2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: arrays.scad
// List and Array manipulation functions.
2021-01-05 09:20:01 +00:00
// Includes:
// include <BOSL2/std.scad>
2020-01-10 00:10:18 +00:00
//////////////////////////////////////////////////////////////////////
2019-04-20 00:02:17 +00:00
2021-03-02 06:44:00 +00:00
// Terminology:
// **List** = An ordered collection of zero or more items. ie: `["a", "b", "c"]`
// **Vector** = A list of numbers. ie: `[4, 5, 6]`
// **Array** = A nested list of lists, or list of lists of lists, or deeper. ie: `[[2,3], [4,5], [6,7]]`
// **Dimension** = The depth of nesting of lists in an array. A List is 1D. A list of lists is 2D. etc.
// **Set** = A list of unique items.
2020-01-10 00:14:12 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Query Operations
2019-04-20 00:02:17 +00:00
2020-08-30 11:12:36 +00:00
// Function: is_homogeneous()
2021-03-02 07:58:41 +00:00
// Alias: is_homogenous()
2020-08-30 11:12:36 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// bool = is_homogeneous(list, depth);
2021-03-02 06:44:00 +00:00
// Topics: List Handling, Type Checking
// See Also: is_vector(), is_matrix()
2020-08-30 11:12:36 +00:00
// Description:
2021-03-02 06:44:00 +00:00
// Returns true when the list has elements of same type up to the depth `depth`.
2020-08-30 11:12:36 +00:00
// Booleans and numbers are not distinguinshed as of distinct types.
// Arguments:
2021-01-25 07:26:39 +00:00
// l = the list to check
2020-08-30 11:18:53 +00:00
// depth = the lowest level the check is done
2020-08-30 11:12:36 +00:00
// Example:
2021-01-08 03:17:10 +00:00
// a = is_homogeneous([[1,["a"]], [2,["b"]]]); // Returns true
// b = is_homogeneous([[1,["a"]], [2,[true]]]); // Returns false
// c = is_homogeneous([[1,["a"]], [2,[true]]], 1); // Returns true
// d = is_homogeneous([[1,["a"]], [2,[true]]], 2); // Returns false
// e = is_homogeneous([[1,["a"]], [true,["b"]]]); // Returns true
2020-10-04 02:50:29 +00:00
function is_homogeneous ( l , depth = 10 ) =
2020-08-30 11:12:36 +00:00
! is_list ( l ) || l = = [ ] ? false :
let ( l0 = l [ 0 ] )
2021-07-02 10:30:13 +00:00
[ ] = = [ for ( i = [ 1 : 1 : len ( l ) - 1 ] ) if ( ! _same_type ( l [ i ] , l0 , depth + 1 ) ) 0 ] ;
2021-03-02 07:05:32 +00:00
function is_homogenous ( l , depth = 10 ) = is_homogeneous ( l , depth ) ;
2021-04-11 11:37:49 +00:00
2021-03-10 22:49:39 +00:00
2020-08-30 11:12:36 +00:00
function _same_type ( a , b , depth ) =
2020-10-04 02:50:29 +00:00
( depth = = 0 ) ||
( is_undef ( a ) && is_undef ( b ) ) ||
( is_bool ( a ) && is_bool ( b ) ) ||
( is_num ( a ) && is_num ( b ) ) ||
( is_string ( a ) && is_string ( b ) ) ||
( is_list ( a ) && is_list ( b ) && len ( a ) = = len ( b )
&& [ ] = = [ for ( i = idx ( a ) ) if ( ! _same_type ( a [ i ] , b [ i ] , depth - 1 ) ) 0 ] ) ;
2021-04-11 11:37:49 +00:00
2020-08-30 11:12:36 +00:00
2021-10-17 03:01:52 +00:00
// Function: min_length()
2021-10-16 03:13:30 +00:00
// Usage:
2021-10-17 03:01:52 +00:00
// llen = min_length(array);
2021-10-16 03:13:30 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: max_length()
2021-10-16 03:13:30 +00:00
// Description:
// Returns the length of the shortest sublist in a list of lists.
// Arguments:
// array = A list of lists.
// Example:
2021-10-17 03:01:52 +00:00
// slen = min_length([[3,4,5],[6,7,8,9]]); // Returns: 3
function min_length ( array ) =
2021-10-16 03:13:30 +00:00
assert ( is_list ( array ) , "Invalid input." )
min ( [ for ( v = array ) len ( v ) ] ) ;
2021-10-17 03:01:52 +00:00
// Function: max_length()
2021-10-16 03:13:30 +00:00
// Usage:
2021-10-17 03:01:52 +00:00
// llen = max_length(array);
2021-10-16 03:13:30 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: min_length()
2021-10-16 03:13:30 +00:00
// Description:
// Returns the length of the longest sublist in a list of lists.
// Arguments:
// array = A list of lists.
// Example:
2021-10-17 03:01:52 +00:00
// llen = max_length([[3,4,5],[6,7,8,9]]); // Returns: 4
function max_length ( array ) =
2021-10-16 03:13:30 +00:00
assert ( is_list ( array ) , "Invalid input." )
max ( [ for ( v = array ) len ( v ) ] ) ;
// Function: in_list()
// Usage:
// bool = in_list(val, list, [idx]);
// Topics: List Handling
// Description:
// Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
// Arguments:
// val = The simple value to search for.
// list = The list to search.
// idx = If given, searches the given columns for matches for `val`.
// Example:
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
function in_list ( val , list , idx ) =
assert ( is_list ( list ) && ( is_undef ( idx ) || is_finite ( idx ) ) ,
"Invalid input." )
let ( s = search ( [ val ] , list , num_returns_per_match = 1 , index_col_num = idx ) [ 0 ] )
s = = [ ] || s = = [ [ ] ] ? false
: is_undef ( idx ) ? val = = list [ s ]
: val = = list [ s ] [ idx ] ;
2021-10-17 03:01:52 +00:00
// Function: add_scalar()
// Usage:
// v = add_scalar(v, s);
2021-10-16 03:13:30 +00:00
// Topics: List Handling
// Description:
2021-10-17 03:01:52 +00:00
// Given a list and a scalar, returns the list with the scalar added to each item in it.
// If given a list of arrays, recursively adds the scalar to the each array.
2021-10-16 03:13:30 +00:00
// Arguments:
2021-10-17 03:01:52 +00:00
// v = The initial array.
// s = A scalar value to add to every item in the array.
// Example:
// a = add_scalar([1,2,3],3); // Returns: [4,5,6]
// b = add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar ( v , s ) =
is_finite ( s ) ? [ for ( x = v ) is_list ( x ) ? add_scalar ( x , s ) : is_finite ( x ) ? x + s : x ] : v ;
2021-10-16 03:13:30 +00:00
2021-10-17 03:01:52 +00:00
// Section: Operations using approx()
// Function: deduplicate()
2021-10-16 03:13:30 +00:00
// Usage:
2021-10-17 03:01:52 +00:00
// list = deduplicate(list, [close], [eps]);
2021-10-16 03:13:30 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: deduplicate_indexed()
2021-10-16 03:13:30 +00:00
// Description:
2021-10-17 03:01:52 +00:00
// Removes consecutive duplicate items in a list.
// When `eps` is zero, the comparison between consecutive items is exact.
// Otherwise, when all list items and subitems are numbers, the comparison is within the tolerance `eps`.
// This is different from `unique()` in that the list is *not* sorted.
// Arguments:
// list = The list to deduplicate.
// closed = If true, drops trailing items if they match the first list item.
// eps = The maximum tolerance between items.
2021-10-16 03:13:30 +00:00
// Example:
2021-10-17 03:01:52 +00:00
// a = deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8]
// b = deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3]
// c = deduplicate("Hello"); // Returns: "Helo"
// d = deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]]
// e = deduplicate([[7,undef],[7,undef],[1,4],[1,4+1e-12]],eps=0); // Returns: [[7,undef],[1,4],[1,4+1e-12]]
function deduplicate ( list , closed = false , eps = EPSILON ) =
2021-10-16 03:13:30 +00:00
assert ( is_list ( list ) || is_string ( list ) )
2021-10-17 03:01:52 +00:00
let (
l = len ( list ) ,
end = l - ( closed ? 0 : 1 )
)
is_string ( list ) ? str_join ( [ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || list [ i ] ! = list [ ( i + 1 ) % l ] ) list [ i ] ] ) :
eps = = 0 ? [ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || list [ i ] ! = list [ ( i + 1 ) % l ] ) list [ i ] ] :
[ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || ! approx ( list [ i ] , list [ ( i + 1 ) % l ] , eps ) ) list [ i ] ] ;
2021-10-16 03:13:30 +00:00
2021-10-17 03:01:52 +00:00
// Function: deduplicate_indexed()
2021-10-16 03:13:30 +00:00
// Usage:
2021-10-17 03:01:52 +00:00
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
2021-10-16 03:13:30 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: deduplicate()
2021-10-16 03:13:30 +00:00
// Description:
2021-10-17 03:01:52 +00:00
// Given a list, and indices into it, removes consecutive indices that
// index to the same values in the list.
// Arguments:
// list = The list that the indices index into.
// indices = The list of indices to deduplicate.
// closed = If true, drops trailing indices if what they index matches what the first index indexes.
// eps = The maximum difference to allow between numbers or vectors.
2021-10-16 03:13:30 +00:00
// Example:
2021-10-17 03:01:52 +00:00
// a = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1]
// b = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0]
// c = deduplicate_indexed([[7,undef],[7,undef],[1,4],[1,4],[1,4+1e-12]],eps=0); // Returns: [0,2,4]
function deduplicate_indexed ( list , indices , closed = false , eps = EPSILON ) =
assert ( is_list ( list ) || is_string ( list ) , "Improper list or string." )
indices = = [ ] ? [ ] :
assert ( is_vector ( indices ) , "Indices must be a list of numbers." )
let (
ll = len ( list ) ,
l = len ( indices ) ,
end = l - ( closed ? 0 : 1 )
) [
for ( i = [ 0 : 1 : l - 1 ] ) let (
idx1 = indices [ i ] ,
idx2 = indices [ ( i + 1 ) % l ] ,
a = assert ( idx1 >= 0 , "Bad index." )
assert ( idx1 < len ( list ) , "Bad index in indices." )
list [ idx1 ] ,
b = assert ( idx2 >= 0 , "Bad index." )
assert ( idx2 < len ( list ) , "Bad index in indices." )
list [ idx2 ] ,
eq = ( a = = b ) ? true :
( a * 0 ! = b * 0 ) || ( eps = = 0 ) ? false :
is_num ( a ) || is_vector ( a ) ? approx ( a , b , eps = eps )
: false
)
if ( i = = end || ! eq ) indices [ i ]
] ;
2021-10-16 03:13:30 +00:00
2021-10-17 03:01:52 +00:00
// Function: find_approx()
2021-10-16 03:13:30 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: in_list()
// Usage:
// idx = find_approx(val, list, [start=], [eps=]);
// indices = find_approx(val, list, all=true, [start=], [eps=]);
2021-10-16 03:13:30 +00:00
// Description:
2021-10-17 03:01:52 +00:00
// Finds the first item in `list` that matches `val`, returning the index.
2021-10-16 03:13:30 +00:00
// Arguments:
2021-10-17 03:01:52 +00:00
// val = The value to search for. If given a function literal of signature `function (x)`, uses that function to check list items. Returns true for a match.
// list = The list to search through.
// ---
// start = The index to start searching from.
// all = If true, returns a list of all matching item indices.
// eps = The maximum allowed floating point rounding error for numeric comparisons.
function find_approx ( val , list , start = 0 , all = false , eps = EPSILON ) =
all ? [ for ( i = [ start : 1 : len ( list ) - 1 ] ) if ( approx ( val , list [ i ] , eps = eps ) ) i ]
: __find_approx ( val , list , eps = eps , i = start ) ;
2021-10-16 03:13:30 +00:00
2021-10-17 03:01:52 +00:00
function __find_approx ( val , list , eps , i = 0 ) =
i >= len ( list ) ? undef :
approx ( val , list [ i ] , eps = eps )
? i
: __find_approx ( val , list , eps = eps , i = i + 1 ) ;
2021-10-16 03:13:30 +00:00
// Section: List Indexing
2019-04-20 00:02:17 +00:00
// Function: select()
2021-03-30 07:46:59 +00:00
// Topics: List Handling
2019-04-20 00:02:17 +00:00
// Description:
// Returns a portion of a list, wrapping around past the beginning, if end<start.
// The first item is index 0. Negative indexes are counted back from the end.
// The last item is -1. If only the `start` index is given, returns just the value
2021-06-21 22:24:54 +00:00
// at that position when `start` is a number or the selected list of entries when `start` is
// a list of indices or a range.
2019-04-20 00:02:17 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// item = select(list, start);
2021-07-02 10:30:13 +00:00
// item = select(list, [s:d:e]);
// item = select(list, [i0,i1...,ik]);
2021-06-27 03:59:33 +00:00
// list = select(list, start, end);
2019-04-20 00:02:17 +00:00
// Arguments:
// list = The list to get the portion of.
2021-06-22 00:13:40 +00:00
// start = Either the index of the first item or an index range or a list of indices.
// end = The index of the last item when `start` is a number. When `start` is a list or a range, `end` should not be given.
2021-10-16 02:39:10 +00:00
// See Also: slice(), columns(), last()
2019-04-20 00:02:17 +00:00
// Example:
// l = [3,4,5,6,7,8,9];
2021-01-08 03:17:10 +00:00
// a = select(l, 5, 6); // Returns [8,9]
// b = select(l, 5, 8); // Returns [8,9,3,4]
// c = select(l, 5, 2); // Returns [8,9,3,4,5]
// d = select(l, -3, -1); // Returns [7,8,9]
// e = select(l, 3, 3); // Returns [6]
// f = select(l, 4); // Returns 7
// g = select(l, -2); // Returns 8
// h = select(l, [1:3]); // Returns [4,5,6]
2021-06-21 22:24:54 +00:00
// i = select(l, [3,1]); // Returns [6,4]
2021-01-25 07:26:39 +00:00
function select ( list , start , end ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid list." )
2020-05-30 02:04:34 +00:00
let ( l = len ( list ) )
2021-01-25 07:26:39 +00:00
l = = 0
? [ ]
: end = = undef
? is_num ( start )
? list [ ( start % l + l ) % l ]
: assert ( is_list ( start ) || is_range ( start ) , "Invalid start parameter" )
2020-07-24 21:54:34 +00:00
[ for ( i = start ) list [ ( i % l + l ) % l ] ]
2021-06-22 00:13:40 +00:00
: assert ( is_finite ( start ) , "When `end` is given, `start` parameter should be a number." )
2020-07-30 04:58:12 +00:00
assert ( is_finite ( end ) , "Invalid end parameter." )
2020-07-24 21:54:34 +00:00
let ( s = ( start % l + l ) % l , e = ( end % l + l ) % l )
2021-01-25 07:26:39 +00:00
( s < = e )
? [ for ( i = [ s : 1 : e ] ) list [ i ] ]
: concat ( [ for ( i = [ s : 1 : l - 1 ] ) list [ i ] ] , [ for ( i = [ 0 : 1 : e ] ) list [ i ] ] ) ;
2020-07-24 21:54:34 +00:00
2021-03-02 06:44:00 +00:00
// Function: slice()
2021-03-30 07:46:59 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// list = slice(list, s, e);
2021-03-02 06:44:00 +00:00
// Description:
2021-03-30 07:46:59 +00:00
// Returns a slice of a list, from the first position `s` up to and including the last position `e`.
// The first item in the list is at index 0. Negative indexes are counted back from the end.
// An index of -1 refers to the last list item.
2021-03-02 06:44:00 +00:00
// Arguments:
2021-03-30 07:46:59 +00:00
// list = The list to get the slice of.
// s = The index of the first item to return.
// e = The index of the last item to return.
2021-10-16 02:39:10 +00:00
// See Also: select(), columns(), last()
2021-03-02 06:44:00 +00:00
// Example:
2021-03-30 07:46:59 +00:00
// a = slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7,8]
2021-03-02 06:44:00 +00:00
// b = slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9]
2021-03-30 07:46:59 +00:00
// c = slice([3,4,5,6,7,8,9], 1, 1); // Returns [4]
// d = slice([3,4,5,6,7,8,9], 5); // Returns [8,9]
2021-03-02 06:44:00 +00:00
// e = slice([3,4,5,6,7,8,9], 2, -2); // Returns [5,6,7,8]
2021-03-30 07:46:59 +00:00
// f = slice([3,4,5,6,7,8,9], 4, 3; // Returns []
function slice ( list , s = 0 , e = - 1 ) =
assert ( is_list ( list ) )
assert ( is_int ( s ) )
assert ( is_int ( e ) )
! list ? [ ] :
let (
l = len ( list ) ,
s = constrain ( s + ( s < 0 ? l : 0 ) , 0 , l - 1 ) ,
e = constrain ( e + ( e < 0 ? l : 0 ) , 0 , l - 1 )
)
[ if ( e >= s ) for ( i = [ s : 1 : e ] ) list [ i ] ] ;
2021-03-02 06:44:00 +00:00
2020-12-03 20:21:05 +00:00
// Function: last()
2021-01-08 03:17:10 +00:00
// Usage:
// item = last(list);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
2021-10-16 02:39:10 +00:00
// See Also: select(), slice(), columns()
2020-12-03 20:21:05 +00:00
// Description:
// Returns the last element of a list, or undef if empty.
// Arguments:
// list = The list to get the last element of.
// Example:
// l = [3,4,5,6,7,8,9];
2021-01-08 03:17:10 +00:00
// x = last(l); // Returns 9.
2021-01-25 07:26:39 +00:00
function last ( list ) =
list [ len ( list ) - 1 ] ;
2020-12-03 20:21:05 +00:00
2021-03-25 07:23:36 +00:00
// Function: list_head()
2021-01-08 03:17:10 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// list = list_head(list, [to]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
2021-03-25 07:23:36 +00:00
// See Also: select(), slice(), list_tail(), last()
2020-12-13 02:15:33 +00:00
// Description:
2021-03-25 07:23:36 +00:00
// Returns the head of the given list, from the first item up until the `to` index, inclusive.
// If the `to` index is negative, then the length of the list is added to it, such that
// `-1` is the last list item. `-2` is the second from last. `-3` is third from last, etc.
// If the list is shorter than the given index, then the full list is returned.
// Arguments:
// list = The list to get the head of.
// to = The last index to include. If negative, adds the list length to it. ie: -1 is the last list item.
2021-09-16 23:33:55 +00:00
// Example:
// hlist1 = list_head(["foo", "bar", "baz"]); // Returns: ["foo", "bar"]
// hlist2 = list_head(["foo", "bar", "baz"], -3); // Returns: ["foo"]
// hlist3 = list_head(["foo", "bar", "baz"], 2); // Returns: ["foo","bar"]
// hlist4 = list_head(["foo", "bar", "baz"], -5); // Returns: []
// hlist5 = list_head(["foo", "bar", "baz"], 5); // Returns: ["foo","bar","baz"]
2021-03-25 07:23:36 +00:00
function list_head ( list , to = - 2 ) =
assert ( is_list ( list ) )
assert ( is_finite ( to ) )
to < 0 ? [ for ( i = [ 0 : 1 : len ( list ) + to ] ) list [ i ] ] :
to < len ( list ) ? [ for ( i = [ 0 : 1 : to ] ) list [ i ] ] :
list ;
// Function: list_tail()
// Usage:
2021-06-27 03:59:33 +00:00
// list = list_tail(list, [from]);
2021-03-25 07:23:36 +00:00
// Topics: List Handling
// See Also: select(), slice(), list_tail(), last()
// Description:
// Returns the tail of the given list, from the `from` index up until the end of the list, inclusive.
// If the `from` index is negative, then the length of the list is added to it, such that
// `-1` is the last list item. `-2` is the second from last. `-3` is third from last, etc.
// If you want it to return the last three items of the list, use `from=-3`.
// Arguments:
// list = The list to get the tail of.
// from = The first index to include. If negative, adds the list length to it. ie: -1 is the last list item.
2021-09-16 23:33:55 +00:00
// Example:
// tlist1 = list_tail(["foo", "bar", "baz"]); // Returns: ["bar", "baz"]
// tlist2 = list_tail(["foo", "bar", "baz"], -1); // Returns: ["baz"]
// tlist3 = list_tail(["foo", "bar", "baz"], 2); // Returns: ["baz"]
// tlist4 = list_tail(["foo", "bar", "baz"], -5); // Returns: ["foo","bar","baz"]
// tlist5 = list_tail(["foo", "bar", "baz"], 5); // Returns: []
2021-03-25 07:23:36 +00:00
function list_tail ( list , from = 1 ) =
2020-12-13 02:15:33 +00:00
assert ( is_list ( list ) )
2021-03-25 07:23:36 +00:00
assert ( is_finite ( from ) )
from >= 0 ? [ for ( i = [ from : 1 : len ( list ) - 1 ] ) list [ i ] ] :
let ( from = from + len ( list ) )
from >= 0 ? [ for ( i = [ from : 1 : len ( list ) - 1 ] ) list [ i ] ] :
list ;
2020-12-13 02:15:33 +00:00
2021-01-25 07:26:39 +00:00
2021-10-16 03:13:30 +00:00
// Function: bselect()
// Usage:
// array = bselect(array, index);
// Topics: List Handling
// See Also: list_bset()
// Description:
// Returns the items in `array` whose matching element in `index` is true.
// Arguments:
// array = Initial list to extract items from.
// index = List of booleans.
// Example:
// a = bselect([3,4,5,6,7], [false,true,true,false,true]); // Returns: [4,5,7]
function bselect ( array , index ) =
assert ( is_list ( array ) || is_string ( array ) , "Improper array." )
assert ( is_list ( index ) && len ( index ) >= len ( array ) , "Improper index list." )
is_string ( array ) ? str_join ( bselect ( [ for ( x = array ) x ] , index ) ) :
[ for ( i = [ 0 : len ( array ) - 1 ] ) if ( index [ i ] ) array [ i ] ] ;
// Section: List Construction
2020-03-05 04:22:39 +00:00
// Function: repeat()
2020-01-10 00:10:18 +00:00
// Usage:
2021-01-08 03:17:10 +00:00
// list = repeat(val, n);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
2021-04-08 03:57:45 +00:00
// See Also: count(), lerpn()
2020-01-10 00:10:18 +00:00
// Description:
2020-09-29 02:12:07 +00:00
// Generates a list or array of `n` copies of the given value `val`.
2020-01-10 00:10:18 +00:00
// If the count `n` is given as a list of counts, then this creates a
// multi-dimensional array, filled with `val`.
// Arguments:
// val = The value to repeat to make the list or array.
// n = The number of copies to make of `val`.
// Example:
2021-01-08 03:17:10 +00:00
// a = repeat(1, 4); // Returns [1,1,1,1]
// b = repeat(8, [2,3]); // Returns [[8,8,8], [8,8,8]]
// c = repeat(0, [2,2,3]); // Returns [[[0,0,0],[0,0,0]], [[0,0,0],[0,0,0]]]
// d = repeat([1,2,3],3); // Returns [[1,2,3], [1,2,3], [1,2,3]]
2020-03-05 04:22:39 +00:00
function repeat ( val , n , i = 0 ) =
2020-05-30 02:04:34 +00:00
is_num ( n ) ? [ for ( j = [ 1 : 1 : n ] ) val ] :
2020-07-24 21:54:34 +00:00
assert ( is_list ( n ) , "Invalid count number." )
2020-05-30 02:04:34 +00:00
( i >= len ( n ) ) ? val :
[ for ( j = [ 1 : 1 : n [ i ] ] ) repeat ( val , n , i + 1 ) ] ;
2020-01-10 00:10:18 +00:00
2021-01-25 07:26:39 +00:00
2021-04-08 03:57:45 +00:00
// Function: count()
2019-04-20 00:02:17 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// list = count(n, [s], [step], [reverse]);
2019-04-20 00:02:17 +00:00
// Description:
2021-04-08 03:57:45 +00:00
// Creates a list of `n` numbers, starting at `s`, incrementing by `step` each time.
2021-10-14 22:29:52 +00:00
// You can also pass a list for n and then the length of the input list is used.
2019-04-20 00:02:17 +00:00
// Arguments:
2021-10-14 22:29:52 +00:00
// n = The length of the list of numbers to create, or a list to match the length of
2021-04-08 03:57:45 +00:00
// s = The starting value of the list of numbers.
// step = The amount to increment successive numbers in the list.
2021-04-13 00:15:01 +00:00
// reverse = Reverse the list. Default: false.
2019-04-20 00:02:17 +00:00
// Example:
2021-04-08 03:57:45 +00:00
// nl1 = count(5); // Returns: [0,1,2,3,4]
// nl2 = count(5,3); // Returns: [3,4,5,6,7]
// nl3 = count(4,3,2); // Returns: [3,5,7,9]
2021-04-13 00:15:01 +00:00
// nl4 = count(5,reverse=true); // Returns: [4,3,2,1,0]
// nl5 = count(5,3,reverse=true); // Returns: [7,6,5,4,3]
2021-10-14 22:29:52 +00:00
function count ( n , s = 0 , step = 1 , reverse = false ) = let ( n = is_list ( n ) ? len ( n ) : n )
reverse ? [ for ( i = [ n - 1 : - 1 : 0 ] ) s + i * step ]
2021-04-13 00:15:01 +00:00
: [ for ( i = [ 0 : 1 : n - 1 ] ) s + i * step ] ;
2021-04-08 03:57:45 +00:00
2021-03-30 07:46:59 +00:00
2019-04-20 00:02:17 +00:00
2021-10-16 03:13:30 +00:00
// Function: list_bset()
// Usage:
// arr = list_bset(indexset, valuelist, [dflt]);
// Topics: List Handling
// See Also: bselect()
// Description:
// Opposite of `bselect()`. Returns a list the same length as `indexlist`, where each item will
// either be 0 if the corresponding item in `indexset` is false, or the next sequential value
// from `valuelist` if the item is true. The number of `true` values in `indexset` must be equal
// to the length of `valuelist`.
// Arguments:
// indexset = A list of boolean values.
// valuelist = The list of values to set into the returned list.
// dflt = Default value to store when the indexset item is false.
// Example:
// a = list_bset([false,true,false,true,false], [3,4]); // Returns: [0,3,0,4,0]
// b = list_bset([false,true,false,true,false], [3,4], dflt=1); // Returns: [1,3,1,4,1]
function list_bset ( indexset , valuelist , dflt = 0 ) =
assert ( is_list ( indexset ) , "The index set is not a list." )
assert ( is_list ( valuelist ) , "The `valuelist` is not a list." )
let ( trueind = search ( [ true ] , indexset , 0 ) [ 0 ] )
assert ( ! ( len ( trueind ) > len ( valuelist ) ) , str ( "List `valuelist` too short; its length should be " , len ( trueind ) ) )
assert ( ! ( len ( trueind ) < len ( valuelist ) ) , str ( "List `valuelist` too long; its length should be " , len ( trueind ) ) )
concat (
list_set ( [ ] , trueind , valuelist , dflt = dflt ) , // Fill in all of the values
repeat ( dflt , len ( indexset ) - max ( trueind ) - 1 ) // Add trailing values so length matches indexset
) ;
2021-10-17 03:01:52 +00:00
// Function: list()
// Topics: List Handling, Type Conversion
// Usage:
// list = list(l)
// Description:
// Expands a range into a full list. If given a list, returns it verbatim.
// If given a string, explodes it into a list of single letters.
// Arguments:
// l = The value to expand.
// See Also: scalar_vec3(), force_list()
// Example:
// l1 = list([3:2:9]); // Returns: [3,5,7,9]
// l2 = list([3,4,5]); // Returns: [3,4,5]
// l3 = list("Foo"); // Returns: ["F","o","o"]
// l4 = list(23); // Returns: [23]
function list ( l ) = is_list ( l ) ? l : [ for ( x = l ) x ] ;
// Function: force_list()
// Usage:
// list = force_list(value, [n], [fill]);
// Topics: List Handling
// See Also: scalar_vec3()
// Description:
// Coerces non-list values into a list. Makes it easy to treat a scalar input
// consistently as a singleton list, as well as list inputs.
// - If `value` is a list, then that list is returned verbatim.
// - If `value` is not a list, and `fill` is not given, then a list of `n` copies of `value` will be returned.
// - If `value` is not a list, and `fill` is given, then a list `n` items long will be returned where `value` will be the first item, and the rest will contain the value of `fill`.
// Arguments:
// value = The value or list to coerce into a list.
// n = The number of items in the coerced list. Default: 1
// fill = The value to pad the coerced list with, after the firt value. Default: undef (pad with copies of `value`)
// Example:
// x = force_list([3,4,5]); // Returns: [3,4,5]
// y = force_list(5); // Returns: [5]
// z = force_list(7, n=3); // Returns: [7,7,7]
// w = force_list(4, n=3, fill=1); // Returns: [4,1,1]
function force_list ( value , n = 1 , fill ) =
is_list ( value ) ? value :
is_undef ( fill ) ? [ for ( i = [ 1 : 1 : n ] ) value ] : [ value , for ( i = [ 2 : 1 : n ] ) fill ] ;
2021-10-16 03:13:30 +00:00
// Section: List Modification
2020-01-10 00:10:18 +00:00
2019-04-20 00:02:17 +00:00
// Function: reverse()
2021-01-08 03:17:10 +00:00
// Usage:
// rlist = reverse(list);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: select(), list_rotate()
2021-01-08 03:17:10 +00:00
// Description:
// Reverses a list/array or string.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-09-29 02:12:07 +00:00
// x = The list or string to reverse.
2019-04-20 00:02:17 +00:00
// Example:
// reverse([3,4,5,6]); // Returns [6,5,4,3]
2020-09-29 02:12:07 +00:00
function reverse ( x ) =
2020-12-19 16:48:05 +00:00
assert ( is_list ( x ) || is_string ( x ) , str ( "Input to reverse must be a list or string. Got: " , x ) )
2020-09-29 02:12:07 +00:00
let ( elems = [ for ( i = [ len ( x ) - 1 : - 1 : 0 ] ) x [ i ] ] )
is_string ( x ) ? str_join ( elems ) : elems ;
2019-10-30 05:42:41 +00:00
// Function: list_rotate()
// Usage:
2021-06-27 03:59:33 +00:00
// rlist = list_rotate(list, [n]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: select(), reverse()
2019-10-30 05:42:41 +00:00
// Description:
// Rotates the contents of a list by `n` positions left.
// If `n` is negative, then the rotation is `abs(n)` positions to the right.
2020-09-29 02:12:07 +00:00
// If `list` is a string, then a string is returned with the characters rotates within the string.
2019-10-30 05:42:41 +00:00
// Arguments:
// list = The list to rotate.
// n = The number of positions to rotate by. If negative, rotated to the right. Positive rotates to the left. Default: 1
// Example:
// l1 = list_rotate([1,2,3,4,5],-2); // Returns: [4,5,1,2,3]
// l2 = list_rotate([1,2,3,4,5],-1); // Returns: [5,1,2,3,4]
// l3 = list_rotate([1,2,3,4,5],0); // Returns: [1,2,3,4,5]
// l4 = list_rotate([1,2,3,4,5],1); // Returns: [2,3,4,5,1]
// l5 = list_rotate([1,2,3,4,5],2); // Returns: [3,4,5,1,2]
// l6 = list_rotate([1,2,3,4,5],3); // Returns: [4,5,1,2,3]
// l7 = list_rotate([1,2,3,4,5],4); // Returns: [5,1,2,3,4]
// l8 = list_rotate([1,2,3,4,5],5); // Returns: [1,2,3,4,5]
// l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1]
function list_rotate ( list , n = 1 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid list or string." )
2021-04-11 11:37:49 +00:00
assert ( is_int ( n ) , "The rotation number should be integer" )
2021-03-20 08:37:46 +00:00
let (
ll = len ( list ) ,
n = ( ( n % ll ) + ll ) % ll ,
elems = [
for ( i = [ n : 1 : ll - 1 ] ) list [ i ] ,
for ( i = [ 0 : 1 : n - 1 ] ) list [ i ]
]
)
2020-09-29 02:12:07 +00:00
is_string ( list ) ? str_join ( elems ) : elems ;
2019-04-20 00:02:17 +00:00
2021-10-17 03:01:52 +00:00
2019-04-20 00:02:17 +00:00
2021-10-17 03:01:52 +00:00
// Function: shuffle()
2019-06-17 06:54:44 +00:00
// Usage:
2021-10-17 03:01:52 +00:00
// shuffled = shuffle(list, [seed]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: sort(), sortidx(), unique(), unique_count()
2019-06-17 06:54:44 +00:00
// Description:
2021-10-17 03:01:52 +00:00
// Shuffles the input list into random order.
// If given a string, shuffles the characters within the string.
// If you give a numeric seed value then the permutation
// will be repeatable.
2019-06-17 06:54:44 +00:00
// Arguments:
2021-10-17 03:01:52 +00:00
// list = The list to shuffle.
// seed = Optional random number seed for the shuffling.
2021-09-16 23:33:55 +00:00
// Example:
2021-10-17 03:01:52 +00:00
// // Spades Hearts Diamonds Clubs
// suits = ["\u2660", "\u2661", "\u2662", "\u2663"];
// ranks = [2,3,4,5,6,7,8,9,10,"J","Q","K","A"];
// cards = [for (suit=suits, rank=ranks) str(rank,suit)];
// deck = shuffle(cards);
function shuffle ( list , seed ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
is_string ( list ) ? str_join ( shuffle ( [ for ( x = list ) x ] , seed = seed ) ) :
len ( list ) < = 1 ? list :
2020-09-29 02:12:07 +00:00
let (
2021-10-17 03:01:52 +00:00
rval = is_num ( seed ) ? rands ( 0 , 1 , len ( list ) , seed_value = seed )
: rands ( 0 , 1 , len ( list ) ) ,
left = [ for ( i = [ 0 : len ( list ) - 1 ] ) if ( rval [ i ] < 0.5 ) list [ i ] ] ,
right = [ for ( i = [ 0 : len ( list ) - 1 ] ) if ( rval [ i ] >= 0.5 ) list [ i ] ]
)
concat ( shuffle ( left ) , shuffle ( right ) ) ;
2020-07-28 20:51:45 +00:00
2020-03-24 21:51:37 +00:00
2020-07-28 20:51:45 +00:00
2019-12-07 00:27:49 +00:00
// Function: repeat_entries()
// Usage:
2021-06-27 03:59:33 +00:00
// newlist = repeat_entries(list, N, [exact]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: repeat()
2019-12-07 00:27:49 +00:00
// Description:
// Takes a list as input and duplicates some of its entries to produce a list
// with length `N`. If the requested `N` is not a multiple of the list length then
// the entries will be duplicated as uniformly as possible. You can also set `N` to a vector,
// in which case len(N) must equal len(list) and the output repeats the ith entry N[i] times.
// In either case, the result will be a list of length `N`. The `exact` option requires
// that the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output list may have a different number of
// entries due to rounding.
2020-07-27 22:15:34 +00:00
// .
2019-12-07 00:27:49 +00:00
// When applied to a path the output path is the same geometrical shape but has some vertices
// repeated. This can be useful when you need to align paths with a different number of points.
// (See also subdivide_path for a different way to do that.)
// Arguments:
// list = list whose entries will be repeated
// N = scalar total number of points desired or vector requesting N[i] copies of vertex i.
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform points that may not match the number of points requested. Default: True
2021-09-16 23:33:55 +00:00
// Example:
2020-01-24 01:01:41 +00:00
// list = [0,1,2,3];
2021-01-08 03:17:10 +00:00
// a = repeat_entries(list, 6); // Returns: [0,0,1,2,2,3]
// b = repeat_entries(list, 6, exact=false); // Returns: [0,0,1,1,2,2,3,3]
// c = repeat_entries(list, [1,1,2,1], exact=false); // Returns: [0,1,2,2,3]
function repeat_entries ( list , N , exact = true ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) && len ( list ) > 0 , "The list cannot be void." )
assert ( ( is_finite ( N ) && N > 0 ) || is_vector ( N , len ( list ) ) ,
"Parameter N must be a number greater than zero or vector with the same length of `list`" )
2020-05-30 02:04:34 +00:00
let (
length = len ( list ) ,
2020-07-24 21:54:34 +00:00
reps_guess = is_list ( N ) ? N : repeat ( N / length , length ) ,
reps = exact ?
_sum_preserving_round ( reps_guess )
: [ for ( val = reps_guess ) round ( val ) ]
2020-05-30 02:04:34 +00:00
)
[ for ( i = [ 0 : length - 1 ] ) each repeat ( list [ i ] , reps [ i ] ) ] ;
2020-07-29 05:52:12 +00:00
2019-06-12 02:26:06 +00:00
// Function: list_set()
// Usage:
2021-06-27 03:59:33 +00:00
// list = list_set(list, indices, values, [dflt], [minlen]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_insert(), list_remove(), list_remove_values()
2019-06-12 02:26:06 +00:00
// Description:
// Takes the input list and returns a new list such that `list[indices[i]] = values[i]` for all of
2020-07-24 21:54:34 +00:00
// the (index,value) pairs supplied and unchanged for other indices. If you supply `indices` that are
// beyond the length of the list then the list is extended and filled in with the `dflt` value.
// If you set `minlen` then the list is lengthed, if necessary, by padding with `dflt` to that length.
// Repetitions in `indices` are not allowed. The lists `indices` and `values` must have the same length.
// If `indices` is given as a scalar, then that index of the given `list` will be set to the scalar value of `values`.
2019-06-12 02:26:06 +00:00
// Arguments:
2019-06-28 22:26:05 +00:00
// list = List to set items in. Default: []
2019-06-12 02:26:06 +00:00
// indices = List of indices into `list` to set.
// values = List of values to set.
// dflt = Default value to store in sparse skipped indices.
// minlen = Minimum length to expand list to.
2021-09-16 23:33:55 +00:00
// Example:
2021-01-08 03:17:10 +00:00
// a = list_set([2,3,4,5], 2, 21); // Returns: [2,3,21,5]
// b = list_set([2,3,4,5], [1,3], [81,47]); // Returns: [2,81,4,47]
2020-07-24 21:54:34 +00:00
function list_set ( list = [ ] , indices , values , dflt = 0 , minlen = 0 ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( list ) )
2020-05-30 02:04:34 +00:00
! is_list ( indices ) ? (
2021-01-25 07:26:39 +00:00
( is_finite ( indices ) && indices < len ( list ) )
? concat ( [ for ( i = idx ( list ) ) i = = indices ? values : list [ i ] ] , repeat ( dflt , minlen - len ( list ) ) )
: list_set ( list , [ indices ] , [ values ] , dflt )
) :
indices = = [ ] && values = = [ ]
? concat ( list , repeat ( dflt , minlen - len ( list ) ) )
: assert ( is_vector ( indices ) && is_list ( values ) && len ( values ) = = len ( indices ) ,
2020-07-24 21:54:34 +00:00
"Index list and value list must have the same length" )
let ( midx = max ( len ( list ) - 1 , max ( indices ) ) )
2021-01-25 07:26:39 +00:00
[
for ( i = [ 0 : 1 : midx ] ) let (
j = search ( i , indices , 0 ) ,
k = j [ 0 ]
)
2020-12-31 14:32:47 +00:00
assert ( len ( j ) < 2 , "Repeated indices are not allowed." )
2021-01-25 07:26:39 +00:00
k ! = undef
? values [ k ]
: i < len ( list ) ? list [ i ] : dflt ,
each repeat ( dflt , minlen - max ( len ( list ) , max ( indices ) ) )
2020-07-24 21:54:34 +00:00
] ;
2019-06-12 02:26:06 +00:00
2020-07-29 05:52:12 +00:00
2020-01-10 00:10:18 +00:00
// Function: list_insert()
// Usage:
2021-01-08 03:17:10 +00:00
// list = list_insert(list, indices, values);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_set(), list_remove(), list_remove_values()
2020-01-10 00:10:18 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// Insert `values` into `list` before position `indices`.
2020-01-10 00:10:18 +00:00
// Example:
2021-01-08 03:17:10 +00:00
// a = list_insert([3,6,9,12],1,5); // Returns [3,5,6,9,12]
// b = list_insert([3,6,9,12],[1,3],[5,11]); // Returns [3,5,6,9,11,12]
2020-12-31 14:32:47 +00:00
function list_insert ( list , indices , values ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( list ) )
2021-01-25 07:26:39 +00:00
! is_list ( indices ) ?
2020-07-24 21:54:34 +00:00
assert ( is_finite ( indices ) && is_finite ( values ) , "Invalid indices/values." )
assert ( indices < = len ( list ) , "Indices must be <= len(list) ." )
2020-12-31 14:32:47 +00:00
[
for ( i = idx ( list ) ) each ( i = = indices ? [ values , list [ i ] ] : [ list [ i ] ] ) ,
if ( indices = = len ( list ) ) values
2021-01-25 07:26:39 +00:00
] :
indices = = [ ] && values = = [ ] ? list :
assert ( is_vector ( indices ) && is_list ( values ) && len ( values ) = = len ( indices ) ,
"Index list and value list must have the same length" )
assert ( max ( indices ) < = len ( list ) , "Indices must be <= len(list)." )
let (
maxidx = max ( indices ) ,
minidx = min ( indices )
) [
for ( i = [ 0 : 1 : minidx - 1 ] ) list [ i ] ,
for ( i = [ minidx : min ( maxidx , len ( list ) - 1 ) ] )
let (
j = search ( i , indices , 0 ) ,
k = j [ 0 ] ,
x = assert ( len ( j ) < 2 , "Repeated indices are not allowed." )
) each ( k ! = undef ? [ values [ k ] , list [ i ] ] : [ list [ i ] ] ) ,
for ( i = [ min ( maxidx , len ( list ) - 1 ) + 1 : 1 : len ( list ) - 1 ] ) list [ i ] ,
if ( maxidx = = len ( list ) ) values [ max_index ( indices ) ]
] ;
2020-07-24 21:54:34 +00:00
2019-04-20 00:02:17 +00:00
// Function: list_remove()
// Usage:
2021-01-08 03:17:10 +00:00
// list = list_remove(list, indices);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_set(), list_insert(), list_remove_values()
2019-04-20 00:02:17 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// Remove all items from `list` whose indexes are in `indices`.
2019-04-20 00:02:17 +00:00
// Arguments:
// list = The list to remove items from.
2020-07-24 21:54:34 +00:00
// indices = The list of indexes of items to remove.
2019-10-21 09:28:45 +00:00
// Example:
2021-01-08 03:17:10 +00:00
// a = list_insert([3,6,9,12],1); // Returns: [3,9,12]
// b = list_insert([3,6,9,12],[1,3]); // Returns: [3,9]
2020-07-24 21:54:34 +00:00
function list_remove ( list , indices ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( list ) )
2020-07-30 05:39:17 +00:00
is_finite ( indices ) ?
[
for ( i = [ 0 : 1 : min ( indices , len ( list ) - 1 ) - 1 ] ) list [ i ] ,
for ( i = [ min ( indices , len ( list ) - 1 ) + 1 : 1 : len ( list ) - 1 ] ) list [ i ]
]
: indices = = [ ] ? list
2020-07-24 21:54:34 +00:00
: assert ( is_vector ( indices ) , "Invalid list `indices`." )
2020-07-30 05:39:17 +00:00
[
for ( i = [ 0 : len ( list ) - 1 ] )
if ( [ ] = = search ( i , indices , 1 ) )
list [ i ]
] ;
2020-07-24 21:54:34 +00:00
2020-07-28 20:51:45 +00:00
2019-10-21 09:28:45 +00:00
// Function: list_remove_values()
// Usage:
2021-06-27 03:59:33 +00:00
// list = list_remove_values(list, values);
// list = list_remove_values(list, values, all=true);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_set(), list_insert(), list_remove()
2019-10-21 09:28:45 +00:00
// Description:
// Removes the first, or all instances of the given `values` from the `list`.
// Returns the modified list.
// Arguments:
// list = The list to modify.
// values = The values to remove from the list.
// all = If true, remove all instances of the value `value` from the list `list`. If false, remove only the first. Default: false
// Example:
// animals = ["bat", "cat", "rat", "dog", "bat", "rat"];
// animals2 = list_remove_values(animals, "rat"); // Returns: ["bat","cat","dog","bat","rat"]
// nonflying = list_remove_values(animals, "bat", all=true); // Returns: ["cat","rat","dog","rat"]
// animals3 = list_remove_values(animals, ["bat","rat"]); // Returns: ["cat","dog","bat","rat"]
// domestic = list_remove_values(animals, ["bat","rat"], all=true); // Returns: ["cat","dog"]
// animals4 = list_remove_values(animals, ["tucan","rat"], all=true); // Returns: ["bat","cat","dog","bat"]
function list_remove_values ( list , values = [ ] , all = false ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( list ) )
2020-05-30 02:04:34 +00:00
! is_list ( values ) ? list_remove_values ( list , values = [ values ] , all = all ) :
let (
idxs = all ? flatten ( search ( values , list , 0 ) ) : search ( values , list , 1 ) ,
uidxs = unique ( idxs )
) list_remove ( list , uidxs ) ;
2019-10-21 09:28:45 +00:00
2020-07-28 20:51:45 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Length Manipulation
2019-06-12 02:26:06 +00:00
2019-04-20 00:02:17 +00:00
// Function: list_pad()
2021-01-08 03:17:10 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// arr = list_pad(array, minlen, [fill]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_trim(), list_fit()
2019-04-20 00:02:17 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// If the list `array` is shorter than `minlen` length, pad it to length with the value given in `fill`.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list.
2019-04-20 00:02:17 +00:00
// minlen = The minimum length to pad the list to.
2021-01-25 07:26:39 +00:00
// fill = The value to pad the list with. Default: `undef`
// Example:
// list = [3,4,5];
// nlist = list_pad(list,5,23); // Returns: [3,4,5,23,23]
function list_pad ( array , minlen , fill ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( array ) , "Invalid input." )
2020-07-24 21:54:34 +00:00
concat ( array , repeat ( fill , minlen - len ( array ) ) ) ;
2019-04-20 00:02:17 +00:00
// Function: list_trim()
2021-01-08 03:17:10 +00:00
// Usage:
// arr = list_trim(array, maxlen);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_pad(), list_fit()
2019-04-20 00:02:17 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// If the list `array` is longer than `maxlen` length, truncates it to be `maxlen` items long.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list.
2019-04-20 00:02:17 +00:00
// minlen = The minimum length to pad the list to.
2021-01-25 07:26:39 +00:00
// Example:
// list = [3,4,5,6,7,8];
// nlist = list_trim(list,4); // Returns: [3,4,5,6]
2020-07-24 21:54:34 +00:00
function list_trim ( array , maxlen ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( array ) , "Invalid input." )
2020-07-24 21:54:34 +00:00
[ for ( i = [ 0 : 1 : min ( len ( array ) , maxlen ) - 1 ] ) array [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: list_fit()
2021-01-08 03:17:10 +00:00
// Usage:
// arr = list_fit(array, length, fill);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: list_pad(), list_trim()
2019-04-20 00:02:17 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// If the list `array` is longer than `length` items long, truncates it to be exactly `length` items long.
// If the list `array` is shorter than `length` items long, pad it to length with the value given in `fill`.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list.
2019-04-20 00:02:17 +00:00
// minlen = The minimum length to pad the list to.
2021-01-25 07:26:39 +00:00
// fill = The value to pad the list with. Default: `undef`
// Example:
// list = [3,4,5,6];
// nlist = list_fit(list,3); // Returns: [3,4,5]
// Example:
// list = [3,4,5,6];
// nlist = list_fit(list,6,23); // Returns: [3,4,5,6,23,23]
2020-07-24 21:54:34 +00:00
function list_fit ( array , length , fill ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( array ) , "Invalid input." )
2020-07-24 21:54:34 +00:00
let ( l = len ( array ) )
l = = length ? array :
l > length ? list_trim ( array , length )
: list_pad ( array , length , fill ) ;
2019-04-20 00:02:17 +00:00
2020-07-28 20:51:45 +00:00
2021-10-17 03:01:52 +00:00
// Section: Sorting
2019-04-20 00:02:17 +00:00
2020-08-30 11:12:36 +00:00
// returns true for valid index specifications idx in the interval [imin, imax)
// note that idx can't have any value greater or EQUAL to imax
// this allows imax=INF as a bound to numerical lists
function _valid_idx ( idx , imin , imax ) =
is_undef ( idx )
|| ( is_finite ( idx )
&& ( is_undef ( imin ) || idx >= imin )
&& ( is_undef ( imax ) || idx < imax ) )
|| ( is_list ( idx )
&& ( is_undef ( imin ) || min ( idx ) >= imin )
&& ( is_undef ( imax ) || max ( idx ) < imax ) )
|| ( is_range ( idx )
&& ( is_undef ( imin ) || ( idx [ 1 ] > 0 && idx [ 0 ] >= imin ) || ( idx [ 1 ] < 0 && idx [ 0 ] < = imax ) )
&& ( is_undef ( imax ) || ( idx [ 1 ] > 0 && idx [ 2 ] < = imax ) || ( idx [ 1 ] < 0 && idx [ 2 ] >= imin ) ) ) ;
2019-05-30 00:42:09 +00:00
2021-06-21 22:24:54 +00:00
// idx should be an index of the arrays l[i]
function _group_sort_by_index ( l , idx ) =
2021-06-23 00:20:08 +00:00
len ( l ) = = 0 ? [ ] :
len ( l ) = = 1 ? [ l ] :
let (
pivot = l [ floor ( len ( l ) / 2 ) ] [ idx ] ,
equal = [ for ( li = l ) if ( li [ idx ] = = pivot ) li ] ,
lesser = [ for ( li = l ) if ( li [ idx ] < pivot ) li ] ,
greater = [ for ( li = l ) if ( li [ idx ] > pivot ) li ]
)
concat (
_group_sort_by_index ( lesser , idx ) ,
[ equal ] ,
_group_sort_by_index ( greater , idx )
) ;
2021-07-02 10:30:13 +00:00
2021-06-21 22:24:54 +00:00
function _group_sort ( l ) =
2021-06-23 00:20:08 +00:00
len ( l ) = = 0 ? [ ] :
len ( l ) = = 1 ? [ l ] :
let (
pivot = l [ floor ( len ( l ) / 2 ) ] ,
2021-07-02 10:30:13 +00:00
equal = [ for ( li = l ) if ( li = = pivot ) li ] ,
lesser = [ for ( li = l ) if ( li < pivot ) li ] ,
2021-06-23 00:20:08 +00:00
greater = [ for ( li = l ) if ( li > pivot ) li ]
)
concat (
_group_sort ( lesser ) ,
[ equal ] ,
_group_sort ( greater )
) ;
2021-06-21 22:24:54 +00:00
2019-05-30 00:42:09 +00:00
2020-08-30 11:12:36 +00:00
// Sort a vector of scalar values with the native comparison operator
// all elements should have the same type.
2019-06-25 23:16:40 +00:00
function _sort_scalars ( arr ) =
2020-07-24 21:54:34 +00:00
len ( arr ) < = 1 ? arr :
let (
2020-05-30 02:04:34 +00:00
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
lesser = [ for ( y = arr ) if ( y < pivot ) y ] ,
equal = [ for ( y = arr ) if ( y = = pivot ) y ] ,
greater = [ for ( y = arr ) if ( y > pivot ) y ]
2020-07-24 21:54:34 +00:00
)
concat ( _sort_scalars ( lesser ) , equal , _sort_scalars ( greater ) ) ;
2019-07-19 04:24:32 +00:00
2019-06-25 23:16:40 +00:00
2020-08-30 11:12:36 +00:00
// lexical sort of a homogeneous list of vectors
// uses native comparison operator
function _sort_vectors ( arr , _i = 0 ) =
len ( arr ) < = 1 || _i >= len ( arr [ 0 ] ) ? arr :
2020-07-24 21:54:34 +00:00
let (
2020-08-30 11:12:36 +00:00
pivot = arr [ floor ( len ( arr ) / 2 ) ] [ _i ] ,
lesser = [ for ( entry = arr ) if ( entry [ _i ] < pivot ) entry ] ,
equal = [ for ( entry = arr ) if ( entry [ _i ] = = pivot ) entry ] ,
greater = [ for ( entry = arr ) if ( entry [ _i ] > pivot ) entry ]
2021-01-25 07:26:39 +00:00
)
2020-08-30 11:12:36 +00:00
concat (
_sort_vectors ( lesser , _i ) ,
_sort_vectors ( equal , _i + 1 ) ,
_sort_vectors ( greater , _i ) ) ;
// lexical sort of a homogeneous list of vectors by the vector components with indices in idxlist
// all idxlist indices should be in the range of the vector dimensions
// idxlist must be undef or a simple list of numbers
// uses native comparison operator
function _sort_vectors ( arr , idxlist , _i = 0 ) =
len ( arr ) < = 1 || ( is_list ( idxlist ) && _i >= len ( idxlist ) ) || _i >= len ( arr [ 0 ] ) ? arr :
2020-07-24 21:54:34 +00:00
let (
2020-08-30 11:12:36 +00:00
k = is_list ( idxlist ) ? idxlist [ _i ] : _i ,
pivot = arr [ floor ( len ( arr ) / 2 ) ] [ k ] ,
lesser = [ for ( entry = arr ) if ( entry [ k ] < pivot ) entry ] ,
equal = [ for ( entry = arr ) if ( entry [ k ] = = pivot ) entry ] ,
greater = [ for ( entry = arr ) if ( entry [ k ] > pivot ) entry ]
)
concat (
_sort_vectors ( lesser , idxlist , _i ) ,
_sort_vectors ( equal , idxlist , _i + 1 ) ,
_sort_vectors ( greater , idxlist , _i ) ) ;
2021-04-11 11:37:49 +00:00
2020-08-30 11:12:36 +00:00
// sorting using compare_vals(); returns indexed list when `indexed==true`
function _sort_general ( arr , idx = undef , indexed = false ) =
2020-05-30 02:04:34 +00:00
( len ( arr ) < = 1 ) ? arr :
2020-08-30 11:12:36 +00:00
! indexed && is_undef ( idx )
? _lexical_sort ( arr )
: let ( arrind = _indexed_sort ( enumerate ( arr , idx ) ) )
indexed
? arrind
: [ for ( i = arrind ) arr [ i ] ] ;
2020-08-05 05:16:48 +00:00
2020-08-30 11:12:36 +00:00
// lexical sort using compare_vals()
function _lexical_sort ( arr ) =
2021-06-21 22:24:54 +00:00
len ( arr ) < = 1 ? arr :
2020-08-30 11:12:36 +00:00
let ( pivot = arr [ floor ( len ( arr ) / 2 ) ] )
let (
lesser = [ for ( entry = arr ) if ( compare_vals ( entry , pivot ) < 0 ) entry ] ,
equal = [ for ( entry = arr ) if ( compare_vals ( entry , pivot ) = = 0 ) entry ] ,
greater = [ for ( entry = arr ) if ( compare_vals ( entry , pivot ) > 0 ) entry ]
)
concat ( _lexical_sort ( lesser ) , equal , _lexical_sort ( greater ) ) ;
2020-08-05 05:16:48 +00:00
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
// the sorting is done using compare_vals()
function _indexed_sort ( arrind ) =
2020-08-30 11:12:36 +00:00
arrind = = [ ] ? [ ] : len ( arrind ) = = 1 ? [ arrind [ 0 ] [ 0 ] ] :
2020-08-05 05:16:48 +00:00
let ( pivot = arrind [ floor ( len ( arrind ) / 2 ) ] [ 1 ] )
2020-05-30 02:04:34 +00:00
let (
2020-08-05 05:16:48 +00:00
lesser = [ for ( entry = arrind ) if ( compare_vals ( entry [ 1 ] , pivot ) < 0 ) entry ] ,
equal = [ for ( entry = arrind ) if ( compare_vals ( entry [ 1 ] , pivot ) = = 0 ) entry [ 0 ] ] ,
greater = [ for ( entry = arrind ) if ( compare_vals ( entry [ 1 ] , pivot ) > 0 ) entry ]
)
concat ( _indexed_sort ( lesser ) , equal , _indexed_sort ( greater ) ) ;
2019-06-25 23:16:40 +00:00
// Function: sort()
// Usage:
2021-06-27 03:59:33 +00:00
// slist = sort(list, [idx]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
2021-06-22 00:13:40 +00:00
// See Also: shuffle(), sortidx(), unique(), unique_count(), group_sort()
2019-06-25 23:16:40 +00:00
// Description:
2020-08-30 11:12:36 +00:00
// Sorts the given list in lexicographic order. If the input is a homogeneous simple list or a homogeneous
// list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster.
// When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to
2019-06-25 23:16:40 +00:00
// `undef < boolean < number < string < list`. Comparison of lists is recursive.
2020-08-30 11:12:36 +00:00
// When comparing vectors, homogeneous or not, the parameter `idx` may be used to select the components to compare.
// Note that homogeneous lists of vectors may contain mixed types provided that for any two list elements
// list[i] and list[j] satisfies type(list[i][k])==type(list[j][k]) for all k.
// Strings are allowed as any list element and are compared with the native operators although no substring
// comparison is possible.
2019-06-25 23:16:40 +00:00
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
2020-08-30 11:12:36 +00:00
// Example:
// // Homogeneous lists
// l1 = [45,2,16,37,8,3,9,23,89,12,34];
// sorted1 = sort(l1); // Returns [2,3,8,9,12,16,23,34,37,45,89]
// l2 = [["oat",0], ["cat",1], ["bat",3], ["bat",2], ["fat",3]];
// sorted2 = sort(l2); // Returns: [["bat",2],["bat",3],["cat",1],["fat",3],["oat",0]]
// // Non-homegenous list
// l3 = [[4,0],[7],[3,9],20,[4],[3,1],[8]];
// sorted3 = sort(l3); // Returns: [20,[3,1],[3,9],[4],[4,0],[7],[8]]
function sort ( list , idx = undef ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
is_string ( list ) ? str_join ( sort ( [ for ( x = list ) x ] , idx ) ) :
2020-05-30 02:04:34 +00:00
! is_list ( list ) || len ( list ) < = 1 ? list :
2020-08-30 11:12:36 +00:00
is_homogeneous ( list , 1 )
? let ( size = array_dim ( list [ 0 ] ) )
size = = 0 ? _sort_scalars ( list )
: len ( size ) ! = 1 ? _sort_general ( list , idx )
: is_undef ( idx ) ? _sort_vectors ( list )
: assert ( _valid_idx ( idx ) , "Invalid indices." )
_sort_vectors ( list , [ for ( i = idx ) i ] )
: _sort_general ( list , idx ) ;
2020-07-28 20:51:45 +00:00
2019-04-20 00:02:17 +00:00
// Function: sortidx()
2021-01-08 03:17:10 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// idxlist = sortidx(list, [idx]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
2021-06-22 00:13:40 +00:00
// See Also: shuffle(), sort(), group_sort(), unique(), unique_count()
2019-04-20 00:02:17 +00:00
// Description:
2020-08-30 11:12:36 +00:00
// Given a list, sort it as function `sort()`, and returns
2019-04-20 00:02:17 +00:00
// a list of indexes into the original list in that sorted order.
// If you iterate the returned list in order, and use the list items
// to index into the original list, you will be iterating the original
// values in sorted order.
2021-01-08 03:17:10 +00:00
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
2019-04-20 00:02:17 +00:00
// Example:
// lst = ["d","b","e","c"];
// idxs = sortidx(lst); // Returns: [1,3,0,2]
2019-06-25 23:16:40 +00:00
// ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"]
2019-04-20 00:02:17 +00:00
// Example:
// lst = [
2020-05-30 02:04:34 +00:00
// ["foo", 88, [0,0,1], false],
// ["bar", 90, [0,1,0], true],
// ["baz", 89, [1,0,0], false],
// ["qux", 23, [1,1,1], true]
2019-04-20 00:02:17 +00:00
// ];
// idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1]
// idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3]
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
2020-08-30 11:12:36 +00:00
function sortidx ( list , idx = undef ) =
2020-09-29 02:12:07 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
2020-08-30 11:12:36 +00:00
! is_list ( list ) || len ( list ) < = 1 ? list :
is_homogeneous ( list , 1 )
? let (
size = array_dim ( list [ 0 ] ) ,
aug = ! ( size = = 0 || len ( size ) = = 1 ) ? 0 // for general sorting
: [ for ( i = [ 0 : len ( list ) - 1 ] ) concat ( i , list [ i ] ) ] , // for scalar or vector sorting
lidx = size = = 0 ? [ 1 ] : // scalar sorting
len ( size ) = = 1
? is_undef ( idx ) ? [ for ( i = [ 0 : len ( list [ 0 ] ) - 1 ] ) i + 1 ] // vector sorting
: [ for ( i = idx ) i + 1 ] // vector sorting
: 0 // just to signal
)
assert ( ! ( size = = 0 && is_def ( idx ) ) ,
"The specification of `idx` is incompatible with scalar sorting." )
assert ( _valid_idx ( idx ) , "Invalid indices." )
lidx ! = 0
? let ( lsort = _sort_vectors ( aug , lidx ) )
[ for ( li = lsort ) li [ 0 ] ]
: _sort_general ( list , idx , indexed = true )
: _sort_general ( list , idx , indexed = true ) ;
2019-04-20 00:02:17 +00:00
2021-10-17 03:01:52 +00:00
// Function: is_increasing()
2021-06-21 22:24:54 +00:00
// Usage:
2021-10-17 03:01:52 +00:00
// bool = is_increasing(list);
2021-06-21 22:24:54 +00:00
// Topics: List Handling
2021-10-17 03:01:52 +00:00
// See Also: max_index(), min_index(), is_decreasing()
2021-06-21 22:24:54 +00:00
// Description:
2021-10-17 03:01:52 +00:00
// Returns true if the list is (non-strictly) increasing, or strictly increasing if strict is set to true.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be
// evaluated character by character.
2021-06-21 22:24:54 +00:00
// Arguments:
2021-10-17 03:01:52 +00:00
// list = list (or string) to check
// strict = set to true to test that list is strictly increasing
2021-06-21 22:24:54 +00:00
// Example:
2021-10-17 03:01:52 +00:00
// a = is_increasing([1,2,3,4]); // Returns: true
// b = is_increasing([1,3,2,4]); // Returns: false
// c = is_increasing([1,3,3,4]); // Returns: true
// d = is_increasing([1,3,3,4],strict=true); // Returns: false
// e = is_increasing([4,3,2,1]); // Returns: false
function is_increasing ( list , strict = false ) =
assert ( is_list ( list ) || is_string ( list ) )
strict ? len ( [ for ( p = pair ( list ) ) if ( p . x >= p . y ) true ] ) = = 0
: len ( [ for ( p = pair ( list ) ) if ( p . x > p . y ) true ] ) = = 0 ;
// Function: is_decreasing()
// Usage:
// bool = is_decreasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), is_increasing()
// Description:
// Returns true if the list is (non-strictly) decreasing, or strictly decreasing if strict is set to true.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be
// evaluated character by character.
// Arguments:
// list = list (or string) to check
// strict = set to true to test that list is strictly decreasing
// Example:
// a = is_decreasing([1,2,3,4]); // Returns: false
// b = is_decreasing([4,2,3,1]); // Returns: false
// c = is_decreasing([4,3,2,1]); // Returns: true
function is_decreasing ( list , strict = false ) =
assert ( is_list ( list ) || is_string ( list ) )
strict ? len ( [ for ( p = pair ( list ) ) if ( p . x < = p . y ) true ] ) = = 0
: len ( [ for ( p = pair ( list ) ) if ( p . x < p . y ) true ] ) = = 0 ;
2021-06-21 22:24:54 +00:00
2019-04-20 00:02:17 +00:00
// Function: unique()
// Usage:
2021-01-08 03:17:10 +00:00
// ulist = unique(list);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique_count()
2019-04-20 00:02:17 +00:00
// Description:
2021-06-21 22:24:54 +00:00
// Given a string or a list returns the sorted string or the sorted list with all repeated items removed.
// The sorting order of non homogeneous lists is the function `sort` order.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-09-29 02:12:07 +00:00
// list = The list to uniquify.
2021-01-25 07:26:39 +00:00
// Example:
// sorted = unique([5,2,8,3,1,3,8,7,5]); // Returns: [1,2,3,5,7,8]
2021-06-21 22:24:54 +00:00
// sorted = unique("axdbxxc"); // Returns: "abcdx"
// sorted = unique([true,2,"xba",[1,0],true,[0,0],3,"a",[0,0],2]); // Returns: [true,2,3,"a","xba",[0,0],[1,0]]
2020-09-29 02:12:07 +00:00
function unique ( list ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
is_string ( list ) ? str_join ( unique ( [ for ( x = list ) x ] ) ) :
len ( list ) < = 1 ? list :
2021-06-21 22:24:54 +00:00
is_homogeneous ( list , 1 ) && ! is_list ( list [ 0 ] )
2021-06-23 00:20:08 +00:00
? _unique_sort ( list )
2021-06-21 22:24:54 +00:00
: let ( sorted = sort ( list ) )
2021-06-23 00:20:08 +00:00
[
for ( i = [ 0 : 1 : len ( sorted ) - 1 ] )
2021-07-02 10:30:13 +00:00
if ( i = = 0 || ( sorted [ i ] ! = sorted [ i - 1 ] ) )
sorted [ i ]
2021-06-23 00:20:08 +00:00
] ;
2021-06-21 22:24:54 +00:00
function _unique_sort ( l ) =
2021-06-23 00:20:08 +00:00
len ( l ) < = 1 ? l :
let (
pivot = l [ floor ( len ( l ) / 2 ) ] ,
2021-07-02 10:30:13 +00:00
equal = [ for ( li = l ) if ( li = = pivot ) li ] ,
lesser = [ for ( li = l ) if ( li < pivot ) li ] ,
2021-06-23 00:20:08 +00:00
greater = [ for ( li = l ) if ( li > pivot ) li ]
)
concat (
_unique_sort ( lesser ) ,
equal [ 0 ] ,
_unique_sort ( greater )
) ;
2019-04-20 00:02:17 +00:00
2020-07-28 20:51:45 +00:00
2020-02-12 01:23:31 +00:00
// Function: unique_count()
// Usage:
2020-09-29 02:12:07 +00:00
// counts = unique_count(list);
2021-03-02 06:44:00 +00:00
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique()
2020-02-12 01:23:31 +00:00
// Description:
2020-09-29 02:12:07 +00:00
// Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `list` and `counts` is a list such
// that `count[i]` gives the number of times that `sorted[i]` appears in `list`.
2020-02-12 01:23:31 +00:00
// Arguments:
2020-09-29 02:12:07 +00:00
// list = The list to analyze.
2021-01-25 07:26:39 +00:00
// Example:
// sorted = unique([5,2,8,3,1,3,8,3,5]); // Returns: [ [1,2,3,5,8], [1,1,3,2,2] ]
2020-09-29 02:12:07 +00:00
function unique_count ( list ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
list = = [ ] ? [ [ ] , [ ] ] :
2021-06-21 22:24:54 +00:00
is_homogeneous ( list , 1 ) && ! is_list ( list [ 0 ] )
2021-07-02 10:30:13 +00:00
? let ( sorted = _group_sort ( list ) )
[ [ for ( s = sorted ) s [ 0 ] ] , [ for ( s = sorted ) len ( s ) ] ]
: let (
list = sort ( list ) ,
ind = [ 0 , for ( i = [ 1 : 1 : len ( list ) - 1 ] ) if ( list [ i ] ! = list [ i - 1 ] ) i ]
)
[ select ( list , ind ) , deltas ( concat ( ind , [ len ( list ) ] ) ) ] ;
2021-06-21 22:24:54 +00:00
2021-10-16 03:13:30 +00:00
2021-10-17 03:01:52 +00:00
// Function: group_sort()
// Usage:
// ulist = group_sort(list);
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique(), unique_count()
// Description:
// Given a list of values, returns the sorted list with all repeated items grouped in a list.
// When the list entries are themselves lists, the sorting may be done based on the `idx` entry
// of those entries, that should be numbers.
// The result is always a list of lists.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index. Default: zero.
// Example:
// sorted = group_sort([5,2,8,3,1,3,8,7,5]); // Returns: [[1],[2],[3,3],[5,5],[7],[8,8]]
// sorted2 = group_sort([[5,"a"],[2,"b"], [5,"c"], [3,"d"], [2,"e"] ], idx=0); // Returns: [[[2,"b"],[2,"e"]], [[5,"a"],[5,"c"]], [[3,"d"]] ]
function group_sort ( list , idx ) =
assert ( is_list ( list ) , "Input should be a list." )
assert ( is_undef ( idx ) || ( is_finite ( idx ) && idx >= 0 ) , "Invalid index." )
len ( list ) < = 1 ? [ list ] :
is_vector ( list ) ? _group_sort ( list ) :
let ( idx = is_undef ( idx ) ? 0 : idx )
assert ( [ for ( entry = list ) if ( ! is_list ( entry ) || len ( entry ) < idx || ! is_num ( entry [ idx ] ) ) 1 ] = = [ ] ,
"Some entry of the list is a list shorter than `idx` or the indexed entry of it is not a number." )
_group_sort_by_index ( list , idx ) ;
2021-10-21 19:33:25 +00:00
// Function: list_smallest()
// Usage:
// small = list_smallest(list, k)
// Description:
// Returns a set of the k smallest items in list in arbitrary order. The items must be
2021-10-21 20:10:36 +00:00
// mutually comparable with native OpenSCAD comparison operations. You will get "undefined operation"
// errors if you provide invalid input.
2021-10-21 19:33:25 +00:00
// Arguments:
// list = list to process
// k = number of items to return
function list_smallest ( list , k ) =
assert ( is_list ( list ) )
assert ( is_finite ( k ) && k >= 0 , "k must be nonnegative" )
let (
v = list [ rand_int ( 0 , len ( list ) - 1 , 1 ) [ 0 ] ] ,
smaller = [ for ( li = list ) if ( li < v ) li ] ,
equal = [ for ( li = list ) if ( li = = v ) li ]
)
len ( smaller ) = = k ? smaller :
len ( smaller ) < k && len ( smaller ) + len ( equal ) >= k ? [ each smaller , for ( i = [ 1 : k - len ( smaller ) ] ) v ] :
len ( smaller ) > k ? list_smallest ( smaller , k ) :
let ( bigger = [ for ( li = list ) if ( li > v ) li ] )
concat ( smaller , equal , list_smallest ( bigger , k - len ( smaller ) - len ( equal ) ) ) ;
2021-10-16 03:13:30 +00:00
// Function: group_data()
// Usage:
// groupings = group_data(groups, values);
// Topics: Array Handling
// See Also: zip(), zip_long(), array_group()
// Description:
// Given a list of integer group numbers, and an equal-length list of values,
// returns a list of groups with the values sorted into the corresponding groups.
// Ie: if you have a groups index list of [2,3,2] and values of ["A","B","C"], then
// the values "A" and "C" will be put in group 2, and "B" will be in group 3.
// Groups that have no values grouped into them will be an empty list. So the
// above would return [[], [], ["A","C"], ["B"]]
// Arguments:
// groups = A list of integer group index numbers.
// values = A list of values to sort into groups.
// Example:
// groups = group_data([1,2,0], ["A","B","C"]); // Returns [["B"],["C"],["A"]]
// Example:
// groups = group_data([1,3,1], ["A","B","C"]); // Returns [[],["A","C"],[],["B"]]
function group_data ( groups , values ) =
assert ( all_integer ( groups ) && all_nonnegative ( groups ) )
assert ( is_list ( values ) )
assert ( len ( groups ) = = len ( values ) ,
"The groups and values arguments should be lists of matching length." )
let ( sorted = _group_sort_by_index ( zip ( groups , values ) , 0 ) )
// retrieve values and insert []
[
for ( i = idx ( sorted ) )
let (
a = i = = 0 ? 0 : sorted [ i - 1 ] [ 0 ] [ 0 ] + 1 ,
g0 = sorted [ i ]
)
each [
for ( j = [ a : 1 : g0 [ 0 ] [ 0 ] - 1 ] ) [ ] ,
[ for ( g1 = g0 ) g1 [ 1 ] ]
]
] ;
// Section: Iteration Helpers
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
// Function: idx()
2020-01-09 04:43:19 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// rng = idx(list, [s=], [e=], [step=]);
// for(i=idx(list, [s=], [e=], [step=])) ...
2021-03-02 06:44:00 +00:00
// Topics: List Handling, Iteration
2021-03-10 22:49:39 +00:00
// See Also: enumerate(), pair(), triplet(), combinations(), permutations()
2020-01-09 04:43:19 +00:00
// Description:
2020-01-10 00:10:18 +00:00
// Returns the range of indexes for the given list.
2020-01-09 04:43:19 +00:00
// Arguments:
2020-01-10 00:10:18 +00:00
// list = The list to returns the index range of.
2021-01-25 07:26:39 +00:00
// s = The starting index. Default: 0
// e = The delta from the end of the list. Default: -1 (end of list)
2020-01-10 00:10:18 +00:00
// step = The step size to stride through the list. Default: 1
// Example(2D):
// colors = ["red", "green", "blue"];
// for (i=idx(colors)) right(20*i) color(colors[i]) circle(d=10);
2021-01-25 07:26:39 +00:00
function idx ( list , s = 0 , e = - 1 , step = 1 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
2021-01-25 07:26:39 +00:00
let ( ll = len ( list ) )
2021-01-25 07:51:52 +00:00
ll = = 0 ? [ 0 : 1 : ll - 1 ] :
2021-01-25 07:26:39 +00:00
let (
_s = posmod ( s , ll ) ,
_e = posmod ( e , ll )
) [ _s : step : _e ] ;
2020-01-09 04:43:19 +00:00
2020-01-10 00:10:18 +00:00
// Function: enumerate()
2021-01-08 03:17:10 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// arr = enumerate(l, [idx]);
// for (x = enumerate(l, [idx])) ... // x[0] is the index number, x[1] is the item.
2021-03-02 06:44:00 +00:00
// Topics: List Handling, Iteration
2021-03-10 22:49:39 +00:00
// See Also: idx(), pair(), triplet(), combinations(), permutations()
2020-01-09 04:43:19 +00:00
// Description:
2020-01-10 00:10:18 +00:00
// Returns a list, with each item of the given list `l` numbered in a sublist.
// Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]`
2020-01-09 04:43:19 +00:00
// Arguments:
2020-01-10 00:10:18 +00:00
// l = List to enumerate.
2021-10-16 02:39:10 +00:00
// idx = If given, enumerates just the given columns items of `l`.
2020-01-09 04:43:19 +00:00
// Example:
2020-01-10 00:10:18 +00:00
// enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
// enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
// enumerate([["cat","a",12],["dog","b",10],["log","c",14]], idx=[1:2]); // Returns: [[0,"a",12], [1,"b",10], [2,"c",14]]
// Example(2D):
// colors = ["red", "green", "blue"];
// for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10);
function enumerate ( l , idx = undef ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( l ) || is_string ( list ) , "Invalid input." )
2020-08-05 05:16:48 +00:00
assert ( _valid_idx ( idx , 0 , len ( l ) ) , "Invalid index/indices." )
2020-07-24 21:54:34 +00:00
( idx = = undef )
? [ for ( i = [ 0 : 1 : len ( l ) - 1 ] ) [ i , l [ i ] ] ]
2020-08-05 05:16:48 +00:00
: [ for ( i = [ 0 : 1 : len ( l ) - 1 ] ) [ i , for ( j = idx ) l [ i ] [ j ] ] ] ;
2020-01-09 04:43:19 +00:00
2019-05-10 09:33:44 +00:00
// Function: pair()
2019-04-20 00:02:17 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// p = pair(list, [wrap]);
// for (p = pair(list, [wrap])) ... // On each iteration, p contains a list of two adjacent items.
2021-03-02 06:44:00 +00:00
// Topics: List Handling, Iteration
2021-03-10 22:49:39 +00:00
// See Also: idx(), enumerate(), triplet(), combinations(), permutations()
2019-05-10 09:33:44 +00:00
// Description:
2021-01-25 07:26:39 +00:00
// Takes a list, and returns a list of adjacent pairs from it, optionally wrapping back to the front.
// Arguments:
// list = The list to iterate.
// wrap = If true, wrap back to the start from the end. ie: return the last and first items as the last pair. Default: false
// Example(2D): Does NOT wrap from end to start,
// for (p = pair(circle(d=40, $fn=12)))
// stroke(p, endcap2="arrow2");
// Example(2D): Wraps around from end to start.
// for (p = pair(circle(d=40, $fn=12), wrap=true))
// stroke(p, endcap2="arrow2");
2019-05-10 09:33:44 +00:00
// Example:
2020-07-03 22:22:21 +00:00
// l = ["A","B","C","D"];
2019-05-10 09:33:44 +00:00
// echo([for (p=pair(l)) str(p.y,p.x)]); // Outputs: ["BA", "CB", "DC"]
2021-01-25 07:26:39 +00:00
function pair ( list , wrap = false ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
assert ( is_bool ( wrap ) )
let (
ll = len ( list )
) wrap
? [ for ( i = [ 0 : 1 : ll - 1 ] ) [ list [ i ] , list [ ( i + 1 ) % ll ] ] ]
: [ for ( i = [ 0 : 1 : ll - 2 ] ) [ list [ i ] , list [ i + 1 ] ] ] ;
2019-05-10 09:33:44 +00:00
2019-06-19 08:31:44 +00:00
// Function: triplet()
// Usage:
2021-06-27 03:59:33 +00:00
// list = triplet(list, [wrap]);
// for (t = triplet(list, [wrap])) ...
2021-03-02 06:44:00 +00:00
// Topics: List Handling, Iteration
2021-03-10 22:49:39 +00:00
// See Also: idx(), enumerate(), pair(), combinations(), permutations()
2019-06-19 08:31:44 +00:00
// Description:
2021-01-25 07:26:39 +00:00
// Takes a list, and returns a list of adjacent triplets from it, optionally wrapping back to the front.
2019-06-19 08:31:44 +00:00
// Example:
// l = ["A","B","C","D","E"];
// echo([for (p=triplet(l)) str(p.z,p.y,p.x)]); // Outputs: ["CBA", "DCB", "EDC"]
2021-01-25 07:26:39 +00:00
// Example(2D):
// path = [for (i=[0:24]) polar_to_xy(i*2, i*360/12)];
// for (t = triplet(path)) {
// a = t[0]; b = t[1]; c = t[2];
// v = unit(unit(a-b) + unit(c-b));
// translate(b) rot(from=FWD,to=v) anchor_arrow2d();
// }
// stroke(path);
function triplet ( list , wrap = false ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
assert ( is_bool ( wrap ) )
let (
ll = len ( list )
) wrap
? [ for ( i = [ 0 : 1 : ll - 1 ] ) [ list [ i ] , list [ ( i + 1 ) % ll ] , list [ ( i + 2 ) % ll ] ] ]
: [ for ( i = [ 0 : 1 : ll - 3 ] ) [ list [ i ] , list [ i + 1 ] , list [ i + 2 ] ] ] ;
2019-06-19 08:31:44 +00:00
2021-03-10 22:49:39 +00:00
// Function: combinations()
2020-01-09 04:43:19 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// list = combinations(l, [n]);
2021-03-02 06:44:00 +00:00
// Topics: List Handling, Iteration
2021-03-10 22:49:39 +00:00
// See Also: idx(), enumerate(), pair(), triplet(), permutations()
2020-01-09 04:43:19 +00:00
// Description:
2021-09-09 22:32:58 +00:00
// Returns a list of all of the (unordered) combinations of `n` items out of the given list `l`.
2020-01-09 04:43:19 +00:00
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`.
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`.
// Arguments:
// l = The list to provide permutations for.
// n = The number of items in each permutation. Default: 2
// Example:
2021-03-10 22:49:39 +00:00
// pairs = combinations([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]]
// triplets = combinations([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]]
2020-01-09 04:43:19 +00:00
// Example(2D):
2021-03-10 22:49:39 +00:00
// for (p=combinations(regular_ngon(n=7,d=100))) stroke(p);
function combinations ( l , n = 2 , _s = 0 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( l ) , "Invalid list." )
assert ( is_finite ( n ) && n >= 1 && n < = len ( l ) , "Invalid number `n`." )
n = = 1
2021-01-08 03:17:10 +00:00
? [ for ( i = [ _s : 1 : len ( l ) - 1 ] ) [ l [ i ] ] ]
2021-03-10 22:49:39 +00:00
: [ for ( i = [ _s : 1 : len ( l ) - n ] , p = combinations ( l , n = n - 1 , _s = i + 1 ) ) concat ( [ l [ i ] ] , p ) ] ;
// Function: permutations()
// Usage:
2021-06-27 03:59:33 +00:00
// list = permutations(l, [n]);
2021-03-10 22:49:39 +00:00
// Topics: List Handling, Iteration
// See Also: idx(), enumerate(), pair(), triplet(), combinations()
// Description:
2021-09-09 22:32:58 +00:00
// Returns a list of all of the (ordered) permutation `n` items out of the given list `l`.
// For the list `[1,2,3]`, with `n=2`, this will return `[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]`
// For the list `[1,2,3]`, with `n=3`, this will return `[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]`
2021-03-10 22:49:39 +00:00
// Arguments:
// l = The list to provide permutations for.
// n = The number of items in each permutation. Default: 2
// Example:
2021-09-09 22:32:58 +00:00
// pairs = permutations([3,4,5,6]); // // Returns: [[3,4],[3,5],[3,6],[4,3],[4,5],[4,6],[5,3],[5,4],[5,6],[6,3],[6,4],[6,5]]
2021-03-10 22:49:39 +00:00
function permutations ( l , n = 2 ) =
assert ( is_list ( l ) , "Invalid list." )
assert ( is_finite ( n ) && n >= 1 && n < = len ( l ) , "Invalid number `n`." )
n = = 1
? [ for ( i = [ 0 : 1 : len ( l ) - 1 ] ) [ l [ i ] ] ]
: [ for ( i = idx ( l ) , p = permutations ( [ for ( j = idx ( l ) ) if ( i ! = j ) l [ j ] ] , n = n - 1 ) ) concat ( [ l [ i ] ] , p ) ] ;
// Function: zip()
// Usage:
// pairs = zip(a,b);
// triples = zip(a,b,c);
// quads = zip([LIST1,LIST2,LIST3,LIST4]);
2021-04-11 11:37:49 +00:00
// Topics: List Handling, Iteration
// See Also: zip_long()
2021-03-10 22:49:39 +00:00
// Description:
// Zips together two or more lists into a single list. For example, if you have two
2021-10-17 03:01:52 +00:00
// lists [3,4,5], and [8,7,6], and zip them together, you get [ [3,8],[4,7],[5,6] ].
2021-03-10 22:49:39 +00:00
// The list returned will be as long as the shortest list passed to zip().
// Arguments:
// a = The first list, or a list of lists if b and c are not given.
// b = The second list, if given.
// c = The third list, if given.
// Example:
// a = [9,8,7,6]; b = [1,2,3];
// for (p=zip(a,b)) echo(p);
// // ECHO: [9,1]
// // ECHO: [8,2]
// // ECHO: [7,3]
function zip ( a , b , c ) =
b ! = undef ? zip ( [ a , b , if ( c ! = undef ) c ] ) :
2021-10-17 03:01:52 +00:00
let ( n = min_length ( a ) )
2021-03-10 22:49:39 +00:00
[ for ( i = [ 0 : 1 : n - 1 ] ) [ for ( x = a ) x [ i ] ] ] ;
// Function: zip_long()
// Usage:
// pairs = zip_long(a,b);
// triples = zip_long(a,b,c);
// quads = zip_long([LIST1,LIST2,LIST3,LIST4]);
2021-04-11 11:37:49 +00:00
// Topics: List Handling, Iteration
// See Also: zip()
2021-03-10 22:49:39 +00:00
// Description:
// Zips together two or more lists into a single list. For example, if you have two
2021-10-17 03:01:52 +00:00
// lists [3,4,5], and [8,7,6], and zip them together, you get [ [3,8],[4,7],[5,6] ].
2021-03-10 22:49:39 +00:00
// The list returned will be as long as the longest list passed to zip_long(), with
// shorter lists padded by the value in `fill`.
// Arguments:
// a = The first list, or a list of lists if b and c are not given.
// b = The second list, if given.
// c = The third list, if given.
// fill = The value to pad shorter lists with. Default: undef
// Example:
// a = [9,8,7,6]; b = [1,2,3];
// for (p=zip_long(a,b,fill=88)) echo(p);
// // ECHO: [9,1]
// // ECHO: [8,2]
// // ECHO: [7,3]
// // ECHO: [6,88]]
function zip_long ( a , b , c , fill ) =
b ! = undef ? zip_long ( [ a , b , if ( c ! = undef ) c ] , fill = fill ) :
2021-10-17 03:01:52 +00:00
let ( n = max_length ( a ) )
2021-03-10 22:49:39 +00:00
[ for ( i = [ 0 : 1 : n - 1 ] ) [ for ( x = a ) i < len ( x ) ? x [ i ] : fill ] ] ;
2020-01-09 04:43:19 +00:00
2020-03-31 06:09:20 +00:00
// Section: Set Manipulation
// Function: set_union()
// Usage:
2021-06-27 03:59:33 +00:00
// s = set_union(a, b, [get_indices]);
2021-03-02 06:44:00 +00:00
// Topics: Set Handling, List Handling
// See Also: set_difference(), set_intersection()
2020-03-31 06:09:20 +00:00
// Description:
// Given two sets (lists with unique items), returns the set of unique items that are in either `a` or `b`.
// If `get_indices` is true, a list of indices into the new union set are returned for each item in `b`,
// in addition to returning the new union set. In this case, a 2-item list is returned, `[INDICES, NEWSET]`,
// where INDICES is the list of indices for items in `b`, and NEWSET is the new union set.
// Arguments:
// a = One of the two sets to merge.
// b = The other of the two sets to merge.
// get_indices = If true, indices into the new union set are also returned for each item in `b`. Returns `[INDICES, NEWSET]`. Default: false
// Example:
// set_a = [2,3,5,7,11];
// set_b = [1,2,3,5,8];
// set_u = set_union(set_a, set_b);
// // set_u now equals [2,3,5,7,11,1,8]
// set_v = set_union(set_a, set_b, get_indices=true);
// // set_v now equals [[5,0,1,2,6], [2,3,5,7,11,1,8]]
function set_union ( a , b , get_indices = false ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( a ) && is_list ( b ) , "Invalid sets." )
2020-05-30 02:04:34 +00:00
let (
found1 = search ( b , a ) ,
found2 = search ( b , b ) ,
2020-07-24 21:54:34 +00:00
c = [ for ( i = idx ( b ) )
if ( found1 [ i ] = = [ ] && found2 [ i ] = = i )
b [ i ]
] ,
2020-05-30 02:04:34 +00:00
nset = concat ( a , c )
2020-07-24 21:54:34 +00:00
)
! get_indices ? nset :
2020-05-30 02:04:34 +00:00
let (
la = len ( a ) ,
found3 = search ( b , c ) ,
2020-07-24 21:54:34 +00:00
idxs = [ for ( i = idx ( b ) )
( found1 [ i ] ! = [ ] ) ? found1 [ i ] : la + found3 [ i ]
]
2020-05-30 02:04:34 +00:00
) [ idxs , nset ] ;
2020-03-31 06:09:20 +00:00
2020-07-28 20:51:45 +00:00
2020-03-31 06:09:20 +00:00
// Function: set_difference()
// Usage:
// s = set_difference(a, b);
2021-03-02 06:44:00 +00:00
// Topics: Set Handling, List Handling
// See Also: set_union(), set_intersection()
2020-03-31 06:09:20 +00:00
// Description:
// Given two sets (lists with unique items), returns the set of items that are in `a`, but not `b`.
// Arguments:
// a = The starting set.
// b = The set of items to remove from set `a`.
// Example:
// set_a = [2,3,5,7,11];
// set_b = [1,2,3,5,8];
// set_d = set_difference(set_a, set_b);
// // set_d now equals [7,11]
function set_difference ( a , b ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( a ) && is_list ( b ) , "Invalid sets." )
let ( found = search ( a , b , num_returns_per_match = 1 ) )
[ for ( i = idx ( a ) ) if ( found [ i ] = = [ ] ) a [ i ] ] ;
2020-03-31 06:09:20 +00:00
2020-07-28 20:51:45 +00:00
2020-03-31 06:09:20 +00:00
// Function: set_intersection()
// Usage:
// s = set_intersection(a, b);
2021-03-02 06:44:00 +00:00
// Topics: Set Handling, List Handling
// See Also: set_union(), set_difference()
2020-03-31 06:09:20 +00:00
// Description:
// Given two sets (lists with unique items), returns the set of items that are in both sets.
// Arguments:
// a = The starting set.
// b = The set of items to intersect with set `a`.
// Example:
// set_a = [2,3,5,7,11];
// set_b = [1,2,3,5,8];
// set_i = set_intersection(set_a, set_b);
// // set_i now equals [2,3,5]
function set_intersection ( a , b ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( a ) && is_list ( b ) , "Invalid sets." )
let ( found = search ( a , b , num_returns_per_match = 1 ) )
[ for ( i = idx ( a ) ) if ( found [ i ] ! = [ ] ) a [ i ] ] ;
2020-03-31 06:09:20 +00:00
2020-07-28 20:51:45 +00:00
2020-07-29 05:52:12 +00:00
2020-01-10 00:10:18 +00:00
// Section: Array Manipulation
2021-10-16 02:39:10 +00:00
// Function: columns()
2020-08-02 14:35:32 +00:00
// Usage:
2021-10-16 02:39:10 +00:00
// list = columns(M, idx);
2021-03-02 06:44:00 +00:00
// Topics: Array Handling, List Handling
// See Also: select(), slice()
2020-01-10 00:10:18 +00:00
// Description:
2020-08-02 14:35:32 +00:00
// Extracts the entries listed in idx from each entry in M. For a matrix this means
2020-08-05 05:16:48 +00:00
// selecting a specified set of columns. If idx is a number the return is a vector,
// otherwise it is a list of lists (the submatrix).
// This function will return `undef` at all entry positions indexed by idx not found in the input list M.
2020-01-10 00:10:18 +00:00
// Arguments:
2020-08-02 14:35:32 +00:00
// M = The given list of lists.
2020-01-10 00:10:18 +00:00
// idx = The index, list of indices, or range of indices to fetch.
// Example:
2020-08-02 14:38:33 +00:00
// M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
2021-10-16 02:39:10 +00:00
// a = columns(M,2); // Returns [3, 7, 11, 15]
// b = columns(M,[2]); // Returns [[3], [7], [11], [15]]
// c = columns(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
// d = columns(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
2020-08-05 05:16:48 +00:00
// N = [ [1,2], [3], [4,5], [6,7,8] ];
2021-10-16 02:39:10 +00:00
// e = columns(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
function columns ( M , idx ) =
2020-08-05 05:16:48 +00:00
assert ( is_list ( M ) , "The input is not a list." )
assert ( ! is_undef ( idx ) && _valid_idx ( idx , 0 , 1 / 0 ) , "Invalid index input." )
is_finite ( idx )
2020-08-02 14:35:32 +00:00
? [ for ( row = M ) row [ idx ] ]
: [ for ( row = M ) [ for ( i = idx ) row [ i ] ] ] ;
2020-01-10 00:10:18 +00:00
2020-08-03 23:49:22 +00:00
// Function: submatrix()
2020-10-04 03:29:35 +00:00
// Usage:
2021-01-08 03:17:10 +00:00
// mat = submatrix(M, idx1, idx2);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), block_matrix(), submatrix_set()
2020-08-03 23:49:22 +00:00
// Description:
2020-09-29 02:12:07 +00:00
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
2020-08-03 23:58:11 +00:00
// Arguments:
2020-08-03 23:49:22 +00:00
// M = Given list of lists
// idx1 = rows index list or range
// idx2 = column index list or range
// Example:
// M = [[ 1, 2, 3, 4, 5],
// [ 6, 7, 8, 9,10],
// [11,12,13,14,15],
// [16,17,18,19,20],
// [21,22,23,24,25]];
// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]]
// submatrix(M,[1], [3,4])); // Returns [[9,10]]
// submatrix(M,1, [3,4])); // Returns [[9,10]]
// submatrix(M,1,3)); // Returns [[9]]
// submatrix(M, [3,4],1); // Returns [[17],[22]]);
// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]);
// A = [[true, 17, "test"],
// [[4,2], 91, false],
// [6, [3,4], undef]];
// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]]
function submatrix ( M , idx1 , idx2 ) =
[ for ( i = idx1 ) [ for ( j = idx2 ) M [ i ] [ j ] ] ] ;
2021-01-24 15:29:34 +00:00
// Function: hstack()
// Usage:
// A = hstack(M1, M2)
// A = hstack(M1, M2, M3)
// A = hstack([M1, M2, M3, ...])
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix(), block_matrix()
2019-04-20 00:02:17 +00:00
// Description:
2021-01-24 15:29:34 +00:00
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
2021-10-16 03:13:30 +00:00
// This command is the inverse of `columns`. Note: strings given in vectors are broken apart into lists of characters. Strings given
2021-01-24 17:17:56 +00:00
// in matrices are preserved as strings. If you need to combine vectors of strings use array_group as shown below to convert the
// vector into a column matrix. Also note that vertical stacking can be done directly with concat.
2019-04-20 00:02:17 +00:00
// Arguments:
2021-01-24 15:29:34 +00:00
// M1 = If given with other arguments, the first matrix (or vector) to stack. If given alone, a list of matrices/vectors to stack.
// M2 = Second matrix/vector to stack
// M3 = Third matrix/vector to stack.
2019-04-20 00:02:17 +00:00
// Example:
2021-01-24 15:29:34 +00:00
// M = ident(3);
// v1 = [2,3,4];
2019-04-20 00:02:17 +00:00
// v2 = [5,6,7];
2021-01-24 15:29:34 +00:00
// v3 = [8,9,10];
// a = hstack(v1,v2); // Returns [[2, 5], [3, 6], [4, 7]]
// b = hstack(v1,v2,v3); // Returns [[2, 5, 8],
// // [3, 6, 9],
// // [4, 7, 10]]
// c = hstack([M,v1,M]); // Returns [[1, 0, 0, 2, 1, 0, 0],
// // [0, 1, 0, 3, 0, 1, 0],
// // [0, 0, 1, 4, 0, 0, 1]]
2021-10-16 02:39:10 +00:00
// d = hstack(columns(M,0), columns(M,[1 2])); // Returns M
2021-01-24 17:17:56 +00:00
// strvec = ["one","two"];
// strmat = [["three","four"], ["five","six"]];
// e = hstack(strvec,strvec); // Returns [["o", "n", "e", "o", "n", "e"],
// // ["t", "w", "o", "t", "w", "o"]]
// f = hstack(array_group(strvec,1), array_group(strvec,1));
// // Returns [["one", "one"],
// // ["two", "two"]]
// g = hstack(strmat,strmat); // Returns: [["three", "four", "three", "four"],
// // [ "five", "six", "five", "six"]]
2021-01-24 15:29:34 +00:00
function hstack ( M1 , M2 , M3 ) =
( M3 ! = undef ) ? hstack ( [ M1 , M2 , M3 ] ) :
( M2 ! = undef ) ? hstack ( [ M1 , M2 ] ) :
assert ( all ( [ for ( v = M1 ) is_list ( v ) ] ) , "One of the inputs to hstack is not a list" )
2020-05-30 02:04:34 +00:00
let (
2021-10-17 03:01:52 +00:00
minlen = min_length ( M1 ) ,
maxlen = max_length ( M1 )
2020-07-24 21:54:34 +00:00
)
2021-01-24 15:29:34 +00:00
assert ( minlen = = maxlen , "Input vectors to hstack must have the same length" )
[ for ( row = [ 0 : 1 : minlen - 1 ] )
[ for ( matrix = M1 )
each matrix [ row ]
]
] ;
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
2020-09-01 20:42:47 +00:00
// Function: block_matrix()
// Usage:
2021-01-08 03:17:10 +00:00
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix()
2020-09-01 20:42:47 +00:00
// Description:
// Create a block matrix by supplying a matrix of matrices, which will
// be combined into one unified matrix. Every matrix in one row
// must have the same height, and the combined width of the matrices
2021-01-24 15:29:34 +00:00
// in each row must be equal. Strings will stay strings.
2021-03-02 06:44:00 +00:00
// Example:
2021-01-24 15:29:34 +00:00
// A = [[1,2],
// [3,4]];
// B = ident(2);
// C = block_matrix([[A,B],[B,A],[A,B]]);
// // Returns:
// // [[1, 2, 1, 0],
// // [3, 4, 0, 1],
// // [1, 0, 1, 2],
// // [0, 1, 3, 4],
// // [1, 2, 1, 0],
// // [3, 4, 0, 1]]);
// D = block_matrix([[A,B], ident(4)]);
// // Returns:
// // [[1, 2, 1, 0],
// // [3, 4, 0, 1],
// // [1, 0, 0, 0],
// // [0, 1, 0, 0],
// // [0, 0, 1, 0],
// // [0, 0, 0, 1]]);
// E = [["one", "two"], [3,4]];
2021-03-02 06:44:00 +00:00
// F = block_matrix([[E,E]]);
2021-01-24 15:29:34 +00:00
// // Returns:
// // [["one", "two", "one", "two"],
// // [ 3, 4, 3, 4]]
2020-09-01 20:42:47 +00:00
function block_matrix ( M ) =
let (
2021-01-24 15:29:34 +00:00
bigM = [ for ( bigrow = M ) each hstack ( bigrow ) ] ,
2021-01-25 07:26:39 +00:00
len0 = len ( bigM [ 0 ] ) ,
2020-09-01 20:42:47 +00:00
badrows = [ for ( row = bigM ) if ( len ( row ) ! = len0 ) 1 ]
)
assert ( badrows = = [ ] , "Inconsistent or invalid input" )
bigM ;
2020-09-01 22:38:31 +00:00
// Function: diagonal_matrix()
// Usage:
2021-06-27 03:59:33 +00:00
// mat = diagonal_matrix(diag, [offdiag]);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix()
2020-09-01 22:38:31 +00:00
// Description:
// Creates a square matrix with the items in the list `diag` on
// its diagonal. The off diagonal entries are set to offdiag,
// which is zero by default.
2021-01-08 03:17:10 +00:00
// Arguments:
// diag = A list of items to put in the diagnal cells of the matrix.
// offdiag = Value to put in non-diagonal matrix cells.
function diagonal_matrix ( diag , offdiag = 0 ) =
2020-09-02 20:46:58 +00:00
assert ( is_list ( diag ) && len ( diag ) > 0 )
2020-09-01 22:38:31 +00:00
[ for ( i = [ 0 : 1 : len ( diag ) - 1 ] ) [ for ( j = [ 0 : len ( diag ) - 1 ] ) i = = j ? diag [ i ] : offdiag ] ] ;
2020-09-01 20:42:47 +00:00
// Function: submatrix_set()
2020-10-04 03:29:35 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// mat = submatrix_set(M, A, [m], [n]);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix()
2020-09-01 20:42:47 +00:00
// Description:
2021-01-08 03:17:10 +00:00
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
// of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be
// returned unchanged. Note that the input M need not be rectangular in shape.
// Arguments:
// M = Original matrix.
// A = Sub-matrix of parts to set.
// m = Row number of upper-left corner to place A at.
// n = Column number of upper-left corner to place A at.
2020-09-01 20:42:47 +00:00
function submatrix_set ( M , A , m = 0 , n = 0 ) =
assert ( is_list ( M ) )
assert ( is_list ( A ) )
2020-09-02 20:46:58 +00:00
assert ( is_int ( m ) )
assert ( is_int ( n ) )
2020-09-01 20:42:47 +00:00
let ( badrows = [ for ( i = idx ( A ) ) if ( ! is_list ( A [ i ] ) ) i ] )
assert ( badrows = = [ ] , str ( "Input submatrix malformed rows: " , badrows ) )
[ for ( i = [ 0 : 1 : len ( M ) - 1 ] )
assert ( is_list ( M [ i ] ) , str ( "Row " , i , " of input matrix is not a list" ) )
[ for ( j = [ 0 : 1 : len ( M [ i ] ) - 1 ] )
i >= m && i < len ( A ) + m && j >= n && j < len ( A [ 0 ] ) + n ? A [ i - m ] [ j - n ] : M [ i ] [ j ] ] ] ;
2019-04-20 00:02:17 +00:00
// Function: array_group()
2021-01-08 03:17:10 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// groups = array_group(v, [cnt], [dflt]);
2019-04-20 00:02:17 +00:00
// Description:
// Takes a flat array of values, and groups items in sets of `cnt` length.
// The opposite of this is `flatten()`.
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix(), hstack(), flatten(), full_flatten()
2019-04-20 00:02:17 +00:00
// Arguments:
// v = The list of items to group.
2021-01-08 03:17:10 +00:00
// cnt = The number of items to put in each grouping. Default:2
2021-06-22 00:13:40 +00:00
// dflt = The default value to fill in with if the list is not a multiple of `cnt` items long. Default: 0
2019-04-20 00:02:17 +00:00
// Example:
// v = [1,2,3,4,5,6];
2021-01-08 03:17:10 +00:00
// a = array_group(v,2) returns [[1,2], [3,4], [5,6]]
// b = array_group(v,3) returns [[1,2,3], [4,5,6]]
// c = array_group(v,4,0) returns [[1,2,3,4], [5,6,0,0]]
function array_group ( v , cnt = 2 , dflt = 0 ) =
[ for ( i = [ 0 : cnt : len ( v ) - 1 ] ) [ for ( j = [ 0 : 1 : cnt - 1 ] ) default ( v [ i + j ] , dflt ) ] ] ;
2019-04-20 00:02:17 +00:00
2021-07-01 00:05:44 +00:00
2019-04-20 00:02:17 +00:00
// Function: flatten()
2021-01-08 03:17:10 +00:00
// Usage:
// list = flatten(l);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix(), hstack(), full_flatten()
2021-01-08 03:17:10 +00:00
// Description:
// Takes a list of lists and flattens it by one level.
2019-04-20 00:02:17 +00:00
// Arguments:
// l = List to flatten.
// Example:
2021-01-08 03:17:10 +00:00
// l = flatten([[1,2,3], [4,5,[6,7,8]]]); // returns [1,2,3,4,5,[6,7,8]]
2021-01-25 07:26:39 +00:00
function flatten ( l ) =
! is_list ( l ) ? l :
[ for ( a = l ) if ( is_list ( a ) ) ( each a ) else a ] ;
2019-04-20 00:02:17 +00:00
2020-07-28 18:02:35 +00:00
// Function: full_flatten()
2021-01-08 03:17:10 +00:00
// Usage:
// list = full_flatten(l);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2021-10-16 02:39:10 +00:00
// See Also: columns(), submatrix(), hstack(), flatten()
2020-07-28 18:02:35 +00:00
// Description:
// Collects in a list all elements recursively found in any level of the given list.
// The output list is ordered in depth first order.
// Arguments:
// l = List to flatten.
// Example:
2021-01-08 03:17:10 +00:00
// l = full_flatten([[1,2,3], [4,5,[6,7,8]]]); // returns [1,2,3,4,5,6,7,8]
2021-01-25 07:26:39 +00:00
function full_flatten ( l ) =
! is_list ( l ) ? l :
[ for ( a = l ) if ( is_list ( a ) ) ( each full_flatten ( a ) ) else a ] ;
2020-07-28 18:02:35 +00:00
2019-04-20 00:02:17 +00:00
// Internal. Not exposed.
function _array_dim_recurse ( v ) =
2020-07-24 21:54:34 +00:00
! is_list ( v [ 0 ] )
2020-08-30 11:12:36 +00:00
? len ( [ for ( entry = v ) if ( ! is_list ( entry ) ) 0 ] ) = = 0 ? [ ] : [ undef ]
2020-07-24 21:54:34 +00:00
: let (
2020-08-30 11:12:36 +00:00
firstlen = is_list ( v [ 0 ] ) ? len ( v [ 0 ] ) : undef ,
first = len ( [ for ( entry = v ) if ( ! is_list ( entry ) || ( len ( entry ) ! = firstlen ) ) 0 ] ) = = 0 ? firstlen : undef ,
2020-07-24 21:54:34 +00:00
leveldown = flatten ( v )
)
is_list ( leveldown [ 0 ] )
? concat ( [ first ] , _array_dim_recurse ( leveldown ) )
: [ first ] ;
2019-04-20 00:02:17 +00:00
2020-08-30 11:12:36 +00:00
function _array_dim_recurse ( v ) =
let ( alen = [ for ( vi = v ) is_list ( vi ) ? len ( vi ) : - 1 ] )
v = = [ ] || max ( alen ) = = - 1 ? [ ] :
let ( add = max ( alen ) ! = min ( alen ) ? undef : alen [ 0 ] )
concat ( add , _array_dim_recurse ( flatten ( v ) ) ) ;
2019-04-20 00:02:17 +00:00
// Function: array_dim()
// Usage:
2021-06-27 03:59:33 +00:00
// dims = array_dim(v, [depth]);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
2019-04-20 00:02:17 +00:00
// Description:
2021-01-25 07:26:39 +00:00
// Returns the size of a multi-dimensional array. Returns a list of dimension lengths. The length
// of `v` is the dimension `0`. The length of the items in `v` is dimension `1`. The length of the
// items in the items in `v` is dimension `2`, etc. For each dimension, if the length of items at
// that depth is inconsistent, `undef` will be returned. If no items of that dimension depth exist,
// `0` is returned. Otherwise, the consistent length of items in that dimensional depth is
// returned.
2019-04-20 00:02:17 +00:00
// Arguments:
// v = Array to get dimensions of.
// depth = Dimension to get size of. If not given, returns a list of dimension lengths.
2021-09-16 23:33:55 +00:00
// Example:
2021-01-08 03:17:10 +00:00
// a = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3]
// b = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2
// c = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3
// d = array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3]
2019-04-20 00:02:17 +00:00
function array_dim ( v , depth = undef ) =
2020-07-24 21:54:34 +00:00
assert ( is_undef ( depth ) || ( is_finite ( depth ) && depth >= 0 ) , "Invalid depth." )
! is_list ( v ) ? 0 :
( depth = = undef )
? concat ( [ len ( v ) ] , _array_dim_recurse ( v ) )
: ( depth = = 0 )
? len ( v )
: let ( dimlist = _array_dim_recurse ( v ) )
( depth > len ( dimlist ) ) ? 0 : dimlist [ depth - 1 ] ;
2020-08-30 11:12:36 +00:00
2019-04-20 00:02:17 +00:00
2019-05-12 19:32:03 +00:00
// Function: transpose()
2020-08-29 03:16:11 +00:00
// Usage:
2021-06-27 03:59:33 +00:00
// arr = transpose(arr, [reverse]);
2021-03-02 06:44:00 +00:00
// Topics: Matrices, Array Handling
// See Also: submatrix(), block_matrix(), hstack(), flatten()
2020-08-29 03:16:11 +00:00
// Description:
// Returns the transpose of the given input array. The input should be a list of lists that are
// all the same length. If you give a vector then transpose returns it unchanged.
// When reverse=true, the transpose is done across to the secondary diagonal. (See example below.)
2020-08-11 13:55:25 +00:00
// By default, reverse=false.
2019-05-12 19:32:03 +00:00
// Example:
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"],
// ["g", "h", "i"]
// ];
// t = transpose(arr);
// // Returns:
// // [
// // ["a", "d", "g"],
// // ["b", "e", "h"],
// // ["c", "f", "i"],
// // ]
// Example:
2019-05-12 19:54:09 +00:00
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"]
// ];
// t = transpose(arr);
// // Returns:
// // [
// // ["a", "d"],
// // ["b", "e"],
// // ["c", "f"],
// // ]
// Example:
2020-08-11 13:55:25 +00:00
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"],
// ["g", "h", "i"]
// ];
// t = transpose(arr, reverse=true);
// // Returns:
// // [
// // ["i", "f", "c"],
// // ["h", "e", "b"],
// // ["g", "d", "a"]
// // ]
2020-08-29 03:16:11 +00:00
// Example: Transpose on a list of numbers returns the list unchanged
2019-05-12 19:54:09 +00:00
// transpose([3,4,5]); // Returns: [3,4,5]
2020-08-11 13:55:25 +00:00
function transpose ( arr , reverse = false ) =
2020-08-29 03:16:11 +00:00
assert ( is_list ( arr ) && len ( arr ) > 0 , "Input to transpose must be a nonempty list." )
2020-07-31 14:52:35 +00:00
is_list ( arr [ 0 ] )
2020-08-29 03:16:11 +00:00
? let ( len0 = len ( arr [ 0 ] ) )
assert ( [ for ( a = arr ) if ( ! is_list ( a ) || len ( a ) ! = len0 ) 1 ] = = [ ] , "Input to transpose has inconsistent row lengths." )
2020-08-11 13:55:25 +00:00
reverse
2020-08-29 03:16:11 +00:00
? [ for ( i = [ 0 : 1 : len0 - 1 ] )
[ for ( j = [ 0 : 1 : len ( arr ) - 1 ] ) arr [ len ( arr ) - 1 - j ] [ len0 - 1 - i ] ] ]
: [ for ( i = [ 0 : 1 : len0 - 1 ] )
2020-08-11 13:55:25 +00:00
[ for ( j = [ 0 : 1 : len ( arr ) - 1 ] ) arr [ j ] [ i ] ] ]
2020-08-29 03:16:11 +00:00
: assert ( is_vector ( arr ) , "Input to transpose must be a vector or list of lists." )
2020-07-31 14:52:35 +00:00
arr ;
2020-07-29 05:52:12 +00:00
2021-10-16 03:13:30 +00:00
// Section: Matrices
2021-03-13 01:36:34 +00:00
// Function: is_matrix_symmetric()
// Usage:
2021-06-27 03:59:33 +00:00
// b = is_matrix_symmetric(A, [eps])
2021-03-13 01:36:34 +00:00
// Description:
// Returns true if the input matrix is symmetric, meaning it equals its transpose.
// Matrix should have numerical entries.
// Arguments:
// A = matrix to test
// eps = epsilon for comparing equality. Default: 1e-12
function is_matrix_symmetric ( A , eps = 1e-12 ) =
2021-04-11 11:37:49 +00:00
approx ( A , transpose ( A ) , eps ) ;
2021-03-13 01:36:34 +00:00
2021-10-01 04:30:28 +00:00
// Function&Module: echo_matrix()
// Usage:
// echo_matrix(M, [description=], [sig=], [eps=]);
// dummy = echo_matrix(M, [description=], [sig=], [eps=]),
// Description:
// Display a numerical matrix in a readable columnar format with `sig` significant
// digits. Values smaller than eps display as zero. If you give a description
// it is displayed at the top.
function echo_matrix ( M , description , sig = 4 , eps = 1e-9 ) =
let (
horiz_line = chr ( 8213 ) ,
matstr = matrix_strings ( M , sig = sig , eps = eps ) ,
separator = str_join ( repeat ( horiz_line , 10 ) ) ,
dummy = echo ( str ( separator , " " , is_def ( description ) ? description : "" ) )
[ for ( row = matstr ) echo ( row ) ]
)
echo ( separator ) ;
module echo_matrix ( M , description , sig = 4 , eps = 1e-9 )
{
dummy = echo_matrix ( M , description , sig , eps ) ;
}
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap