ;
children ( ) ;
}
}
// Module: vnf_wireframe()
// Usage:
2021-10-17 21:40:47 +00:00
// vnf_wireframe(vnf, [width]);
2021-10-05 21:15:07 +00:00
// Description:
// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for
// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks
2021-10-17 21:40:47 +00:00
// that form the wire frame and the diameter of the balls.
2021-10-05 21:15:07 +00:00
// Arguments:
// vnf = A vnf structure
// width = width of the cylinders forming the wire frame. Default: 1
// Example:
// $fn=32;
// ball = sphere(r=20, $fn=6);
// vnf_wireframe(ball,width=1);
// Example:
// include <BOSL2/polyhedra.scad>
// $fn=32;
2021-10-06 01:56:49 +00:00
// cube_oct = regular_polyhedron_info("vnf",
// name="cuboctahedron", or=20);
2021-10-05 21:15:07 +00:00
// vnf_wireframe(cube_oct);
// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal.
// include <BOSL2/polyhedra.scad>
// $fn=8;
2021-10-06 01:56:49 +00:00
// octahedron = regular_polyhedron_info("vnf",
// name="octahedron", or=20);
2021-10-05 21:15:07 +00:00
// vnf_wireframe(octahedron,width=5);
module vnf_wireframe ( vnf , width = 1 )
{
vertex = vnf [ 0 ] ;
edges = unique ( [ for ( face = vnf [ 1 ] , i = idx ( face ) )
sort ( [ face [ i ] , select ( face , i + 1 ) ] )
] ) ;
for ( e = edges ) extrude_from_to ( vertex [ e [ 0 ] ] , vertex [ e [ 1 ] ] ) circle ( d = width ) ;
2021-10-14 22:29:52 +00:00
// Identify vertices actually used and draw them
vertused = search ( count ( len ( vertex ) ) , flatten ( edges ) , 1 ) ;
for ( i = idx ( vertex ) ) if ( vertused [ i ] ! = [ ] ) move ( vertex [ i ] ) sphere ( d = width ) ;
2021-10-05 21:15:07 +00:00
}
// Section: Operations on VNFs
// Function: vnf_volume()
// Usage:
// vol = vnf_volume(vnf);
// Description:
// Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
// no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume
// if face direction is counter-clockwise.
// Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume.
function vnf_volume ( vnf ) =
let ( verts = vnf [ 0 ] )
sum ( [
for ( face = vnf [ 1 ] , j = [ 1 : 1 : len ( face ) - 2 ] )
cross ( verts [ face [ j + 1 ] ] , verts [ face [ j ] ] ) * verts [ face [ 0 ] ]
] ) / 6 ;
// Function: vnf_area()
// Usage:
// area = vnf_area(vnf);
// Description:
// Returns the surface area in any VNF by adding up the area of all its faces. The VNF need not be a manifold.
function vnf_area ( vnf ) =
let ( verts = vnf [ 0 ] )
sum ( [ for ( face = vnf [ 1 ] ) polygon_area ( select ( verts , face ) ) ] ) ;
2021-11-04 02:30:01 +00:00
/// Internal Function: _vnf_centroid()
2021-10-21 02:44:55 +00:00
/// Usage:
/// vol = _vnf_centroid(vnf);
/// Description:
/// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and
/// no holes; otherwise the results are undefined.
2021-10-05 21:15:07 +00:00
2021-10-21 02:44:55 +00:00
/// Divide the solid up into tetrahedra with the origin as one vertex.
/// The centroid of a tetrahedron is the average of its vertices.
/// The centroid of the total is the volume weighted average.
function _vnf_centroid ( vnf , eps = EPSILON ) =
2021-11-17 04:12:03 +00:00
assert ( is_vnf ( vnf ) && len ( vnf [ 0 ] ) ! = 0 && len ( vnf [ 1 ] ) ! = 0 , "Invalid or empty VNF given to centroid" )
2021-10-05 21:15:07 +00:00
let (
verts = vnf [ 0 ] ,
pos = sum ( [
for ( face = vnf [ 1 ] , j = [ 1 : 1 : len ( face ) - 2 ] ) let (
v0 = verts [ face [ 0 ] ] ,
v1 = verts [ face [ j ] ] ,
v2 = verts [ face [ j + 1 ] ] ,
vol = cross ( v2 , v1 ) * v0
)
[ vol , ( v0 + v1 + v2 ) * vol ]
] )
)
2021-10-21 02:44:55 +00:00
assert ( ! approx ( pos [ 0 ] , 0 , eps ) , "The vnf has self-intersections." )
2021-10-05 21:15:07 +00:00
pos [ 1 ] / pos [ 0 ] / 4 ;
// Function: vnf_halfspace()
// Usage:
// newvnf = vnf_halfspace(plane, vnf, [closed]);
// Description:
// Returns the intersection of the vnf with a half space. The half space is defined by
// plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+Cz≥D.
// If closed is set to false then the cut face is not included in the vnf. This could
// allow further extension of the vnf by merging with other vnfs.
// Arguments:
// plane = plane defining the boundary of the half space
// vnf = vnf to cut
// closed = if false do not return include cut face(s). Default: true
2021-10-06 01:56:49 +00:00
// Example(3D):
2021-10-05 21:15:07 +00:00
// vnf = cube(10,center=true);
// cutvnf = vnf_halfspace([-1,1,-1,0], vnf);
// vnf_polyhedron(cutvnf);
2021-10-06 01:56:49 +00:00
// Example(3D): Cut face has 2 components
2021-10-05 21:15:07 +00:00
// vnf = path_sweep(circle(r=4, $fn=16),
// circle(r=20, $fn=64),closed=true);
// cutvnf = vnf_halfspace([-1,1,-4,0], vnf);
// vnf_polyhedron(cutvnf);
2021-10-06 01:56:49 +00:00
// Example(3D): Cut face is not simply connected
2021-10-05 21:15:07 +00:00
// vnf = path_sweep(circle(r=4, $fn=16),
// circle(r=20, $fn=64),closed=true);
// cutvnf = vnf_halfspace([0,0.7,-4,0], vnf);
// vnf_polyhedron(cutvnf);
2021-10-06 01:56:49 +00:00
// Example(3D): Cut object has multiple components
2021-10-05 21:15:07 +00:00
// function knot(a,b,t) = // rolling knot
// [ a * cos (3 * t) / (1 - b* sin (2 *t)),
// a * sin( 3 * t) / (1 - b* sin (2 *t)),
// 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))];
// a = 0.8; b = sqrt (1 - a * a);
// ksteps = 400;
// knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)];
// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]];
// knot=path_sweep(ushape, knot_path, closed=true, method="incremental");
// cut_knot = vnf_halfspace([1,0,0,0], knot);
// vnf_polyhedron(cut_knot);
function vnf_halfspace ( plane , vnf , closed = true ) =
2021-10-14 22:29:52 +00:00
assert ( _valid_plane ( plane ) , "Invalid plane" )
assert ( is_vnf ( vnf ) , "Invalid vnf" )
2021-10-05 21:15:07 +00:00
let (
inside = [ for ( x = vnf [ 0 ] ) plane * [ each x , - 1 ] >= 0 ? 1 : 0 ] ,
vertexmap = [ 0 , each cumsum ( inside ) ] ,
faces_edges_vertices = _vnfcut ( plane , vnf [ 0 ] , vertexmap , inside , vnf [ 1 ] , last ( vertexmap ) ) ,
newvert = concat ( bselect ( vnf [ 0 ] , inside ) , faces_edges_vertices [ 2 ] )
)
closed = = false ? [ newvert , faces_edges_vertices [ 0 ] ] :
let (
allpaths = _assemble_paths ( newvert , faces_edges_vertices [ 1 ] ) ,
newpaths = [ for ( p = allpaths ) if ( len ( p ) >= 3 ) p
else assert ( approx ( p [ 0 ] , p [ 1 ] ) , "Orphan edge found when assembling cut edges." )
]
)
len ( newpaths ) < = 1 ? [ newvert , concat ( faces_edges_vertices [ 0 ] , newpaths ) ]
:
let (
2021-10-06 01:56:49 +00:00
M = project_plane ( plane ) ,
2021-10-06 02:50:40 +00:00
faceregion = [ for ( path = newpaths ) path2d ( apply ( M , select ( newvert , path ) ) ) ] ,
2021-10-15 02:36:21 +00:00
facevnf = vnf_from_region ( faceregion , transform = rot_inverse ( M ) , reverse = true )
2021-10-05 21:15:07 +00:00
)
2021-11-11 13:45:30 +00:00
vnf_join ( [ [ newvert , faces_edges_vertices [ 0 ] ] , facevnf ] ) ;
2021-10-05 21:15:07 +00:00
function _assemble_paths ( vertices , edges , paths = [ ] , i = 0 ) =
i = = len ( edges ) ? paths :
2021-10-06 01:56:49 +00:00
norm ( vertices [ edges [ i ] [ 0 ] ] - vertices [ edges [ i ] [ 1 ] ] ) < EPSILON ? _assemble_paths ( vertices , edges , paths , i + 1 ) :
2021-10-05 21:15:07 +00:00
let ( // Find paths that connects on left side and right side of the edges (if one exists)
left = [ for ( j = idx ( paths ) ) if ( approx ( vertices [ last ( paths [ j ] ) ] , vertices [ edges [ i ] [ 0 ] ] ) ) j ] ,
right = [ for ( j = idx ( paths ) ) if ( approx ( vertices [ edges [ i ] [ 1 ] ] , vertices [ paths [ j ] [ 0 ] ] ) ) j ]
)
assert ( len ( left ) < = 1 && len ( right ) < = 1 )
let (
keep_path = list_remove ( paths , concat ( left , right ) ) ,
update_path = left = = [ ] && right = = [ ] ? edges [ i ]
: left = = [ ] ? concat ( [ edges [ i ] [ 0 ] ] , paths [ right [ 0 ] ] )
2021-10-06 01:56:49 +00:00
: right = = [ ] ? concat ( paths [ left [ 0 ] ] , [ edges [ i ] [ 1 ] ] )
2021-10-05 21:15:07 +00:00
: left ! = right ? concat ( paths [ left [ 0 ] ] , paths [ right [ 0 ] ] )
: paths [ left [ 0 ] ]
)
_assemble_paths ( vertices , edges , concat ( keep_path , [ update_path ] ) , i + 1 ) ;
function _vnfcut ( plane , vertices , vertexmap , inside , faces , vertcount , newfaces = [ ] , newedges = [ ] , newvertices = [ ] , i = 0 ) =
i = = len ( faces ) ? [ newfaces , newedges , newvertices ] :
let (
pts_inside = select ( inside , faces [ i ] )
)
all ( pts_inside ) ? _vnfcut ( plane , vertices , vertexmap , inside , faces , vertcount ,
concat ( newfaces , [ select ( vertexmap , faces [ i ] ) ] ) , newedges , newvertices , i + 1 ) :
! any ( pts_inside ) ? _vnfcut ( plane , vertices , vertexmap , inside , faces , vertcount , newfaces , newedges , newvertices , i + 1 ) :
let (
first = search ( [ [ 1 , 0 ] ] , pair ( pts_inside , wrap = true ) , 0 ) [ 0 ] ,
second = search ( [ [ 0 , 1 ] ] , pair ( pts_inside , wrap = true ) , 0 ) [ 0 ]
)
assert ( len ( first ) = = 1 && len ( second ) = = 1 , "Found concave face in VNF. Run vnf_triangulate first to ensure convex faces." )
let (
newface = [ each select ( vertexmap , select ( faces [ i ] , second [ 0 ] + 1 , first [ 0 ] ) ) , vertcount , vertcount + 1 ] ,
newvert = [ plane_line_intersection ( plane , select ( vertices , select ( faces [ i ] , first [ 0 ] , first [ 0 ] + 1 ) ) , eps = 0 ) ,
plane_line_intersection ( plane , select ( vertices , select ( faces [ i ] , second [ 0 ] , second [ 0 ] + 1 ) ) , eps = 0 ) ]
)
true //!approx(newvert[0],newvert[1])
? _vnfcut ( plane , vertices , vertexmap , inside , faces , vertcount + 2 ,
concat ( newfaces , [ newface ] ) , concat ( newedges , [ [ vertcount + 1 , vertcount ] ] ) , concat ( newvertices , newvert ) , i + 1 )
: len ( newface ) > 3
? _vnfcut ( plane , vertices , vertexmap , inside , faces , vertcount + 1 ,
concat ( newfaces , [ list_head ( newface ) ] ) , newedges , concat ( newvertices , [ newvert [ 0 ] ] ) , i + 1 )
:
_vnfcut ( plane , vertices , vertexmap , inside , faces , vertcount , newfaces , newedges , newvert , i + 1 ) ;
function _triangulate_planar_convex_polygons ( polys ) =
polys = = [ ] ? [ ] :
let (
tris = [ for ( poly = polys ) if ( len ( poly ) = = 3 ) poly ] ,
bigs = [ for ( poly = polys ) if ( len ( poly ) > 3 ) poly ] ,
newtris = [ for ( poly = bigs ) select ( poly , - 2 , 0 ) ] ,
newbigs = [ for ( poly = bigs ) select ( poly , 0 , - 2 ) ] ,
newtris2 = _triangulate_planar_convex_polygons ( newbigs ) ,
outtris = concat ( tris , newtris , newtris2 )
) outtris ;
//**
// this function may produce degenerate triangles:
// _triangulate_planar_convex_polygons([ [for(i=[0:1]) [i,i],
// [1,-1], [-1,-1],
// for(i=[-1:0]) [i,i] ] ] )
// == [[[-1, -1], [ 0, 0], [0, 0]]
// [[-1, -1], [-1, -1], [0, 0]]
// [[ 1, -1], [-1, -1], [0, 0]]
// [[ 0, 0], [ 1, 1], [1, -1]] ]
//
// Function: vnf_bend()
// Usage:
// bentvnf = vnf_bend(vnf,r,d,[axis]);
// Description:
// Bend a VNF around the X, Y or Z axis, splitting up faces as necessary. Returns the bent
// VNF. For bending around the Z axis the input VNF must not cross the Y=0 plane. For bending
// around the X or Y axes the VNF must not cross the Z=0 plane. Note that if you wrap a VNF all the way around
// it may intersect itself, which produces an invalid polyhedron. It is your responsibility to
// avoid this situation. The 1:1
// radius is where the curved length of the bent VNF matches the length of the original VNF. If the
// `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are
// not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the
// original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard
// `$fa`, `$fs`, and `$fn` variables.
// Arguments:
// vnf = The original VNF to bend.
// r = If given, the radius where the size of the original shape is the same as in the original.
2021-10-17 21:40:47 +00:00
// ---
2021-10-05 21:15:07 +00:00
// d = If given, the diameter where the size of the original shape is the same as in the original.
// axis = The axis to wrap around. "X", "Y", or "Z". Default: "Z"
// Example(3D):
// vnf0 = cube([100,40,10], center=true);
// vnf1 = up(50, p=vnf0);
// vnf2 = down(50, p=vnf0);
// bent1 = vnf_bend(vnf1, axis="Y");
// bent2 = vnf_bend(vnf2, axis="Y");
// vnf_polyhedron([bent1,bent2]);
// Example(3D):
// vnf0 = linear_sweep(star(n=5,step=2,d=100), height=10);
// vnf1 = up(50, p=vnf0);
// vnf2 = down(50, p=vnf0);
// bent1 = vnf_bend(vnf1, axis="Y");
// bent2 = vnf_bend(vnf2, axis="Y");
// vnf_polyhedron([bent1,bent2]);
// Example(3D):
2021-10-06 01:56:49 +00:00
// rgn = union(rect([100,20],center=true),
// rect([20,100],center=true));
2021-10-05 21:15:07 +00:00
// vnf0 = linear_sweep(zrot(45,p=rgn), height=10);
// vnf1 = up(50, p=vnf0);
// vnf2 = down(50, p=vnf0);
// bent1 = vnf_bend(vnf1, axis="Y");
// bent2 = vnf_bend(vnf2, axis="Y");
// vnf_polyhedron([bent1,bent2]);
// Example(3D): Bending Around X Axis.
// rgnr = union(
// rect([20,100],center=true),
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
// );
// vnf0 = xrot(00,p=linear_sweep(rgnr, height=10));
// vnf1 = up(50, p=vnf0);
// #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="X");
// vnf_polyhedron([bent1]);
// Example(3D): Bending Around Y Axis.
// rgn = union(
// rect([20,100],center=true),
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
// );
// rgnr = zrot(-90, p=rgn);
// vnf0 = xrot(00,p=linear_sweep(rgnr, height=10));
// vnf1 = up(50, p=vnf0);
// #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="Y");
// vnf_polyhedron([bent1]);
// Example(3D): Bending Around Z Axis.
// rgn = union(
// rect([20,100],center=true),
// back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT))
// );
// rgnr = zrot(90, p=rgn);
// vnf0 = xrot(90,p=linear_sweep(rgnr, height=10));
// vnf1 = fwd(50, p=vnf0);
// #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="Z");
// vnf_polyhedron([bent1]);
// Example(3D): Bending more than once around the cylinder
// $fn=32;
// vnf = apply(fwd(5)*yrot(30),cube([100,2,5],center=true));
// bent = vnf_bend(vnf, axis="Z");
// vnf_polyhedron(bent);
function vnf_bend ( vnf , r , d , axis = "Z" ) =
let (
chk_axis = assert ( in_list ( axis , [ "X" , "Y" , "Z" ] ) ) ,
verts = vnf [ 0 ] ,
bounds = pointlist_bounds ( verts ) ,
bmin = bounds [ 0 ] ,
bmax = bounds [ 1 ] ,
dflt = axis = = "Z" ?
max ( abs ( bmax . y ) , abs ( bmin . y ) ) :
max ( abs ( bmax . z ) , abs ( bmin . z ) ) ,
r = get_radius ( r = r , d = d , dflt = dflt ) ,
extent = axis = = "X" ? [ bmin . y , bmax . y ] : [ bmin . x , bmax . x ]
)
let (
span_chk = axis = = "Z" ?
assert ( bmin . y > 0 || bmax . y < 0 , "Entire shape MUST be completely in front of or behind y=0." ) :
assert ( bmin . z > 0 || bmax . z < 0 , "Entire shape MUST be completely above or below z=0." ) ,
steps = ceil ( segs ( r ) * ( extent [ 1 ] - extent [ 0 ] ) / ( 2 * PI * r ) ) ,
step = ( extent [ 1 ] - extent [ 0 ] ) / steps ,
bend_at = [ for ( i = [ 1 : 1 : steps - 1 ] ) i * step + extent [ 0 ] ] ,
slicedir = axis = = "X" ? "Y" : "X" , // slice in y dir for X axis case, and x dir otherwise
sliced = vnf_slice ( vnf , slicedir , bend_at ) ,
coord = axis = = "X" ? [ 0 , sign ( bmax . z ) , 0 ] : axis = = "Y" ? [ sign ( bmax . z ) , 0 , 0 ] : [ sign ( bmax . y ) , 0 , 0 ] ,
new_vert = [ for ( p = sliced [ 0 ] )
let ( a = coord * p * 180 / ( PI * r ) )
axis = = "X" ? [ p . x , p . z * sin ( a ) , p . z * cos ( a ) ] :
axis = = "Y" ? [ p . z * sin ( a ) , p . y , p . z * cos ( a ) ] :
[ p . y * sin ( a ) , p . y * cos ( a ) , p . z ] ]
) [ new_vert , sliced [ 1 ] ] ;
// Section: Debugging Polyhedrons
2021-10-06 01:56:49 +00:00
/// Internal Module: _show_vertices()
/// Usage:
/// _show_vertices(vertices, [size])
/// Description:
/// Draws all the vertices in an array, at their 3D position, numbered by their
/// position in the vertex array. Also draws any children of this module with
/// transparency.
/// Arguments:
/// vertices = Array of point vertices.
/// size = The size of the text used to label the vertices. Default: 1
/// Example:
/// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
/// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
/// _show_vertices(vertices=verts, size=2) {
/// polyhedron(points=verts, faces=faces);
/// }
2021-10-05 21:15:07 +00:00
module _show_vertices ( vertices , size = 1 ) {
color ( "blue" ) {
dups = vector_search ( vertices , EPSILON , vertices ) ;
for ( ind = dups ) {
numstr = str_join ( [ for ( i = ind ) str ( i ) ] , "," ) ;
v = vertices [ ind [ 0 ] ] ;
translate ( v ) {
rot ( $vpr ) back ( size / 8 ) {
linear_extrude ( height = size / 10 , center = true , convexity = 10 ) {
text ( text = numstr , size = size , halign = "center" ) ;
}
}
sphere ( size / 10 ) ;
}
}
}
}
2021-10-06 01:56:49 +00:00
/// Internal Module: _show_faces()
2021-10-05 21:15:07 +00:00
/// Usage:
/// _show_faces(vertices, faces, [size=]);
/// Description:
/// Draws all the vertices at their 3D position, numbered in blue by their
/// position in the vertex array. Each face will have their face number drawn
/// in red, aligned with the center of face. All children of this module are drawn
/// with transparency.
/// Arguments:
/// vertices = Array of point vertices.
/// faces = Array of faces by vertex numbers.
/// size = The size of the text used to label the faces and vertices. Default: 1
/// Example(EdgesMed):
/// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
/// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
/// _show_faces(vertices=verts, faces=faces, size=2) {
/// polyhedron(points=verts, faces=faces);
/// }
module _show_faces ( vertices , faces , size = 1 ) {
vlen = len ( vertices ) ;
color ( "red" ) {
for ( i = [ 0 : 1 : len ( faces ) - 1 ] ) {
face = faces [ i ] ;
if ( face [ 0 ] < 0 || face [ 1 ] < 0 || face [ 2 ] < 0 || face [ 0 ] >= vlen || face [ 1 ] >= vlen || face [ 2 ] >= vlen ) {
echo ( "BAD FACE: " , vlen = vlen , face = face ) ;
} else {
verts = select ( vertices , face ) ;
c = mean ( verts ) ;
v0 = verts [ 0 ] ;
v1 = verts [ 1 ] ;
v2 = verts [ 2 ] ;
dv0 = unit ( v1 - v0 ) ;
dv1 = unit ( v2 - v0 ) ;
nrm0 = cross ( dv0 , dv1 ) ;
nrm1 = UP ;
axis = vector_axis ( nrm0 , nrm1 ) ;
ang = vector_angle ( nrm0 , nrm1 ) ;
theta = atan2 ( nrm0 [ 1 ] , nrm0 [ 0 ] ) ;
translate ( c ) {
rotate ( a = 180 - ang , v = axis ) {
zrot ( theta - 90 )
linear_extrude ( height = size / 10 , center = true , convexity = 10 ) {
union ( ) {
text ( text = str ( i ) , size = size , halign = "center" ) ;
text ( text = str ( "_" ) , size = size , halign = "center" ) ;
}
}
}
}
}
}
}
}
// Module: vnf_debug()
// Usage:
// vnf_debug(vnfs, [faces], [vertices], [opacity], [size], [convexity]);
// Description:
// A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces.
// Draws all the vertices at their 3D position, numbered in blue by their
// position in the vertex array. Each face will have its face number drawn
// in red, aligned with the center of face. All given faces are drawn with
// transparency. All children of this module are drawn with transparency.
// Works best with Thrown-Together preview mode, to see reversed faces.
// You can set opacity to 0 if you want to supress the display of the polyhedron faces.
// .
// The vertex numbers are shown rotated to face you. As you rotate your polyhedron you
// can rerun the preview to display them oriented for viewing from a different viewpoint.
// Topics: Polyhedra, Debugging
// Arguments:
// vnf = vnf to display
// ---
// faces = if true display face numbers. Default: true
// vertices = if true display vertex numbers. Default: true
// opacity = Opacity of the polyhedron faces. Default: 0.5
// convexity = The max number of walls a ray can pass through the given polygon paths.
// size = The size of the text used to label the faces and vertices. Default: 1
// Example(EdgesMed):
// verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]];
// faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]];
// vnf_debug([verts,faces], size=2);
module vnf_debug ( vnf , faces = true , vertices = true , opacity = 0.5 , size = 1 , convexity = 6 ) {
no_children ( $children ) ;
if ( faces )
_show_faces ( vertices = vnf [ 0 ] , faces = vnf [ 1 ] , size = size ) ;
if ( vertices )
_show_vertices ( vertices = vnf [ 0 ] , size = size ) ;
color ( [ 0.2 , 1.0 , 0 , opacity ] )
vnf_polyhedron ( vnf , convexity = convexity ) ;
}
// Function&Module: vnf_validate()
// Usage: As Function
// fails = vnf_validate(vnf);
// Usage: As Module
// vnf_validate(vnf, [size]);
// Description:
// When called as a function, returns a list of non-manifold errors with the given VNF.
// Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`.
// When called as a module, echoes the non-manifold errors to the console, and color hilites the
// bad edges and vertices, overlaid on a transparent gray polyhedron of the VNF.
// .
// Currently checks for these problems:
// .
// Type | Color | Code | Message
// ------- | -------- | ------------ | ---------------------------------
// WARNING | Yellow | BIG_FACE | Face has more than 3 vertices, and may confuse CGAL.
// WARNING | Brown | NULL_FACE | Face has zero area.
// ERROR | Cyan | NONPLANAR | Face vertices are not coplanar.
// ERROR | Brown | DUP_FACE | Multiple instances of the same face.
// ERROR | Orange | MULTCONN | Multiply Connected Geometry. Too many faces attached at Edge.
// ERROR | Violet | REVERSAL | Faces reverse across edge.
// ERROR | Red | T_JUNCTION | Vertex is mid-edge on another Face.
// ERROR | Blue | FACE_ISECT | Faces intersect.
// ERROR | Magenta | HOLE_EDGE | Edge bounds Hole.
// .
// Still to implement:
// - Overlapping coplanar faces.
// Arguments:
// vnf = The VNF to validate.
// size = The width of the lines and diameter of points used to highlight edges and vertices. Module only. Default: 1
// check_isects = If true, performs slow checks for intersecting faces. Default: false
// Example: BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices.
// vnf = skin([
// path3d(regular_ngon(n=3, d=100),0),
// path3d(regular_ngon(n=5, d=100),100)
// ], slices=0, caps=true, method="tangent");
// vnf_validate(vnf);
// Example: NONPLANAR Errors; Face Vertices are Not Coplanar
// a = [ 0, 0,-50];
// b = [-50,-50, 50];
// c = [-50, 50, 50];
// d = [ 50, 50, 60];
// e = [ 50,-50, 50];
2021-10-05 22:23:20 +00:00
// vnf = vnf_from_polygons([
2021-10-05 21:15:07 +00:00
// [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e]
// ]);
// vnf_validate(vnf);
// Example: MULTCONN Errors; More Than Two Faces Attached to the Same Edge. This confuses CGAL, and can lead to failed renders.
// vnf = vnf_triangulate(linear_sweep(union(square(50), square(50,anchor=BACK+RIGHT)), height=50));
// vnf_validate(vnf);
// Example: REVERSAL Errors; Faces Reversed Across Edge
// vnf1 = skin([
// path3d(square(100,center=true),0),
// path3d(square(100,center=true),100),
// ], slices=0, caps=false);
2021-11-11 13:45:30 +00:00
// vnf = vnf_join([vnf1, vnf_from_polygons([
2021-10-05 21:15:07 +00:00
// [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]],
// [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]],
// [[-50,-50,100], [-50, 50,100], [ 50, 50,100]],
// [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]],
2021-10-05 22:23:20 +00:00
// ])]);
2021-10-05 21:15:07 +00:00
// vnf_validate(vnf);
// Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face.
// vnf1 = skin([
// path3d(square(100,center=true),0),
// path3d(square(100,center=true),100),
// ], slices=0, caps=false);
2021-11-11 13:45:30 +00:00
// vnf = vnf_join([vnf1, vnf_from_polygons([
2021-10-05 21:15:07 +00:00
// [[-50,-50,0], [50,50,0], [-50,50,0]],
// [[-50,-50,0], [50,-50,0], [50,50,0]],
// [[-50,-50,100], [-50,50,100], [0,50,100]],
// [[-50,-50,100], [0,50,100], [0,-50,100]],
// [[0,-50,100], [0,50,100], [50,50,100]],
// [[0,-50,100], [50,50,100], [50,-50,100]],
2021-10-05 22:23:20 +00:00
// ])]);
2021-10-05 21:15:07 +00:00
// vnf_validate(vnf);
// Example: FACE_ISECT Errors; Faces Intersect
2021-11-11 13:45:30 +00:00
// vnf = vnf_join([
2021-10-05 21:15:07 +00:00
// vnf_triangulate(linear_sweep(square(100,center=true), height=100)),
// move([75,35,30],p=vnf_triangulate(linear_sweep(square(100,center=true), height=100)))
// ]);
// vnf_validate(vnf,size=2,check_isects=true);
// Example: HOLE_EDGE Errors; Edges Adjacent to Holes.
// vnf = skin([
// path3d(regular_ngon(n=4, d=100),0),
// path3d(regular_ngon(n=5, d=100),100)
// ], slices=0, caps=false);
// vnf_validate(vnf,size=2);
function vnf_validate ( vnf , show_warns = true , check_isects = false ) =
2021-10-24 14:59:05 +00:00
assert ( is_vnf ( vnf ) , "Invalid VNF" )
2021-10-05 21:15:07 +00:00
let (
2021-11-11 13:45:30 +00:00
vnf = vnf_merge_points ( vnf ) ,
2021-10-05 21:15:07 +00:00
varr = vnf [ 0 ] ,
faces = vnf [ 1 ] ,
lvarr = len ( varr ) ,
edges = sort ( [
for ( face = faces , edge = pair ( face , true ) )
edge [ 0 ] < edge [ 1 ] ? edge : [ edge [ 1 ] , edge [ 0 ] ]
] ) ,
dfaces = [
for ( face = faces ) let (
face = deduplicate_indexed ( varr , face , closed = true )
) if ( len ( face ) >= 3 )
face
] ,
face_areas = [
for ( face = faces )
len ( face ) < 3 ? 0 :
polygon_area ( [ for ( k = face ) varr [ k ] ] )
] ,
edgecnts = unique_count ( edges ) ,
uniq_edges = edgecnts [ 0 ] ,
issues = [ ]
)
let (
big_faces = ! show_warns ? [ ] : [
for ( face = faces )
if ( len ( face ) > 3 )
_vnf_validate_err ( "BIG_FACE" , [ for ( i = face ) varr [ i ] ] )
] ,
null_faces = ! show_warns ? [ ] : [
for ( i = idx ( faces ) ) let (
face = faces [ i ] ,
area = face_areas [ i ] ,
faceverts = [ for ( k = face ) varr [ k ] ]
)
if ( is_num ( area ) && abs ( area ) < EPSILON )
_vnf_validate_err ( "NULL_FACE" , faceverts )
] ,
issues = concat ( big_faces , null_faces )
)
let (
bad_indices = [
for ( face = faces , idx = face )
if ( idx < 0 || idx >= lvarr )
_vnf_validate_err ( "BAD_INDEX" , [ idx ] )
] ,
issues = concat ( issues , bad_indices )
) bad_indices ? issues :
let (
repeated_faces = [
for ( i = idx ( dfaces ) , j = idx ( dfaces ) )
if ( i ! = j ) let (
face1 = dfaces [ i ] ,
face2 = dfaces [ j ]
) if ( min ( face1 ) = = min ( face2 ) ) let (
min1 = min_index ( face1 ) ,
min2 = min_index ( face2 )
) if ( min1 = = min2 ) let (
sface1 = list_rotate ( face1 , min1 ) ,
sface2 = list_rotate ( face2 , min2 )
) if ( sface1 = = sface2 )
_vnf_validate_err ( "DUP_FACE" , [ for ( i = sface1 ) varr [ i ] ] )
] ,
issues = concat ( issues , repeated_faces )
) repeated_faces ? issues :
let (
multconn_edges = unique ( [
for ( i = idx ( uniq_edges ) )
if ( edgecnts [ 1 ] [ i ] > 2 )
_vnf_validate_err ( "MULTCONN" , [ for ( i = uniq_edges [ i ] ) varr [ i ] ] )
] ) ,
issues = concat ( issues , multconn_edges )
) multconn_edges ? issues :
let (
reversals = unique ( [
for ( i = idx ( dfaces ) , j = idx ( dfaces ) ) if ( i ! = j )
for ( edge1 = pair ( faces [ i ] , true ) )
for ( edge2 = pair ( faces [ j ] , true ) )
if ( edge1 = = edge2 ) // Valid adjacent faces will never have the same vertex ordering.
if ( _edge_not_reported ( edge1 , varr , multconn_edges ) )
_vnf_validate_err ( "REVERSAL" , [ for ( i = edge1 ) varr [ i ] ] )
] ) ,
issues = concat ( issues , reversals )
) reversals ? issues :
let (
t_juncts = unique ( [
for ( v = idx ( varr ) , edge = uniq_edges ) let (
ia = edge [ 0 ] ,
ib = v ,
ic = edge [ 1 ]
)
if ( ia ! = ib && ib ! = ic && ia ! = ic ) let (
a = varr [ ia ] ,
b = varr [ ib ] ,
c = varr [ ic ]
)
if ( ! approx ( a , b ) && ! approx ( b , c ) && ! approx ( a , c ) ) let (
pt = line_closest_point ( [ a , c ] , b , SEGMENT )
)
if ( approx ( pt , b ) )
_vnf_validate_err ( "T_JUNCTION" , [ b ] )
] ) ,
issues = concat ( issues , t_juncts )
) t_juncts ? issues :
let (
isect_faces = ! check_isects ? [ ] : unique ( [
for ( i = [ 0 : 1 : len ( faces ) - 2 ] ) let (
f1 = faces [ i ] ,
poly1 = select ( varr , faces [ i ] ) ,
plane1 = plane3pt ( poly1 [ 0 ] , poly1 [ 1 ] , poly1 [ 2 ] ) ,
normal1 = [ plane1 [ 0 ] , plane1 [ 1 ] , plane1 [ 2 ] ]
)
for ( j = [ i + 1 : 1 : len ( faces ) - 1 ] ) let (
f2 = faces [ j ] ,
poly2 = select ( varr , f2 ) ,
val = poly2 * normal1
)
if ( min ( val ) < = plane1 [ 3 ] && max ( val ) >= plane1 [ 3 ] ) let (
plane2 = plane_from_polygon ( poly2 ) ,
normal2 = [ plane2 [ 0 ] , plane2 [ 1 ] , plane2 [ 2 ] ] ,
val = poly1 * normal2
)
if ( min ( val ) < = plane2 [ 3 ] && max ( val ) >= plane2 [ 3 ] ) let (
shared_edges = [
for ( edge1 = pair ( f1 , true ) , edge2 = pair ( f2 , true ) )
if ( edge1 = = [ edge2 [ 1 ] , edge2 [ 0 ] ] ) 1
]
)
if ( ! shared_edges ) let (
line = plane_intersection ( plane1 , plane2 )
)
if ( ! is_undef ( line ) ) let (
isects = polygon_line_intersection ( poly1 , line )
)
if ( ! is_undef ( isects ) )
for ( isect = isects )
if ( len ( isect ) > 1 ) let (
isects2 = polygon_line_intersection ( poly2 , isect , bounded = true )
)
if ( ! is_undef ( isects2 ) )
for ( seg = isects2 )
if ( seg [ 0 ] ! = seg [ 1 ] )
_vnf_validate_err ( "FACE_ISECT" , seg )
] ) ,
issues = concat ( issues , isect_faces )
) isect_faces ? issues :
let (
hole_edges = unique ( [
for ( i = idx ( uniq_edges ) )
if ( edgecnts [ 1 ] [ i ] < 2 )
if ( _pts_not_reported ( uniq_edges [ i ] , varr , t_juncts ) )
if ( _pts_not_reported ( uniq_edges [ i ] , varr , isect_faces ) )
_vnf_validate_err ( "HOLE_EDGE" , [ for ( i = uniq_edges [ i ] ) varr [ i ] ] )
] ) ,
issues = concat ( issues , hole_edges )
) hole_edges ? issues :
let (
nonplanars = unique ( [
for ( i = idx ( faces ) ) let (
face = faces [ i ] ,
area = face_areas [ i ] ,
faceverts = [ for ( k = face ) varr [ k ] ]
)
if ( is_num ( area ) && abs ( area ) > EPSILON )
if ( ! is_coplanar ( faceverts ) )
_vnf_validate_err ( "NONPLANAR" , faceverts )
] ) ,
issues = concat ( issues , nonplanars )
) issues ;
_vnf_validate_errs = [
[ "BIG_FACE" , "WARNING" , "cyan" , "Face has more than 3 vertices, and may confuse CGAL" ] ,
[ "NULL_FACE" , "WARNING" , "blue" , "Face has zero area." ] ,
[ "BAD_INDEX" , "ERROR" , "cyan" , "Invalid face vertex index." ] ,
[ "NONPLANAR" , "ERROR" , "yellow" , "Face vertices are not coplanar" ] ,
[ "DUP_FACE" , "ERROR" , "brown" , "Multiple instances of the same face." ] ,
[ "MULTCONN" , "ERROR" , "orange" , "Multiply Connected Geometry. Too many faces attached at Edge" ] ,
[ "REVERSAL" , "ERROR" , "violet" , "Faces Reverse Across Edge" ] ,
[ "T_JUNCTION" , "ERROR" , "magenta" , "Vertex is mid-edge on another Face" ] ,
[ "FACE_ISECT" , "ERROR" , "brown" , "Faces intersect" ] ,
[ "HOLE_EDGE" , "ERROR" , "red" , "Edge bounds Hole" ]
] ;
function _vnf_validate_err ( name , extra ) =
let (
info = [ for ( x = _vnf_validate_errs ) if ( x [ 0 ] = = name ) x ] [ 0 ]
) concat ( info , [ extra ] ) ;
function _pts_not_reported ( pts , varr , reports ) =
[
for ( i = pts , report = reports , pt = report [ 3 ] )
if ( varr [ i ] = = pt ) 1
] = = [ ] ;
function _edge_not_reported ( edge , varr , reports ) =
let (
edge = sort ( [ for ( i = edge ) varr [ i ] ] )
) [
for ( report = reports ) let (
pts = sort ( report [ 3 ] )
) if ( len ( pts ) = = 2 && edge = = pts ) 1
] = = [ ] ;
module vnf_validate ( vnf , size = 1 , show_warns = true , check_isects = false ) {
faults = vnf_validate (
vnf , show_warns = show_warns ,
check_isects = check_isects
) ;
for ( fault = faults ) {
err = fault [ 0 ] ;
typ = fault [ 1 ] ;
clr = fault [ 2 ] ;
msg = fault [ 3 ] ;
pts = fault [ 4 ] ;
echo ( str ( typ , " " , err , " (" , clr , "): " , msg , " at " , pts ) ) ;
color ( clr ) {
if ( is_vector ( pts [ 0 ] ) ) {
if ( len ( pts ) = = 2 ) {
stroke ( pts , width = size , closed = true , endcaps = "butt" , hull = false , $fn = 8 ) ;
} else if ( len ( pts ) > 2 ) {
stroke ( pts , width = size , closed = true , hull = false , $fn = 8 ) ;
polyhedron ( pts , [ [ for ( i = idx ( pts ) ) i ] ] ) ;
} else {
move_copies ( pts ) sphere ( d = size * 3 , $fn = 18 ) ;
}
}
}
}
color ( [ 0.5 , 0.5 , 0.5 , 0.67 ] ) vnf_polyhedron ( vnf ) ;
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap